[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3397293B2 - Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet - Google Patents

Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet

Info

Publication number
JP3397293B2
JP3397293B2 JP03499298A JP3499298A JP3397293B2 JP 3397293 B2 JP3397293 B2 JP 3397293B2 JP 03499298 A JP03499298 A JP 03499298A JP 3499298 A JP3499298 A JP 3499298A JP 3397293 B2 JP3397293 B2 JP 3397293B2
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
magnetic flux
flux density
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03499298A
Other languages
Japanese (ja)
Other versions
JPH11229036A (en
Inventor
英一 難波
修一 山崎
洋介 黒崎
和年 竹田
憲人 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12429650&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3397293(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP03499298A priority Critical patent/JP3397293B2/en
Publication of JPH11229036A publication Critical patent/JPH11229036A/en
Application granted granted Critical
Publication of JP3397293B2 publication Critical patent/JP3397293B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、トランス等の鉄心
として用いられる{110}<001>方位集積度を高
度に発達させた超高磁束密度一方向性電磁鋼板の製造
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an ultrahigh magnetic flux density unidirectional electrical steel sheet having a highly developed {110} <001> orientation integration degree used as an iron core of a transformer or the like.
Concerning the law .

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、主にトランスその
他の電気機器の鉄心材料として使用されており、励磁特
性、鉄損特性当の磁気特製が優れていることが要求され
ている。励磁特性を表す数値としては、通常800A/
mの磁場における磁束密度B(これをB8 と以下示す)
が使用される。また鉄損特性を表す代表的数値として
は、W17/50 (周波数50Hzにおいて1.7Tまで磁
化させた時の単位kgあたりの鉄損)が用いられる。
2. Description of the Related Art Unidirectional electrical steel sheets are mainly used as iron core materials for transformers and other electrical equipment, and are required to have excellent magnetic properties such as excitation characteristics and iron loss characteristics. The value that shows the excitation characteristics is usually 800 A /
Magnetic flux density B in a magnetic field of m (this is shown below as B 8 )
Is used. W 17/50 (iron loss per unit kg when magnetized to 1.7 T at a frequency of 50 Hz) is used as a representative value representing the iron loss characteristic.

【0003】磁束密度は、鉄損特性の重要支配因子であ
り、一般的にいって磁束密度が高いほど鉄損は良い。た
だし、あまり磁束密度が高くなると、二次再結晶粒が大
きくなることに起因して異常渦電流損失が大きくなり鉄
損を悪くすることがある。これに対しては、磁区制御す
ることによって二次再結晶粒に関係なく鉄損を改善する
ことができる。
The magnetic flux density is an important controlling factor of the iron loss characteristics, and generally speaking, the higher the magnetic flux density is, the better the iron loss is. However, if the magnetic flux density becomes too high, the secondary recrystallized grains become large and the abnormal eddy current loss becomes large, which may deteriorate the iron loss. On the other hand, iron loss can be improved by controlling the magnetic domains regardless of the secondary recrystallized grains.

【0004】一方向性電磁鋼板は、製造工程の仕上焼鈍
において、二次再結晶を起こさせて鋼板面に{11
0}、圧延方向に<001>を有するいわゆるGoss
組織を発達させることによって得られる。そのなかでB
8 ≧1.88Tの優れた励磁特性を持つものは高磁束密
度一方向性電磁鋼板と呼ばれている。
The unidirectional electrical steel sheet is subjected to secondary recrystallization during finish annealing in the manufacturing process to cause {11
0}, so-called Goss having <001> in the rolling direction
Obtained by developing tissue. Among them, B
Those with excellent excitation characteristics of 8 ≧ 1.88T are called high magnetic flux density grain-oriented electrical steel sheets.

