JP2746631B2 - High magnetic flux density oriented silicon steel sheet with excellent iron loss characteristics and method for producing the same - Google Patents
High magnetic flux density oriented silicon steel sheet with excellent iron loss characteristics and method for producing the sameInfo
- Publication number
- JP2746631B2 JP2746631B2 JP1014008A JP1400889A JP2746631B2 JP 2746631 B2 JP2746631 B2 JP 2746631B2 JP 1014008 A JP1014008 A JP 1014008A JP 1400889 A JP1400889 A JP 1400889A JP 2746631 B2 JP2746631 B2 JP 2746631B2
- Authority
- JP
- Japan
- Prior art keywords
- annealing
- less
- cooling rate
- silicon steel
- steel sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) この発明は、鉄損特性の優れた高磁束密度方向性けい
素鋼板およびその製造方法に関し、とくに2次粒径の効
果的な細分化により、磁束密度の低下を招くことなしに
鉄損特性の有利な改善を図ったものである。Description: TECHNICAL FIELD The present invention relates to a high magnetic flux density oriented silicon steel sheet having excellent iron loss characteristics and a method for producing the same, and more particularly to an effective subdivision of a secondary particle size. It is intended to advantageously improve the iron loss characteristics without lowering the magnetic flux density.
(従来の技術) 方向性けい素鋼板は、軟磁性材料として変圧器や発電
機の鉄心材料として使用されるもので、磁気特性として
磁束密度と鉄損とが良好でなくてはならないが、この他
にも欠陥の少ない表面被膜を形成させることが必要とさ
れる。磁気特性の優れた材料は、製品の結晶粒(以下2
次粒と呼ぶ)をゴス方位と呼ばれる(110)〔001〕方位
に高度に揃えることが必要であり、これによって磁束密
度の向上が実現される。(Prior art) Grain-oriented silicon steel sheets are used as soft magnetic materials as core materials for transformers and generators. Magnetic properties such as magnetic flux density and iron loss must be good. In addition, it is necessary to form a surface coating with few defects. Materials with excellent magnetic properties are the product crystal grains (hereinafter referred to as 2).
(Referred to as the next grain) must be highly aligned with the (110) [001] orientation called the Goss orientation, thereby realizing an improvement in magnetic flux density.
このような結晶方位制御技術としては、たとえば特公
昭33−4710号公報や特公昭40−15644号公報には、素材
中にAlを含有させ、最終冷延の圧下率を81〜95%の高圧
下率とすると共に最終冷延前の焼鈍でAlNを析出させる
技術が、また特公昭46−23820号公報には、この最終冷
延前の焼鈍における冷却速度を750〜950℃の温度域から
400℃まで2秒〜200秒間で急冷にする技術がそれぞれ開
示されている。As such a crystal orientation control technique, for example, Japanese Patent Publication No. 33-4710 and Japanese Patent Publication No. 40-15644 disclose that Al is contained in the material and the reduction rate of the final cold rolling is 81 to 95%. A technique for precipitating AlN by annealing before final cold rolling with a lower rate, and Japanese Patent Publication No. 46-23820 discloses that the cooling rate in this annealing before final cold rolling is from a temperature range of 750 to 950 ° C.
A technique for rapidly cooling to 400 ° C. in 2 to 200 seconds is disclosed.
上記の諸技術によって磁束密度の向上が図られ、現在
では理論値の96%程度の特性を有するものまで工業的に
製造されるようになってきた。これに伴って鉄損も改善
されてきたが、ここに2つの問題点があった。The magnetic flux density has been improved by the above-mentioned techniques, and at present, those having characteristics of about 96% of the theoretical value have been industrially manufactured. Accordingly, iron loss has been improved, but there are two problems here.
その第1点は、磁束密度が向上していくに伴って製品
の2次粒径が増大し、所望の鉄損向上効果が得られなく
なることである。The first point is that as the magnetic flux density increases, the secondary particle size of the product increases, and the desired effect of improving iron loss cannot be obtained.
また第2点は、鉄損の向上を図るべく製品の板厚を薄
くした場合に、2次再結晶が困難となり、2次粒の方位
をゴス方位に揃えることができなくってかえって磁束密
度の劣化を招くことである。Second, when the product thickness is reduced in order to improve iron loss, secondary recrystallization becomes difficult, and the orientation of secondary grains cannot be aligned with the Goss orientation. This leads to deterioration.
第1の問題点の回避策として、特公昭50−26493号公
報には、冷間圧延のパス間温度を所定の温度に保持して
時効させる技術が開示されているが、これでも2次粒の
粒径を完全に制御することは困難であり、しかも実操業
上極めて煩雑なだけでなく、第2の問題点に対しては無
力であった。As a workaround for the first problem, Japanese Patent Publication No. Sho 50-26493 discloses a technique of keeping the inter-pass temperature of cold rolling at a predetermined temperature and aging it. It was difficult to completely control the particle size of the particles, and it was not only extremely complicated in actual operation but also helpless to the second problem.
また第2の問題点を回避する技術としては、特開昭60
−197819号公報に、素材中にCuを0.03〜0.5wt%(以下
単に%で示す)とSnを0.03〜0.5%添加し、熱延での仕
上げ前面温度を1150〜1250℃、仕上げ後面温度950〜105
0℃にすると共に、巻取り温度を500〜600℃の温度域に
制御することによって、板厚:0.30mm以下の低鉄損高磁
束密度方向性けい素鋼板を製造する技術が提案されてい
る。Alを含有する鋼にCuを含有させることは前掲の特公
昭33−4710号公報にも開示されているように古くから公
知であり、この技術の要点は熱延工程の諸条件を規制す
ることによって、熱延でのAlNの析出を抑えると同時
に、Snを粒界に積極的に析出させる点にある。A technique for avoiding the second problem is disclosed in
No. 197819, 0.03 to 0.5 wt% of Cu (hereinafter simply referred to as%) and Sn of 0.03 to 0.5% are added to the material, the finishing front temperature in hot rolling is 1150 to 1250 ° C, and the finishing rear surface temperature is 950. ~ 105
A technique has been proposed for producing a low core loss, high magnetic flux density directional silicon steel sheet having a sheet thickness of 0.30 mm or less by controlling the winding temperature to a temperature range of 500 to 600 ° C. while keeping the temperature at 0 ° C. . The inclusion of Cu in steel containing Al has been known for a long time as disclosed in the above-mentioned Japanese Patent Publication No. 33-4710, and the point of this technique is to regulate the conditions of the hot rolling process. Thus, precipitation of AlN during hot rolling is suppressed, and Sn is positively precipitated at grain boundaries.
しかしなから上記の技術では、Snを粒界に析出させる
ため、鋼の脆化を招き、後段の圧延で破断したり、鱗状
模様の表面欠陥をもたらすことの他、酸洗性が良くない
ことから、圧延後も鋼板表面に一部酸化層が残存し、脱
炭焼鈍時に脱炭不良を起こし、磁気特性が劣化したり、
表面にヘゲ状欠陥が発生する場合があり、安定性に欠け
ていた。However, in the above technique, Sn precipitates at the grain boundary, which causes the steel to become brittle, breaks in the subsequent rolling, or causes a surface defect of a scale-like pattern, and that the pickling property is not good. Therefore, even after rolling, part of the oxide layer remains on the steel sheet surface, causing decarburization failure during decarburization annealing, deteriorating magnetic properties,
In some cases, barbed defects were generated on the surface, and stability was lacking.