【0005】高磁束密度一方向性電磁鋼板の代表的製造
方法としては、田口らによる特公昭40−15644号
公報、および特公昭51−13469号公報が挙げられ
る。Goss組織の二次再結晶を起こさせる主なインヒ
ビターとして前者においては、MnSおよびAlNを、
後者ではMnS,MnSe,Sb等を用いている。上記
特許に基づく製品は現在、世界的規模で生産されてい
る。特公昭40−15644号公報によればその製造方
法は、熱延板焼鈍を施した後、冷延率80〜95%の一
回冷延を行うことを特徴としている。
Typical methods for producing a high magnetic flux density unidirectional electrical steel sheet include Japanese Patent Publication No. 40-15644 and Japanese Patent Publication No. 51-13469 by Taguchi et al. In the former, MnS and AlN were used as the main inhibitors that caused the secondary recrystallization of the Goss structure.
In the latter, MnS, MnSe, Sb, etc. are used. Products based on the above patents are currently produced on a global scale. According to Japanese Examined Patent Publication No. 40-15644, the manufacturing method is characterized by performing hot-rolled sheet annealing and then performing cold rolling once at a cold rolling rate of 80 to 95%.

【0006】また、一方向性電磁鋼板の表面には、電気
的に絶縁性を有する被膜が形成されていることが要求さ
れる。この被膜は絶縁性を保持する役割の他に、鋼板に
張力を付与し鉄損を低減させるといった役割も担ってい
る。そのため、この被膜を均一に形成させることは極め
て重要である。
Further, it is required that a coating having an electrically insulating property is formed on the surface of the grain-oriented electrical steel sheet. In addition to the role of maintaining insulation, this coating also has a role of applying tension to the steel sheet to reduce iron loss. Therefore, it is extremely important to form this coating uniformly.

【0007】高磁束密度一方向性電磁鋼板の被膜は、一
次被膜と二次被膜の二段構成である。そのうち一次被膜
は、製造工程の脱炭焼鈍において鋼板表面に形成された
SiO2 がその後に塗布された焼鈍分離剤と反応して
得られる。一般的に焼鈍分離剤はMgOを主成分とした
ものが用いられ、仕上焼鈍時にSiO2 と反応してMg
2 SiO4 となり、これが一次被膜となる。
The coating of the high magnetic flux density unidirectional electrical steel sheet has a two-stage structure of a primary coating and a secondary coating. Among them, the primary coating is obtained by reacting SiO2 formed on the surface of the steel sheet with the annealing separating agent applied thereafter in the decarburizing annealing in the manufacturing process. Generally annealing separator are used those composed mainly of MgO, reacts with SiO 2 at the time of finish annealing Mg
2 SiO 4 becomes the primary coating.

【0008】ところで最近、高嶋らによって、B8
1.95Tの極めて優れた励磁特性を持つ超高磁束密度
一方向性電磁鋼板が報告されている。その代表的例とし
ては、特開平6−89805号公報が挙げられる。また
その製造方法の代表的例としては、特開平6−8817
1号公報が挙げられる。いずれもスラブ中にBiを含む
ことを特徴としているが、その他は特段、田口らによる
特公昭40−15644号公報で述べられている製造方
法と変わりなく、大きな制約もない。
By the way, recently, by Takashima et al., B 8
An ultra-high magnetic flux density grain-oriented electrical steel sheet having an extremely excellent excitation characteristic of 1.95T has been reported. As a typical example thereof, JP-A-6-89805 can be cited. Further, as a typical example of the manufacturing method thereof, JP-A-6-8817
No. 1 publication is mentioned. All of them are characterized by containing Bi in the slab, but the others are not different from the manufacturing method described in Japanese Patent Publication No. 40-15644 by Taguchi et al.

【0009】[0009]

【発明が解決しようとする課題】しかし鋼中にBiを含
むことによると考えられる一次被膜密着性の劣化や、一
次被膜形成不良により、製品にならない場合が少なくな
い。
However, there are many cases in which the product does not become a product due to deterioration of the adhesion of the primary coating, which is considered to be caused by the inclusion of Bi in the steel, and defective formation of the primary coating.

【0010】本発明は、かかる問題を回避し、極めて磁
束密度の高い一方向性電磁鋼板の一次被膜の安定製造を
可能にし、一次被膜密着性の劣化や、一次被膜形成不良
を改善することを目的とする。
The present invention avoids such a problem, enables stable production of a primary coating of a grain-oriented electrical steel sheet having an extremely high magnetic flux density, and improves deterioration of adhesion of the primary coating and failure to form the primary coating. To aim.

【0011】[0011]

【課題を解決するための手段】本発明の要旨は、以下の
通りである。 (1) 重量%で、 C :0.03〜0.15%、 Si:2.5〜
4.0%、 Mn:0.02〜0.30%、 S及びSeの一方若しくは双方:0.005〜0.04
0%、 酸可溶性Al:0.015〜0.040%、 N :0.0030〜0.0150%、Bi:0.00
05〜0.05% を含有し、残部がFeおよび不可避的不純物からなるス
ラブを出発材とし、このスラブを加熱した後熱延して製
造した熱延板を、熱延板焼鈍後仕上げ冷延をし、あるい
は中間焼鈍を含む複数の冷延をし、あるいは熱延板焼鈍
後中間焼鈍を含む複数の冷延をすることによって製品板
厚に仕上げ、脱炭焼鈍した後、鋼板表面にMgOを主成
分とした焼鈍分離剤を塗布し、仕上げ焼鈍する一方向性
電磁鋼板の製造方法において、仕上焼鈍開始時に焼鈍分
離剤塗膜の含水率を0.3〜3%とすることを特徴とす
る超高磁束密度一方向性電磁鋼板の製造方法。
The gist of the present invention is as follows. (1) C: 0.03 to 0.15% by weight, Si: 2.5 to
4.0%, Mn: 0.02 to 0.30%, one or both of S and Se: 0.005 to 0.04
0%, acid-soluble Al: 0.015 to 0.040%, N: 0.0030 to 0.0150%, Bi: 0.00
A slab containing 0. 05 to 0.05%, with the balance being Fe and unavoidable impurities, is used as a starting material, and the hot-rolled sheet produced by heating this slab and then hot-rolling the sheet is annealed after the hot-rolled sheet is finished and cold-rolled. Or cold-rolling including intermediate annealing, or hot-rolled sheet annealing followed by multiple cold-rolling including intermediate annealing to finish the product sheet thickness, decarburize annealing, and then apply MgO to the steel sheet surface. A method for producing a grain-oriented electrical steel sheet, comprising applying an annealing separator as a main component and finish annealing, characterized in that the water content of the annealing separator coating film at the start of finish annealing is 0.3 to 3%. Manufacturing method of ultra-high magnetic flux density grain-oriented electrical steel sheet.

【0012】() 重量%で、 C :0.03〜0.15%、 Si:2.5〜
4.0%、 Mn:0.02〜0.30%、 S及びSeの一方若しくは双方:0.005〜0.04
0%、 酸可溶性Al:0.015〜0.040%、 N :0.0030〜0.0150%、 Sn:0.05〜0.50%、 Cu:0.01
〜0.10%、 Bi:0.0005〜0.05% を含有し、残部がFeおよび不可避的不純物からなるス
ラブを出発材としたことを特徴とする前記(1)記載の
超高磁束密度方向性電磁鋼板の製造方法。
( 2 ) C: 0.03 to 0.15% by weight, Si: 2.5 to
4.0%, Mn: 0.02 to 0.30%, one or both of S and Se: 0.005 to 0.04
0%, acid-soluble Al: 0.015 to 0.040%, N: 0.0030 to 0.0150%, Sn: 0.05 to 0.50%, Cu: 0.01
.About.0.10%, Bi: 0.0005 to 0.05%, with the balance being Fe and unavoidable impurities as a starting material, the superhigh magnetic flux density according to (1) above. Method for manufacturing grain-oriented electrical steel sheet.