(発明が解決しようとする課題) この発明は、上記の問題を有利に解決するもので、板
厚が0.30mm以下の高磁束密度方向性けい素鋼板において
磁束密度の安定化を図るとともに、2次粒径を細かくし
て鉄損も効果的に低減した鉄損特性に優れた高磁束密度
方向性けい素鋼板を、その有利な製造方法と共に提案す
ることを目的とする。(Problems to be Solved by the Invention) The present invention advantageously solves the above-mentioned problems, and aims to stabilize the magnetic flux density in a high-flux-density silicon steel sheet having a thickness of 0.30 mm or less. It is an object of the present invention to propose a high magnetic flux density directional silicon steel sheet having excellent iron loss characteristics in which the secondary particle diameter is reduced and iron loss is effectively reduced, together with its advantageous production method.
(課題を解決するための手段) さて発明者らは、上記の問題を解決すべく鋭意研究を
重ねた結果、鋼中にGeを含有させることによって仕上げ
焼鈍後の2次粒径を細かくすることができることを見出
し、この知見に基いて種々の工夫を加味した末に、この
き発明を完成させるに至ったのである。(Means for Solving the Problems) As a result of intensive studies to solve the above-mentioned problems, the inventors have found that the secondary grain size after finish annealing is made fine by including Ge in steel. The present inventors have found that the present invention can be made, and after adding various ideas based on this finding, have completed the present invention.
すなわちこの発明は、Si:2.5%以上,4.0%以下、Mn:
0.04%以上,0.15%以下,Ge:0.005%以上,0.20%以下、
を含有し、ときにはさらにMo:0.005〜0.20%、Cu:0.01
〜0.3%、Sb:0.005〜0.20%、Sn:0.010〜0.025%および
P:0.010〜010%のうちから選ばれる少なくとも一種を含
み、残部はFeおよび微量の不可避元素からなり、平均2
次粒径が3〜7mmで、かつ板厚が0.10〜0.30mmである鉄
損特性の優れた高磁束密度方向性けい素鋼板である。That is, the present invention relates to Si: 2.5% or more, 4.0% or less, Mn:
0.04% or more, 0.15% or less, Ge: 0.005% or more, 0.20% or less,
And sometimes Mo: 0.005 to 0.20%, Cu: 0.01
~ 0.3%, Sb: 0.005 ~ 0.20%, Sn: 0.010 ~ 0.025% and
P: contains at least one selected from 0.010 to 010%, with the balance being Fe and trace amounts of unavoidable elements.
It is a high magnetic flux density directional silicon steel sheet having an excellent iron loss characteristic having a secondary grain size of 3 to 7 mm and a thickness of 0.10 to 0.30 mm.
またこの発明は、C:0.02〜0.090%、Si:2.5〜4.0%、
Mn:0.04〜0.15%、sol Al:0.010〜0.050%およびN:0.00
40〜0.0120%を基本成分とする鋼素材に、0.005〜0.20
%の範囲でGeを添加したけい素鋼スラブを、熱間圧延
し、ついで1回目の冷間圧延を施して中間板厚としてか
ら、1000〜1200℃、0.5〜10minの中間焼鈍後、少なくと
も500℃までを7℃/s以上の冷却速度で急冷し、ついで
圧下率:75〜90%の条件下に2回目の冷間圧延を施して
板厚:0.10〜0.30mmの最終冷延板に仕上げたのち、脱炭
を兼ねる1次再結晶焼鈍を施し、しかるのちMgOを主成
分とする焼鈍分離剤を塗布してから、高温仕上げ焼鈍を
施すことからなる鉄損特性の優れた高磁束密度方向性け
い素鋼板の製造方法である。Further, the present invention, C: 0.02-0.090%, Si: 2.5-4.0%,
Mn: 0.04 to 0.15%, sol Al: 0.010 to 0.050% and N: 0.00
0.005 to 0.20% for steel materials whose basic component is 40 to 0.0120%
% Of a silicon steel slab to which Ge has been added in the range of 0.1%, hot-rolled, and then subjected to a first cold rolling to an intermediate sheet thickness. ℃ rapidly cooled to 7 ° C / s or more at a cooling rate of 7 ° C / s or more, and then subjected to a second cold rolling under the condition of a reduction rate of 75 to 90% to finish a final cold rolled sheet with a thickness of 0.10 to 0.30 mm. After that, primary recrystallization annealing also serves as decarburization, then an annealing separator containing MgO as a main component is applied, and then high-temperature finish annealing is performed. This is a method for producing a silicon nitride steel sheet.
以下この発明の基礎となった実験結果について説明す
る。Hereinafter, the experimental results on which the present invention is based will be described.
C:0.066%、Si:3.25%、S:0.025%、sol Al:0.025%お
よびN:0.008%を含有し、残部は実質的にFeの組成にな
る溶鋼に、Geを無添加および0.001〜0.50%の範囲で種
々の量添加した計10本の鋼塊を鋳造した。C: 0.066%, Si: 3.25%, S: 0.025%, sol Al: 0.025% and N: 0.008%, the balance being substantially Fe-free molten steel, Ge-free and 0.001-0.50 A total of 10 steel ingots with various amounts added in the range of% were cast.
これらの鋼塊を1200℃に加熱した後、分塊圧延し、次
いで1420℃に加熱して熱間圧延を施し、2.3mm厚の熱延
板とした。これらを酸洗後、第1回目の冷間圧延を施し
て1.50mm厚の中間板厚としてから、N2中で1100℃、3分
間の焼鈍を施したのち、80℃の湯中に急冷(平均冷却速
度:40℃/s)した。次いで0.23mmの最終厚みまで2次冷
延したのち、湿H2中で850℃、5分間の脱炭焼鈍を施し
た。その後MgOを主体とする焼鈍分離剤を塗布してか
ら、H2中で1200℃、20hの仕上げ焼鈍を施した。After heating these steel ingots to 1200 ° C., they were subjected to slab rolling, and then to 1420 ° C. and hot-rolled to obtain 2.3 mm thick hot-rolled sheets. After pickling, these were subjected to a first cold rolling to an intermediate plate thickness of 1.50 mm, then annealed in N 2 at 1100 ° C. for 3 minutes, and quenched in hot water at 80 ° C. ( Average cooling rate: 40 ° C / s). Next, after secondary cold rolling to a final thickness of 0.23 mm, decarburizing annealing was performed at 850 ° C. for 5 minutes in wet H 2 . Thereafter, an annealing separator mainly composed of MgO was applied, followed by finish annealing in H 2 at 1200 ° C. for 20 hours.
かくして得られた製品板の磁気特性および平均2次粒
径について調べた結果を第1図に示す。FIG. 1 shows the results obtained by examining the magnetic properties and the average secondary particle size of the product sheet thus obtained.