【0013】() 重量%で、 C :0.03〜0.15%、 Si:2.5〜
4.0%、 Mn:0.02〜0.30%、 S及びSeの一方若しくは双方:0.005〜0.04
0%、 酸可溶性Al:0.015〜0.040%、 N :0.0030〜0.0150%、 Sb及びMoの一方若しくは双方:0.0030〜0.
3%、 Bi:0.0005〜0.05% を含有し、残部がFeおよび不可避的不純物からなるス
ラブを出発材としたことを特徴とする前記(1)記載の
超高磁束密度方向性電磁鋼板の製造方法。
( 3 ) By weight%, C: 0.03 to 0.15%, Si: 2.5 to
4.0%, Mn: 0.02 to 0.30%, one or both of S and Se: 0.005 to 0.04
0%, acid-soluble Al: 0.015 to 0.040%, N: 0.0030 to 0.0150%, one or both of Sb and Mo: 0.0030 to 0.
3%, Bi: 0.0005 to 0.05%, with the balance being Fe and unavoidable impurities as a starting material, an ultrahigh magnetic flux density directional electromagnetic field according to (1) above. Steel plate manufacturing method.

【0014】[0014]

【発明の実施の形態】以下本発明について詳細に説明す
る。本発明者はいわゆる超高磁束密度一方向性電磁鋼板
の一次被膜を、更に安定して得るべく種々の研究を鋭意
重ねた結果、Biを含んだMnSとAlNを主インヒビ
ターとする一方向性電磁鋼板用スラブ出発材として加熱
した後熱延し、熱延板焼鈍後仕上冷延、あるいは中間焼
鈍を含む複数の冷延、あるいは熱延板焼鈍後中間焼鈍を
含む複数の冷延によって製品板厚に仕上げた後に、脱炭
焼鈍し、焼鈍分離剤を塗布後、仕上焼鈍をする超高磁束
密度一方向性電磁鋼板の製造方法において、仕上焼鈍開
始時のMgOを主成分とする焼鈍分離剤中の含水率を
0.3〜3%とすることによって極めて磁束密度の高い
超高磁束密度一方向性電磁鋼板の一次被膜を安定製造す
ることに成功した。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. As a result of various studies to further stably obtain a primary coating of a so-called ultra-high magnetic flux density unidirectional electrical steel sheet, the present inventor has found that unidirectional electromagnetic radiation containing Bi-containing MnS and AlN as main inhibitors. Product sheet thickness after heating as a slab starting material for steel sheets and then hot rolling, finishing cold rolling after annealing hot rolled sheet, or multiple cold rolling including intermediate annealing, or multiple cold rolling including intermediate annealing after annealing hot rolled sheet In the method for producing an ultra-high magnetic flux density grain-oriented electrical steel sheet in which decarburization annealing is applied, an annealing separator is applied, and then finish annealing is performed in an annealing separator containing MgO as a main component at the start of finishing annealing. By making the water content of 0.3 to 3%, it was possible to stably manufacture the primary coating of ultra-high magnetic flux density unidirectional electrical steel sheet with extremely high magnetic flux density.

【0015】まず、本発明の成分条件について説明す
る。Cは0.03%未満では、熱延に先立つスラブ加熱
時において結晶粒が異常粒成長し、製品において線状細
粒と呼ばれる二次再結晶不良を起こすので好ましくな
い。一方0.15%を超えた場合では、冷延後の脱炭焼
鈍において脱炭時間が長時間必要となり経済的でないば
かりでなく、脱炭が不完全となりやすく、製品での磁気
時効と呼ばれる磁性不良を起こすので好ましくない。
First, the component conditions of the present invention will be described. If C is less than 0.03%, crystal grains grow abnormally during slab heating prior to hot rolling, and secondary recrystallization defects called linear fine grains occur in the product, which is not preferable. On the other hand, if the content exceeds 0.15%, decarburization annealing after cold rolling requires a long time for decarburization, which is not economical, and the decarburization tends to be incomplete, resulting in a magnetic aging called magnetic aging in the product. It is not preferable because it causes defects.