同図より明らかなように、方向性けい素鋼素材中にGe
を0.005〜0.20%の範囲にわたって含有させたものは、
製品板において、2次粒径が小さくなり、著しい鉄損の
低減がもたらされている。しかも磁束密度の劣化もな
い。As is clear from the figure, Ge is contained in the directional silicon steel material.
Is contained in the range of 0.005 to 0.20%,
In the product plate, the secondary particle size is reduced, and a remarkable reduction in iron loss is brought about. Moreover, there is no deterioration of the magnetic flux density.
このような2次粒径の低減をもたらした原因を調査し
たところ、第2図に示すように、実験材の脱炭・1次再
結晶板の表層の集合組織のうち(110)強度が著しく増
大していることが判明した。また、脱炭・1次再結晶板
のAlN析出サイズのうち、50Å以下の極めて小さな析出
物の析出頻度が増加していることも判明した。このよう
にAlNの微細析出物が増加しているということは、抑制
力が強化されていることを意味し、このため鋼板の板厚
が薄くなった場合でも、磁束密度の低下が防げたものと
考えられる。また(110)強度が増加したことは、2次
再結晶における核生成頻度の増加を意味し、このため2
次粒の生成頻度が増し、2次粒径が細粒化されたものと
考えられる。When the cause of such a reduction in secondary particle size was investigated, as shown in FIG. 2, the (110) strength of the texture of the surface layer of the decarburized / primary recrystallized plate of the experimental material was remarkably high. It was found to be increasing. It was also found that, among the AlN precipitation sizes of the decarburized / primary recrystallized plate, the precipitation frequency of extremely small precipitates of 50 ° or less was increasing. The fact that the fine precipitates of AlN are increasing in this way means that the suppressing power is strengthened, and therefore, even if the thickness of the steel sheet is reduced, the magnetic flux density can be prevented from lowering. it is conceivable that. Also, an increase in the (110) intensity means an increase in the frequency of nucleation in the secondary recrystallization.
It is considered that the generation frequency of the secondary particles increased, and the secondary particle size was reduced.
次に、(110)強度が増加した原因を調べるために、
中間焼鈍後の鋼板の組織を調査したところ0.032%Geを
添加した第3図の(a)の例に示されるように、極めて
細かい炭化物が、稠密に析出していることがわかった。
これに比較し、Geを添加していない第3図の(b)では
細かい炭化物の析出頻度ははるかに小さい。Next, to investigate the cause of the (110) increase,
Examination of the structure of the steel sheet after the intermediate annealing revealed that extremely fine carbides were densely precipitated, as shown in the example of FIG. 3A in which 0.032% Ge was added.
In comparison with this, the frequency of precipitation of fine carbides is much lower in FIG. 3 (b) where Ge is not added.
以上のことより、Geの添加によって、中間焼鈍後の炭
化物の微細析出が促進され、脱炭・1次再結晶焼鈍後の
鋼板表層の(110)強度が増し、併せて2次再結晶の核
生成頻度が増大した結果、2次粒径が細かくなったもの
と推察される。From the above, the addition of Ge promotes the fine precipitation of carbides after intermediate annealing, increases the (110) strength of the steel sheet surface layer after decarburization and primary recrystallization annealing, and at the same time, the core of secondary recrystallization. It is presumed that the secondary particle diameter became fine as a result of the increase in the generation frequency.
さてこの発明において用いるけい素鋼板素材の成分は
次のとおりである。The components of the silicon steel sheet material used in the present invention are as follows.
すなわちC:0.02〜0.090%、Si:2.5〜4.0%、Mn:0.04
〜0.15%、sol Al:0.010〜0.040%およびN:0.0040〜0.0
120%を基本成分とする鋼素材に、Geを0.005〜0.20%の
範囲において含有させる。またさらに、抑制力を補強す
るため、従来より公知であるSおよび/またはSe:0.010
〜0.040%、Sbおよび/またはMo:0.005〜0.20%、Cu:0.
01〜0.3%、P:0.010〜0.10%、およびSn:0.010〜0.025
%のうちから選ばれる少なくとも一種を添加しても良
い。That is, C: 0.02-0.090%, Si: 2.5-4.0%, Mn: 0.04
~ 0.15%, sol Al: 0.010-0.040% and N: 0.0040-0.0
Ge is contained in a steel material containing 120% as a basic component in a range of 0.005 to 0.20%. Furthermore, in order to reinforce the suppressing force, conventionally known S and / or Se: 0.010
~ 0.040%, Sb and / or Mo: 0.005 ~ 0.20%, Cu: 0.
01-0.3%, P: 0.010-0.10%, and Sn: 0.010-0.025
% May be added.
以下、この発明においてけい素鋼素材を上記の範囲に
限定した理由について説明する。Hereinafter, the reason why the silicon steel material is limited to the above range in the present invention will be described.
Cは、変態を利用して熱延組織を改善するのに有用な
元素であり、0.02%以上を必要とするのが、0.090%を
超すと後工程の脱炭焼鈍で脱炭不良を起こすので好まし
くない。C is an element useful for improving the hot-rolled structure by utilizing transformation, and requires 0.02% or more. However, if it exceeds 0.090%, poor decarburization will be caused by decarburization annealing in the subsequent process. Not preferred.
Siは、電気抵抗を高めて鉄損を低下させる主要な元素
であり、少なくとも2.5%を必要とするが、4.0%を超す
と冷延が困難となり好ましくない。Si is a major element that increases electric resistance and reduces iron loss, and requires at least 2.5%. If it exceeds 4.0%, cold rolling becomes difficult, which is not preferable.
sol AlとNは、本成分系の基本元素であり、鋼中でAl
Nとして析出し、抑制剤として作用するものであるが、s
ol Alは0.010〜0.050%の範囲を、またNは0.0040〜0.0
120%の範囲を逸脱すると2次再結晶が不安定となる。sol Al and N are the basic elements of this component system.
Precipitates as N and acts as an inhibitor, but s
ol Al ranges from 0.010 to 0.050%, and N ranges from 0.0040 to 0.050%.
Outside the range of 120%, secondary recrystallization becomes unstable.
Mnは、鋼の熱間加工性の改善に有効に寄与するだけで
なく、SもしくはSeが混在している場合には、MnSやMnS
e等の析出物を形成し同じく抑制剤としての機能を発揮
するので0.04〜0.15%の範囲とする。Mn not only effectively contributes to the improvement of hot workability of steel, but also contains MnS or MnS when S or Se is mixed.
e forms a precipitate such as e and also functions as an inhibitor, so that the content is in the range of 0.04 to 0.15%.
以上の成分にGeを添加することがこの発明の最大の特
徴であり、鋼素材にGeを添加させることによって、鋼中
のAlNと炭化物が極めて微細に分散析出するようにな
り、さらに好ましいことには、板厚の薄い鋼板の1次再
結晶組織が改善されるのである。しかしながらGeが0.00
5%未満では、この効果が少なく、一方0.20%を超える
と炭化物の析出が低下し抑制効果が弱くなるので0.005
〜0.20%の範囲で含有させる必要がある。The greatest feature of the present invention is to add Ge to the above components, and by adding Ge to the steel material, AlN and carbide in the steel become dispersed and precipitated very finely, which is more preferable. The primary recrystallization structure of a thin steel plate is improved. However, Ge is 0.00
If it is less than 5%, this effect is small, while if it exceeds 0.20%, the precipitation of carbides is reduced and the suppression effect is weakened.
Must be contained in the range of ~ 0.20%.
この発明の目的は、上述した鋼素材成分とすることに
よって実現されるが、この他にも抑制力の補強として以
下の元素を添加することができる。すなわち抑制力補強
元素としてS,Se,Sb,Mo,Cu,PおよびSnなどを添加しても
良い。The object of the present invention is realized by using the above-mentioned steel material component, but in addition to the above, the following elements can be added as reinforcement of the suppressing force. That is, S, Se, Sb, Mo, Cu, P, Sn, and the like may be added as a suppressing force reinforcing element.
SおよびSeはいずれも、抑制剤として有用な元素であ
り、両者は同等の効果を有するが、含有量が0.010%に
満たないと十分な抑制効果が期待できず、一方0.040%
を超えるとMnS等の粗大化、純化不良、表面性状の劣化
などを招くので、単独または併用いずれの場合において
も0.010〜0.040%の範囲で添加することが好ましい。Both S and Se are useful elements as inhibitors, and both have the same effect, but if the content is less than 0.010%, a sufficient inhibitory effect cannot be expected, while 0.040%
If the content exceeds the above range, coarsening of MnS or the like, poor purification, deterioration of surface properties, etc. will be caused. Therefore, it is preferable to add MnS in the range of 0.010 to 0.040% either alone or in combination.
Sbは、粒界に偏析して抑制力を強める効果を有し、ま
たMoは、2次粒の核をゴス方位に先鋭化させる効果を有
し、いずれも0.005〜0.20%の範囲でその効果が顕著で
ある。Sb has the effect of segregating at the grain boundaries to increase the suppression power, and Mo has the effect of sharpening the nuclei of secondary grains to the Goss orientation, all of which have an effect in the range of 0.005 to 0.20%. Is remarkable.
Cuは、Mnと同様、SやSeと結合して、析出物を形成し
抑制効果を高める元素であり、その効果は0.01〜0.3%
の範囲で顕著となる。Cu, like Mn, is an element that combines with S and Se to form precipitates and enhance the suppression effect, and the effect is 0.01 to 0.3%.
In the range.
Pは、Sbと同様、粒界に偏析して抑制力を強める効果
を有し、0.010〜0.10%の範囲でその効果が顕著であ
る。P, like Sb, has the effect of segregating at the grain boundaries to increase the suppressing power, and the effect is remarkable in the range of 0.010 to 0.10%.
Snは、Sbと同様、粒界に偏析して抑制力を強める元素
であるが、0.010%未満ではその添加効果に乏しく、一
方0.025%を超えると前述した磁気特性、表面性状を不
安定化させるので、0.010〜0.025%とする。Sn, like Sb, is an element that segregates at the grain boundaries and enhances the inhibitory power. However, if it is less than 0.010%, the effect of its addition is poor, while if it exceeds 0.025%, the magnetic properties and surface properties described above become unstable. Therefore, it is set to 0.010 to 0.025%.
なお上記の各成分において、C,S,Se,N,AlおよびP等
は各機能を果たした後、Cは主として脱炭焼鈍におい
て、またS,Se,N,AlおよびP等は仕上げ焼鈍後半の純化
焼鈍において除去されるので、製品の地鉄中には不純物
として微量に残存するのみである。In each of the above components, C, S, Se, N, Al, P, etc. perform their respective functions, C is mainly used in decarburizing annealing, and S, Se, N, Al, P, etc. are used in the latter half of finishing annealing. Is removed during the purification annealing of the steel, only a trace amount of impurities remains in the base iron of the product.
次にこの発明の製造方法について説明する。 Next, the manufacturing method of the present invention will be described.
上記の成分を有するけい素鋼素材は従来公知のいかな
る溶解法、造塊法、分塊法によっても製造することがで
きる。次いで、このけい素鋼素材は通常の熱間圧延によ
り熱延コイルに圧延される。熱延コイルは公知のように
必要に応じてノルマ焼鈍を行い、さらに引き続いて、10
00〜1200℃,0.5〜10minの中間焼鈍を挟む2回の冷間圧
延によって0.10〜0.30mmの最終板厚とする。ここに最終
板厚を0.10〜0.30mmの範囲に限定したのは、板厚が0.30
mmを超えるものについては、この発明の技術をとくに適
用する必要がなく、一方0.10mm未満のものについては、
この発明の技術によっても良好な製品を得ることが難し
いからである。The silicon steel material having the above-mentioned components can be produced by any conventionally known melting method, ingot-making method, or ingot-making method. Next, this silicon steel material is rolled into a hot-rolled coil by ordinary hot rolling. The hot-rolled coil is subjected to a norma annealing as necessary in a known manner.
A final thickness of 0.10 to 0.30 mm is obtained by performing two cold rolling operations with intermediate annealing at 00 to 1200 ° C for 0.5 to 10 minutes. Here, the final sheet thickness was limited to the range of 0.10 to 0.30 mm because the sheet thickness was 0.30
For those larger than 0.1 mm, the technology of the present invention does not need to be particularly applied, while for those smaller than 0.10 mm,
This is because it is difficult to obtain a good product even by the technique of the present invention.
冷延工程における1回目、2回目の圧下率配分は、例
えば特公昭40−15644号公報や特公昭46−23820号公報に
開示の技術で十分である。ここに2回目の圧下率はAlを
含有するけい素鋼の圧延で公知のように強圧下が必要で
あるが、この発明の成分系においては、75〜90%と従来
の好適範囲である80〜95%よりも、やや低圧下率側に好
適範囲が移行している。The first and second distributions of the rolling reduction in the cold rolling process are sufficient by the techniques disclosed in, for example, Japanese Patent Publication Nos. 40-15644 and 46-23820. Here, the second rolling reduction requires a strong rolling as is known in the rolling of silicon steel containing Al, but in the component system of the present invention, it is 75 to 90%, which is the conventional preferable range. The preferred range has shifted to a slightly lower rolling reduction side than 95%.
またこの発明法では、中間焼鈍における冷却速度を制
御することが有利である。従来よりAlを含有するけい素
鋼の焼鈍時の冷却に関しては、たとえば特公昭46−2382
0号公報に記載されているように急速冷却が良いとされ
ている。これは冷却時のAlNの析出に関連しており、磁
気特性上極めて重要であるので、数々の実験がなされ、
素材成分によって微妙な制御を行う必要があることが指
摘されている。かかる技術を大別すると500℃前後(黒
化点も含む)まで急冷する制御冷却が必要であるとする
技術(特公昭46−23820号、特開昭51−63314号、特開昭
62−180015号各公報)と、室温まで制御しつつ急冷する
ことが必要であるとする技術(特公昭59−48934号公
報)に分けられる。In the method of the present invention, it is advantageous to control the cooling rate in the intermediate annealing. Conventionally, cooling of silicon steel containing Al during annealing is described, for example, in Japanese Patent Publication No. 46-2382.