【0016】Siは鋼の電気抵抗を高めて鉄損の一部を
構成する渦電流損失を低減するのに極めて有効な元素で
あるが、2.5%未満では製品の渦電流損失を抑制でき
ない。また4.0%を超えた場合では、加工性が著しく
劣化して常温での冷延が困難になるので好ましくない。
Si is an extremely effective element for increasing the electrical resistance of steel and reducing the eddy current loss that constitutes a part of iron loss, but if it is less than 2.5%, the eddy current loss of the product cannot be suppressed. . Further, if it exceeds 4.0%, the workability is remarkably deteriorated and cold rolling at room temperature becomes difficult, which is not preferable.

【0017】Mnは二次再結晶を左右するインヒビター
と呼ばれるMnS、MnSeを形成する重要な元素であ
る。0.02%未満では、二次再結晶を生じさせるのに
必要なMnS等の絶対量が不足するので好ましくない。
一方、0.30%を超えた場合は、スラブ加熱時の固溶
が困難になるばかりでなく、熱延時の析出サイズが粗大
化しやすくインヒビターとしての最適サイズ分布が損な
われて好ましくない。
Mn is an important element that forms MnS and MnSe called inhibitors that influence secondary recrystallization. If it is less than 0.02%, the absolute amount of MnS or the like necessary for causing secondary recrystallization is insufficient, which is not preferable.
On the other hand, if it exceeds 0.30%, not only is it difficult to form a solid solution during heating of the slab, but also the precipitation size during hot rolling tends to become coarse, and the optimum size distribution as an inhibitor is impaired, which is not preferable.

【0018】S、Seは上述のMnとMnSおよび、ま
たはMnSeを形成する重要な元素である。0.005
〜0.040%の範囲を逸脱すると充分なインヒビター
効果が得られないので、この範囲で添加することとし
た。
S and Se are important elements forming Mn and MnS and / or MnSe described above. 0.005
If it deviates from the range of 0.040%, a sufficient inhibitory effect cannot be obtained, so it was decided to add in this range.

【0019】酸可溶性Alは、高磁束密度一方向性電磁
鋼板のための主要インヒビター構成元素であり、0.0
15%未満では量的に不足してインヒビター強度が不足
するので好ましくない。一方、0.040%超ではイン
ヒビターとして析出させるAlNが粗大化し、結果とし
てインヒビター強度を低下させるので好ましくない。
Acid-soluble Al is a main inhibitor constituent element for high magnetic flux density grain-oriented electrical steel sheet, and is 0.0
If it is less than 15%, the amount is insufficient and the inhibitor strength is insufficient, which is not preferable. On the other hand, if it exceeds 0.040%, AlN precipitated as an inhibitor becomes coarse, and as a result, the inhibitor strength is lowered, which is not preferable.

【0020】Nは上述の酸可溶性AlとAlNを形成す
る重要な元素である。上記範囲を逸脱すると充分なイン
ヒビター効果が得られないので0.0030〜0.01
50%に限定する必要がある。
N is an important element forming AlN and the acid-soluble Al. If it deviates from the above range, a sufficient inhibitory effect cannot be obtained, so 0.0030 to 0.01
It should be limited to 50%.

【0021】更にSnについては薄手製品の二次再結晶
を安定して得る元素として有効であり、また二次再結晶
粒径を小さくする作用もあるので必要に応じて添加す
る。この効果を得るためには、0.05%以上の添加が
必要であり、0.50%を超えた場合にはその作用が飽
和するのでコストアップの点から0.50%以下に限定
する。
Further, Sn is effective as an element for stably obtaining secondary recrystallization of a thin product, and also has an action of reducing the secondary recrystallization particle size, so it is added if necessary. In order to obtain this effect, it is necessary to add 0.05% or more, and if it exceeds 0.50%, the action is saturated, so from the viewpoint of cost increase, it is limited to 0.50% or less.