As described in Japanese Patent Publication No. 0, rapid cooling is considered to be good. This is related to the precipitation of AlN during cooling, which is extremely important for magnetic properties.
It is pointed out that it is necessary to perform delicate control depending on the material components. These technologies are roughly classified into those which require controlled cooling to rapidly cool to around 500 ° C. (including the blackening point) (JP-B-46-23820, JP-A-51-63314, JP-A-51-63314,
62-180015) and a technique that requires rapid cooling while controlling to room temperature (Japanese Patent Publication No. 59-48934).
しかし前者の技術においても、500℃前後の温度以下
の冷却速度に関しては、AlN析出に無関係とされ、実際
の冷却処理については湯冷するとか、水焼入れするとか
の手法が採られ、実質的に両者の差異は明瞭でなかっ
た。However, even in the former technique, the cooling rate below the temperature of about 500 ° C. is not related to the precipitation of AlN, and the actual cooling process is performed by cooling with hot water or water quenching, and is substantially adopted. The difference between the two was not clear.
発明者らは、この点を鋭意研究した結果、AlとGeを含
有する素材においては、 AlNおよび炭化物の粗大析出を防ぐために少なくとも5
00℃までを7℃/s以上の急冷とすることが有利であるこ
と、 さらに好適には実質的に急冷処理を必要とする温度域
を750℃から250℃までとし、この範囲は平均冷却速度:7
〜25℃/sで冷却すること、 またさらに好適には、750〜250℃の温度範囲は上記の
ように平均冷却速度:7〜25℃/sで急冷し、250℃から150
℃までの冷却速度を4℃/s以下の徐冷とすることが好ま
しいこと を見出した。The present inventors have conducted intensive studies on this point, and found that, in a material containing Al and Ge, at least 5% was used to prevent coarse precipitation of AlN and carbide.
It is advantageous to quench at a rate of 7 ° C./s or more up to 00 ° C. More preferably, the temperature range that requires substantial quenching is from 750 ° C. to 250 ° C., and this range is the average cooling rate. : 7
Cooling at ℃ 25 ° C./s, and even more suitably, the temperature range of 750-250 ° C. is quenched at an average cooling rate of 7-25 ° C./s as described above,
It has been found that it is preferable to set the cooling rate to 4 ° C./s or lower at a slow cooling rate to 4 ° C.
ここに750℃から250℃の範囲の平均冷却速度が7℃/s
に満たないとAlNおよび炭化物の粗大析出を生じるきら
いがあり、一方25℃/sを超えるとAlNおよび炭化物の析
出量が不足することがある。したがってこの温度範囲に
おける好適平均冷却速度は7℃/s〜25℃/sであるが、こ
れは、Geを含有しない素材に比較して、平均冷却速度が
小さい点に特徴があり、この点からも工業生産上有利で
ある。Here, the average cooling rate in the range of 750 ° C to 250 ° C is 7 ° C / s
If it is less than the above, coarse precipitation of AlN and carbides may occur, while if it exceeds 25 ° C./s, the precipitation amount of AlN and carbides may be insufficient. Therefore, the preferable average cooling rate in this temperature range is 7 ° C./s to 25 ° C./s, which is characterized by a point that the average cooling rate is smaller than that of the material not containing Ge. Is also advantageous for industrial production.
また250℃から150℃までの平均冷却速度は特に重要
で、これが大きい場合には、理由は不明であるが2次粒
が局所的に粗大化し、鉄損が劣化する場合がある。した
がってこの温度域の平均冷却速度は4℃/s以下とするこ
とがとりわけ有利である。The average cooling rate from 250 ° C. to 150 ° C. is particularly important. If the average cooling rate is large, the reason is not clear, but secondary grains may be locally coarsened and iron loss may be deteriorated. Therefore, it is particularly advantageous that the average cooling rate in this temperature range is 4 ° C./s or less.
なおこの発明において、冷間圧延工程で特公昭54−13
846号公報や特公昭54−29182号公報に開示されている複
数パス間において時効処理を施す技術は特に必要ではな
いが、磁気特性の若干の安定効果があるので、この適用
を妨げるのものではない。In the present invention, in the cold rolling step,
The technique of performing aging treatment among a plurality of passes disclosed in Japanese Patent Publication No. 846 and Japanese Patent Publication No. 54-29182 is not particularly necessary, but since it has a slight stabilizing effect on magnetic characteristics, it is not necessary to prevent this application. Absent.
最終板厚に圧延した冷延板は、続いて常法に従い750
〜900℃、0.5〜10min程度の脱炭焼鈍を行う。この時、
上記の中間焼鈍において上述したような冷却制御を行っ
たものについては、昇温速度を10℃/s以上と急熱するこ
とにより、一層の磁気特性の向上効果が期待できる。The cold-rolled sheet rolled to the final thickness is then 750
Carbide annealing at ~ 900 ° C for about 0.5-10min. At this time,
In the case of performing the above-described cooling control in the above-described intermediate annealing, further improving the magnetic properties can be expected by rapidly heating the temperature to 10 ° C./s or more.
脱炭焼鈍後の鋼板表面には、仕上げ焼鈍時における鋼
板焼付防止および表面フォルステライト被膜形成のため
にMgOを主成分とする焼鈍分離剤を塗布する。An annealing separator containing MgO as a main component is applied to the surface of the steel sheet after the decarburizing annealing to prevent the steel sheet from burning during the final annealing and to form a surface forsterite film.
ここに上記の焼鈍分離剤としては、特公昭51−12451
号公報に開示さているようにTiO2を添加したものがより
好ましい。Here, as the above-mentioned annealing separating agent, JP-B-51-12451.
It is more preferable that TiO 2 is added as disclosed in Japanese Patent Application Laid-Open No. H10-260, 1988.
仕上げ焼鈍は、1100℃以上のH2又は、H2,N2,Ar等の
混合ガス雰囲気で5時間以上施されるが、2次再結晶時
には、特に、H2とN2の混合ガス雰囲気とすることが望ま
しい。The final annealing is performed in a mixed gas atmosphere of H 2 or H 2 , N 2 , Ar or the like at 1100 ° C. or more for 5 hours or more. During the secondary recrystallization, a mixed gas atmosphere of H 2 and N 2 is particularly preferable. It is desirable that
さらにかかる仕上げ焼鈍後の鋼板の表面に絶縁性と張
力付与を兼ねたりん酸マグネシウム、りん酸アルミニウ
ムおよびりん酸カルシウム等を主成分とした公知の無機
質コーティングを平坦化焼鈍を兼ねて被成することもで
きる。Further, a known inorganic coating mainly composed of magnesium phosphate, aluminum phosphate, calcium phosphate, etc., which has both insulating properties and imparts tension, is formed on the surface of the steel sheet after the finish annealing, while also performing flattening annealing. Can also.
(作用) かくして得られた製品の結晶粒度は従来の製品に比べ
2次粒径が極めて小さいところに特徴がある。すなわち
従来の平均2次粒径は10〜20mm程度であったのに対して
この発明のものは3〜7mmにすぎない。しかも、結晶方
位の低下もないので、磁束密度が高く、鉄損が極めて低
い優れた方向性けい素鋼板が得られるのである。さらに
表面性状、磁気特性の安定性にも優れており、製造も容
易という利点がある。(Action) The product thus obtained is characterized in that the crystal grain size is extremely small in the secondary particle size as compared with the conventional product. That is, while the conventional average secondary particle size is about 10 to 20 mm, that of the present invention is only 3 to 7 mm. Moreover, since there is no decrease in the crystal orientation, an excellent oriented silicon steel sheet having a high magnetic flux density and an extremely low iron loss can be obtained. Further, it has excellent surface properties and stability of magnetic properties, and has the advantage of easy manufacture.
(実施例) 実施例1 C:0.062%、Si:3.26%、Mn:0.075%、Se:0.010%、S:
0.015%、sol Al:0.025%、N:0.008%、Sb:0.020%およ
びGe:0.045%を含有し、残余は実質的にFeの組成からな
るスラブを、1380℃で3時間加熱した後、熱間圧延によ
り、2.2mm厚の熱延板とした。ついでこの熱延板をN2中
で1150℃、30秒間の焼鈍後、酸洗し、1回目の冷間圧延
で中間板厚:1.40mmの冷延板とした。(Example) Example 1 C: 0.062%, Si: 3.26%, Mn: 0.075%, Se: 0.010%, S:
A slab containing 0.015%, sol Al: 0.025%, N: 0.008%, Sb: 0.020% and Ge: 0.045%, with the balance being substantially Fe, was heated at 1380 ° C for 3 hours, and then heated. By hot rolling, a hot-rolled sheet having a thickness of 2.2 mm was obtained. Then, the hot-rolled sheet was annealed at 1150 ° C. for 30 seconds in N 2 , pickled, and then subjected to a first cold rolling to obtain a cold-rolled sheet having an intermediate sheet thickness of 1.40 mm.
ついでこの冷延板を6分割し、N2中で1050℃,2分間の
中間焼鈍を施したが、この時750℃から250℃までの平均
冷却速度および250℃から150℃までの平均冷却速度が表
1に示されるような速度になるように、ミスト冷却、ガ
ス冷却および湯冷法を用いて調整した。この時の冷却曲
線の例を第4図に示す。The cold-rolled sheet was then divided into six parts and subjected to intermediate annealing at 1050 ° C. for 2 minutes in N 2. At this time, the average cooling rate from 750 ° C. to 250 ° C. and the average cooling rate from 250 ° C. to 150 ° C. Was adjusted using the mist cooling, gas cooling and hot water cooling methods so that the speed was as shown in Table 1. An example of the cooling curve at this time is shown in FIG.
これらの鋼板は2回目の冷間圧延により、いずれも、
板厚:0.20mm(圧下率:約86%)の冷延板とし、次いで
湿H2中で850℃、2分間の脱炭焼鈍を施したのち、MgOを
主体とする分離剤を塗布してから、(N2:50%−H2:50
%)の雰囲気中において7℃/hの昇温速度で850℃から1
150℃までを昇温し、ついでH2に切替え1150℃から1200
℃までを15℃/hで昇温後、1200℃で10時間保持し、700
℃まで冷却後、N2に切替えて冷却した。その後、未反応
分離剤を除去し、張力コーティングを焼付けて製品とし
た。All of these steel sheets were cold rolled for the second time,
Thickness: 0.20 mm (rolling reduction: about 86%) as a cold-rolled sheet, followed humidity 850 ° C. in H 2, then subjected to decarburization annealing for 2 minutes, by applying a separating agent composed mainly of MgO From (N 2 : 50% -H 2 : 50
%) From 850 ° C at a rate of 7 ° C / h in an atmosphere of 1%.
Raise the temperature to 150 ° C, then switch to H 2 from 1150 ° C to 1200
After raising the temperature to 15 ° C / h at 15 ° C / hour, holding at 1200 ° C for 10 hours, 700
After cooling to ° C., the mixture was switched to N 2 and cooled. Thereafter, the unreacted separating agent was removed, and the tension coating was baked to obtain a product.
かくして得られた製品の磁気特性および平均2次粒径
について調べた結果を表1に併記する。The results obtained by examining the magnetic properties and the average secondary particle size of the product thus obtained are also shown in Table 1.
同表より明らかなように、冷却条件の如何にかかわら
ず良好な磁気特性が得られたけれども、750℃から250℃
までの平均冷却速度が7〜25℃/sでかつ、250℃から150
℃までの平均冷却速度を4℃/s以下とした場合にとりわ
け良好な値が得られている。 As is clear from the table, although good magnetic properties were obtained regardless of the cooling conditions,
The average cooling rate up to 7 to 25 ° C / s and from 250 ° C to 150 ° C
Particularly good values are obtained when the average cooling rate to 4 ° C is 4 ° C / s or less.
実施例2 C:0.055%、Si:3.20%、Mn:0.080%、Se:0.024%、C
u:0.03%、sol Al:0.018%、N:0.0082%、Mo:0.012%お
よびGe:0.040%を含み、残余は実質的にFeの組成になる
スラブを、1420℃まで昇温し、引続き熱間圧延により、
2.5mm厚の熱延板とした。この熱延板を酸洗後、1回目
の冷間圧延を施して、1.20mmの中間板厚とした後、N2中
で1000℃、2分間の加熱を施し、ミスト冷却によって第
4図の曲線Cの冷却処理を施したのち、2回目の冷間圧
延によって0.18mmの最終板厚とした。この時各圧延パス
毎に300℃で1分間の時効処理を施した。Example 2 C: 0.055%, Si: 3.20%, Mn: 0.080%, Se: 0.024%, C
A slab containing u: 0.03%, sol Al: 0.018%, N: 0.0082%, Mo: 0.012% and Ge: 0.040%, with the balance being substantially Fe, the temperature is raised to 1420 ° C, and then heat By cold rolling,
A 2.5 mm thick hot rolled sheet was used. This hot-rolled sheet was pickled, cold-rolled for the first time to an intermediate sheet thickness of 1.20 mm, heated in N 2 at 1000 ° C. for 2 minutes, and mist-cooled as shown in FIG. After performing the cooling treatment of the curve C, the second cold rolling was performed to obtain a final thickness of 0.18 mm. At this time, aging treatment was performed at 300 ° C. for 1 minute for each rolling pass.
ついで冷間圧延板を6分割し、それぞれ湿水素中で84
0℃、2分間の脱炭焼鈍を行ったが、この時、400℃から
800℃までの昇温速度を表2のf〜kのように変化させ
た。Then, the cold-rolled plate was divided into 6 parts, each of which was
Decarburization annealing was performed at 0 ° C for 2 minutes.
The heating rate up to 800 ° C. was changed as fk in Table 2.
その後MgOを主体とする分離剤を塗布してから、(N2:
25%−H2:75%)の雰囲気において9℃/hの昇温速度で1
150℃まで昇温後、H2雰囲気に切替え、1200℃で15時間
保持したのち、400℃まで冷却し、さらにN2に切替えて
冷却した。その後、未反応の分離剤を除去してから張力
コーティングを焼付けて製品とした。Then, after applying a separating agent mainly composed of MgO, (N 2 :
25% -H 2 : 75%) in an atmosphere at a rate of 9 ° C./h
After the temperature was raised to 150 ° C., the atmosphere was switched to an H 2 atmosphere, kept at 1200 ° C. for 15 hours, cooled to 400 ° C., and further switched to N 2 for cooling. Thereafter, the unreacted separating agent was removed, and the tension coating was baked to obtain a product.