【0022】CuについてはSn添加鋼の一次被膜向上
元素として有効であるので必要に応じて添加する。0.
01%未満では効果が少なく、0.10%を超えると製
品の磁束密度が低下するので好ましくない。
Since Cu is effective as a primary coating improving element for Sn-added steel, it is added if necessary. 0.
If it is less than 01%, the effect is small, and if it exceeds 0.10%, the magnetic flux density of the product decreases, which is not preferable.

【0023】Sb、Moについては薄手製品の二次再結
晶を安定して得る元素として有効であるので必要に応じ
て添加する。この効果を得るためには、0.0030%
以上の添加が必要であり、0.30%を超えた場合には
その作用が飽和するのでコストアップの点から0.30
%以下に限定する。
Sb and Mo are effective as elements for stably obtaining secondary recrystallization of thin products, so Sb and Mo are added as necessary. To obtain this effect, 0.0030%
It is necessary to add the above, and if it exceeds 0.30%, its action will be saturated, so 0.30 from the viewpoint of cost increase.
% Or less.

【0024】Biは本発明であるB8 ≧1.92Tの超
高磁束密度一方向性電磁鋼板の安定製造において、その
出発材であるスラブ中に必須の元素である。すなわち、
磁束密度向上効果がある。0.0005%未満ではその
効果が充分に得られず、また0.05%を超えた場合は
磁束密度向上効果が飽和するだけでなく、熱延コイルの
端部に割れが発生するので好ましくない。
Bi is an essential element in the slab which is the starting material in the stable production of the ultrahigh magnetic flux density grain-oriented electrical steel sheet of B 8 ≧ 1.92T according to the present invention. That is,
It has the effect of improving the magnetic flux density. If it is less than 0.0005%, the effect is not sufficiently obtained, and if it exceeds 0.05%, not only the effect of improving the magnetic flux density is saturated, but also cracks occur at the end of the hot rolled coil, which is not preferable. .

【0025】次に、本発明である一次被膜安定製造によ
る密着性の向上と鉄損改善の方法について説明する。上
記のごとく成分を調整した超高磁束密度一方向性電磁鋼
板製造用溶鋼は、通常の方法で鋳造する。特に鋳造方法
に限定はない。次いで通常の熱間圧延によって熱延コイ
ルに圧延される。
Next, a method for improving adhesion and improving iron loss by the stable production of the primary coating of the present invention will be described. The molten steel for producing an ultra-high magnetic flux density unidirectional electrical steel sheet having the components adjusted as described above is cast by a usual method. There is no particular limitation on the casting method. Then, it is rolled into a hot rolled coil by ordinary hot rolling.

【0026】引き続いて、熱延板焼鈍後仕上げ冷延、あ
るいは中間焼鈍を含む複数の冷延、あるいは熱延板焼鈍
後中間焼鈍を含む複数の冷延によって製品板厚に仕上げ
るわけであるが、仕上げ冷延前の焼鈍では結晶組織の均
質化と、AlNの析出制御を行う。
Subsequently, the product sheet thickness is finished by hot-rolled sheet annealing followed by finish cold-rolling, a plurality of cold-rolled sheets including intermediate annealing, or a plurality of cold-rolled sheets including hot-rolled sheet annealing and intermediate annealing. In the annealing before finish cold rolling, the crystal structure is homogenized and AlN precipitation is controlled.

【0027】その後、連続脱炭焼鈍を施した後仕上げ焼
鈍する前に、MgOを主成分とする焼鈍分離剤を塗布す
る。
Then, after the continuous decarburization annealing and before the finish annealing, an annealing separating agent containing MgO as a main component is applied.