かくして得られた製品板の磁気特性および平均2次粒
径について調べた結果を表2に併記する。The results obtained by examining the magnetic properties and the average secondary particle size of the product sheet thus obtained are also shown in Table 2.
同表より明らかなように、脱炭・1次再結晶焼鈍の昇
温速度が10℃/s以上の急熱の場合にとりわけ良好な磁気
特性のものが得られた。 As is clear from the table, particularly good magnetic properties were obtained when the temperature rise rate of the decarburization / first recrystallization annealing was 10 ° C./s or more.
実施例3 表3に示す種々の組成になるけい素鋼素材スラブを、
A,Bについては1250℃で2時間、その他(C〜I)につ
いては1400℃で1時間の加熱を施したのち、熱延により
2.5mm厚の熱延板とした。これらの熱延板を酸洗後、1
回目の冷間圧延で1.35mmの中間板厚とし、次いで1100℃
で2分間の焼鈍後、80℃の湯に入れて第4図の(a)で
示される冷却曲線に沿って冷却した。次に2回目の冷間
圧延によって0.23mmの最終板厚としたのち、湿H2中で86
0℃、3分間の脱炭焼鈍を施し、MgOを主体とする分離剤
を塗布してから、800℃までN2雰囲気中で昇温し、800℃
から5℃/hの昇温速度で1200℃まで(N2:20%−H2:80
%)の雰囲気中で昇温し、ついで1200℃で雰囲気をH2に
切替えたのち、1200℃で5時間保持後、600℃まで冷却
し、さらにN2ガスに切替えた後、常温まで冷却した。そ
の後、未反応分離剤を除去してから、張力コーティング
を焼付けて製品とした。Example 3 Silicon steel material slabs having various compositions shown in Table 3 were used.
A and B are heated at 1250 ° C for 2 hours, and others (C to I) are heated at 1400 ° C for 1 hour and then hot-rolled.
A 2.5 mm thick hot rolled sheet was used. After pickling these hot rolled sheets, 1
In the first cold rolling, an intermediate sheet thickness of 1.35 mm was obtained, and then 1100 ° C
After 2 minutes of annealing at 80 ° C., the sample was put in hot water at 80 ° C. and cooled along the cooling curve shown in FIG. Next, after the second cold rolling to a final thickness of 0.23 mm, 86 mm in wet H 2
After decarburizing annealing at 0 ° C for 3 minutes, applying a separating agent mainly composed of MgO, the temperature is raised to 800 ° C in a N 2 atmosphere, and 800 ° C
Up to 1200 ° C at a rate of 5 ° C / h (N 2 : 20% -H 2 : 80
%), Then switched the atmosphere to H 2 at 1200 ° C., kept at 1200 ° C. for 5 hours, cooled to 600 ° C., switched to N 2 gas, and cooled to room temperature. . Thereafter, after removing the unreacted separating agent, the tension coating was baked to obtain a product.
かくして得られた製品板の磁気特性、平均2次粒径お
よび表面欠陥率について調べた結果を表4に示す。Table 4 shows the results obtained by examining the magnetic properties, average secondary particle size, and surface defect rate of the product sheet thus obtained.
また得られた製品の鋼中の鋼中成分の分析結果を表5
に示す。なお記載成分の外に鉄中の不純物成分として微
量のC,Al,S,Se,N等が存在したが、これらは磁性上問題
ないレベルまで低減されていた。Table 5 shows the analysis results of the components in the steel of the obtained product.
Shown in In addition to the listed components, trace amounts of C, Al, S, Se, N, and the like were present as impurity components in iron, but these were reduced to levels at which there was no problem with magnetism.
同表より明らかなように、この発明に従う適量のGeを
含有している場合のみ、良好な磁気特性が得られてい
る。 As is clear from the table, good magnetic properties are obtained only when an appropriate amount of Ge according to the present invention is contained.
(発明の効果) かくしてこの発明によれば、厚みが0.30mm以下の薄板
についても、磁気特性とくに磁束密度および鉄損特性に
優れた方向性けい素鋼板を安定して得ることができ、有
利である。(Effects of the Invention) Thus, according to the present invention, even for a thin plate having a thickness of 0.30 mm or less, it is possible to stably obtain a grain-oriented silicon steel sheet having excellent magnetic properties, particularly magnetic flux density and iron loss properties. is there.
第1図は、Ge含有量とB8,W17/50および平均2次粒径と
の関係を示したグラフ、 第2図は、Ge含有量と脱炭・1次再結晶板表層集合組織
の(110)強度および微細AlNの析出頻度との関係を示し
たグラフ、 第3図a,bはそれぞれ、Ge含有の有無による中間焼鈍後
の鋼中微細炭化物の析出状態の違いを示す金属組織写
真、 第4図は、中間焼鈍後の冷却曲線の例、80℃での湯冷
(a)、ミスト冷却(c),(c′)、ガス冷却(e)
である。FIG. 1 is a graph showing the relationship between the Ge content and B 8 , W 17/50 and average secondary particle size. FIG. 2 is a graph showing the Ge content and the texture of the decarburized / primary recrystallized plate surface layer. Graph showing the relationship between the (110) strength and the frequency of precipitation of fine AlN, and FIGS. 3a and 3b are metal structures showing the difference in the precipitation state of fine carbides in steel after intermediate annealing depending on the presence or absence of Ge. Photo, Fig. 4 is an example of cooling curve after intermediate annealing, hot water cooling at 80 ° C (a), mist cooling (c), (c '), gas cooling (e)
It is.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 飯田 嘉明 千葉県千葉市川崎町1番地 川崎製鉄株 式会社技術研究本部内 (72)発明者 貞頼 捷雄 千葉県千葉市川崎町1番地 川崎製鉄株 式会社技術研究本部内 ──────────────────────────────────────────────────の Continuing from the front page (72) Inventor Yoshiaki Iida 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Corporation Research and Development Headquarters (72) Inventor Kazuo Sadayo 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Shikisha Technology Research Division
Claims (5)
平均2次粒径が3〜7mmで、かつ板厚が0.10〜0.30mmで
ある鉄損特性の優れた高磁束密度方向性けい素鋼板。(1) Si: 2.5 wt% or more, 4.0 wt% or less, Mn: 0.04 wt% or more, 0.15 wt% or less, Ge: 0.005 wt% or more, 0.20 wt% or less, with the balance Fe and trace amounts Consisting of unavoidable elements,
A high magnetic flux density oriented silicon steel sheet having an average secondary grain size of 3 to 7 mm and a sheet thickness of 0.10 to 0.30 mm and excellent iron loss properties.