【0028】この焼鈍分離剤は一般にスラリーとして鋼
板に塗布し、しかる後に乾燥して仕上焼鈍を実施する
が、本発明は仕上げ焼鈍開始時の焼鈍分離剤塗膜中の含
水率を0.3〜3%とすることを特徴としている。
This annealing separator is generally applied as a slurry to a steel sheet, and then dried and finish annealing is carried out. In the present invention, the water content of the annealing separator coating film at the start of finish annealing is 0.3 to 0.3%. It is characterized by being 3%.

【0029】仕上げ焼鈍後は、連続歪み取り焼鈍・二次
被膜塗布および焼き付けを行う。更に必要に応じてレー
ザー照射、溝形成等の磁区細分化処理を施す。
After the finish annealing, continuous strain relief annealing / secondary coating application and baking are performed. Further, magnetic domain subdivision processing such as laser irradiation and groove formation is performed if necessary.

【0030】これまで超高磁束密度一方向性電磁鋼板の
製造における一次被膜形成については特に言及されてい
なかった。例えば、特開平6−88171号公報では、
全く述べられていない。それにもかかわらず、一次被膜
不良になる場合があり、安定製造には至っていないのが
現状である。
Up to now, no particular reference has been made to the formation of the primary coating in the production of ultrahigh magnetic flux density grain-oriented electrical steel sheet. For example, in Japanese Patent Laid-Open No. 6-88171,
Not mentioned at all. Nevertheless, the primary coating may be defective in some cases, and the current situation is that stable production has not been achieved.

【0031】しかし脱炭焼鈍を施した後MgOを主成分
とする焼鈍分離剤を塗布し、仕上げ焼鈍開始時の焼鈍分
離剤の含水率を0.3〜3%とすることによって、{1
10}<001>方位集積度が極めて優れた一方向性電
磁鋼板の一次被膜の安定形成に極めて重要であることが
判明した。
However, after decarburization annealing, an annealing separator containing MgO as a main component is applied, and the water content of the annealing separator at the start of finish annealing is set to 0.3 to 3%.
It was found that the degree of 10} <001> orientation integration is extremely important for the stable formation of the primary coating of the grain-oriented electrical steel sheet, which is extremely excellent.

【0032】図1にC:0.074%、Si:3.26
%、Mn:0.08%、S:0.027%、酸可溶性A
l:0.025%、N:0.0080%、Bi:0〜
0.00500%を含有するスラブを通常工程で脱炭焼
鈍まで行い、その後MgOを主成分とする焼鈍分離剤を
鋼板片面あたり6g/m2 塗布し、仕上げ焼鈍開始時の
含水率を0.1〜5%とし、後工程処理した時の、Bi
含有量と仕上げ焼鈍開始時の焼鈍分離剤の含水率と一次
被膜評点を示す。評点は以下のようにして決めた。20
mm径の丸棒にそって製品を曲げても剥離しない場合を
A、30mm径の丸棒に沿って製品を曲げても剥離しない
場合をB、30mm径の丸棒に沿って製品を曲げると剥離
する場合をCとした。すなわち評点Aが最も良好で、以
下B、Cと続く。
In FIG. 1, C: 0.074%, Si: 3.26
%, Mn: 0.08%, S: 0.027%, acid-soluble A
1: 0.025%, N: 0.0080%, Bi: 0
A slab containing 0.00500% is subjected to decarburization annealing in a normal process, and then an annealing separator containing MgO as a main component is applied at 6 g / m 2 per one side of the steel sheet, and the water content at the start of finish annealing is 0.1%. ˜5% and Bi at the time of post-process treatment
The content, the water content of the annealing separator at the start of finish annealing, and the primary film rating are shown. The score was decided as follows. 20
If the product does not peel off even if it is bent along a round bar with a diameter of 30 mm, it is B if the product does not peel even if it is bent along a round bar with a diameter of 30 mm, and if the product is bent along a round bar with a diameter of 30 mm. The case of peeling was designated as C. That is, the score A is the best, followed by B and C.

【0033】図1より、Bi含有量が5ppm未満の場
合は、仕上げ焼鈍開始時の焼鈍分離剤の含水率が0.