よび微量の不可避元素からなり、平均2次粒径が3〜7m
mで、かつ板厚が0.10〜0.30mmである鉄損特性の優れた
高磁束密度方向性けい素鋼板。2. The composition contains: Si: 2.5 wt% or more, 4.0 wt% or less, Mn: 0.04 wt% or more, 0.15 wt% or less, Ge: 0.005 wt% or more, 0.20 wt% or less, and Mo: 0.005 to 0.20wt%, Cu: 0.01 ~ 0.3wt%, Sb: 0.005 ~ 0.20wt%, Sn: 0.010 ~ 0.025wt% and P: 0.010 ~ 0.10wt%, at least one selected from the group consisting of Fe and trace amounts Unavoidable element, average secondary particle size is 3 ~ 7m
High magnetic flux density directional silicon steel sheet with excellent iron loss characteristics, with a thickness of 0.10 to 0.30 mm.
を、熱間圧延し、ついで1回目の冷間圧延を施して中間
板厚としてから、1000〜1200℃、0.5〜10minの中間焼鈍
後、少なくとも500℃までを7℃/s以上の冷却速度で急
冷し、ついで圧下率:75〜90%の条件下に2回目の冷間
圧延を施して板厚:0.10〜0.30mmの最終冷延板に仕上げ
たのち、脱炭を兼ねる1次再結晶焼鈍を施し、しかるの
ちMgOを主成分とする焼鈍分離剤を塗布してから、高温
仕上げ焼鈍を施すことを特徴とする鉄損特性の優れた高
磁束密度方向性けい素鋼板の製造方法。3. The basic components are as follows: C: 0.02 to 0.090 wt%, Si: 2.5 to 4.0 wt%, Mn: 0.04 to 0.15 wt%, sol Al: 0.010 to 0.050 wt% and N: 0.0040 to 0.0120 wt%. A silicon steel slab with Ge added to a steel material in the range of 0.005 to 0.20 wt% is hot-rolled and then subjected to the first cold rolling to obtain an intermediate sheet thickness, and then at 1000 to 1200 ° C and 0.5 to After 10 minutes of intermediate annealing, the steel sheet is rapidly cooled to at least 500 ° C. at a cooling rate of 7 ° C./s or more, and then subjected to a second cold rolling under the condition of a reduction ratio of 75 to 90% to obtain a sheet thickness of 0.10 to 0.30. After finishing the final cold-rolled sheet of mm, it is subjected to primary recrystallization annealing also serving as decarburization, and thereafter, an annealing separator containing MgO as a main component is applied, followed by high-temperature finish annealing. Manufacturing method of high magnetic flux density oriented silicon steel sheet with excellent iron loss characteristics.
までの温度範囲にわたり、平均冷却速度で7〜25℃/sと
する請求項3記載の製造方法。4. The cooling rate after the intermediate annealing is from 750 ° C. to 250 ° C.
4. The method according to claim 3, wherein the average cooling rate is 7 to 25 [deg.] C./s over the temperature range up to.
までは平均冷却速度で7〜25℃/s、250℃から150℃まで
は平均冷却速度で4℃/s以下とする請求項3記載の製造
方法。5. The cooling rate after the intermediate annealing is from 750 ° C. to 250 ° C.
4. The production method according to claim 3, wherein the average cooling rate is 7 to 25 [deg.] C./s until 250 [deg.] C., and the average cooling rate is 4 [deg.] C./s or less from 250 [deg.] C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1014008A JP2746631B2 (en) | 1989-01-25 | 1989-01-25 | High magnetic flux density oriented silicon steel sheet with excellent iron loss characteristics and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1014008A JP2746631B2 (en) | 1989-01-25 | 1989-01-25 | High magnetic flux density oriented silicon steel sheet with excellent iron loss characteristics and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02196403A JPH02196403A (en) | 1990-08-03 |
JP2746631B2 true JP2746631B2 (en) | 1998-05-06 |
Family
ID=11849181
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1014008A Expired - Fee Related JP2746631B2 (en) | 1989-01-25 | 1989-01-25 | High magnetic flux density oriented silicon steel sheet with excellent iron loss characteristics and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2746631B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2581335B2 (en) * | 1991-03-25 | 1997-02-12 | 日本鋼管株式会社 | Non-oriented electrical steel sheet with excellent magnetic properties |
CN102700852A (en) * | 2012-07-02 | 2012-10-03 | 深圳市华星光电技术有限公司 | Packaging device for liquid crystal display module |
RU2625350C1 (en) | 2013-09-26 | 2017-07-13 | ДжФЕ СТИЛ КОРПОРЕЙШН | Method of production of grain-oriented sheet from electrical steel |
JP5960335B1 (en) * | 2015-09-30 | 2016-08-02 | 三菱重工業株式会社 | Preparation method and characteristic evaluation method of metal material characteristic evaluation sample |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5931823A (en) * | 1982-08-17 | 1984-02-21 | Kawasaki Steel Corp | Production of unidirectional silicon steel plate having high magnetic flux density |
-
1989
- 1989-01-25 JP JP1014008A patent/JP2746631B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5931823A (en) * | 1982-08-17 | 1984-02-21 | Kawasaki Steel Corp | Production of unidirectional silicon steel plate having high magnetic flux density |
Also Published As
Publication number | Publication date |
---|---|
JPH02196403A (en) | 1990-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0756048B2 (en) | Method for manufacturing thin grain oriented silicon steel sheet with excellent coating and magnetic properties | |
JP4029523B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP3846064B2 (en) | Oriented electrical steel sheet | |
US5250123A (en) | Oriented silicon steel sheets and production process therefor | |
JP2883226B2 (en) | Method for producing thin grain silicon steel sheet with extremely excellent magnetic properties | |
JP2951852B2 (en) | Method for producing unidirectional silicon steel sheet with excellent magnetic properties | |
JP2746631B2 (en) | High magnetic flux density oriented silicon steel sheet with excellent iron loss characteristics and method for producing the same | |
US5425820A (en) | Oriented magnetic steel sheets and manufacturing process therefor | |
JPH06145799A (en) | Production of grain oriented silicon steel sheet excellent in magnetic property | |
JP3928275B2 (en) | Electrical steel sheet | |
JP2713028B2 (en) | Grain-oriented electrical steel sheet and its manufacturing method | |
JP3133855B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JP7338511B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP3443151B2 (en) | Method for producing grain-oriented silicon steel sheet | |
JP2819994B2 (en) | Manufacturing method of electrical steel sheet with excellent magnetic properties | |
JP2735929B2 (en) | Method for producing grain-oriented silicon steel sheet excellent in magnetic properties and coating properties | |
JPH0580527B2 (en) | ||
JPH04346621A (en) | Manufacture of nonoriented magnetic steel sheet excellent in magnetic characteristic and surface appearance | |
JP2717009B2 (en) | Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties | |
JPH0892644A (en) | Production of grain-oriented silicon steel sheet excellent in magnetic property | |
JP4200526B2 (en) | Method for producing unidirectional silicon steel sheet | |
JP3271655B2 (en) | Method for producing silicon steel sheet and silicon steel sheet | |
JP2724093B2 (en) | Method for producing grain-oriented silicon steel sheet with excellent surface properties and magnetic properties | |
JPH0798976B2 (en) | Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss | |
JP3527276B2 (en) | Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |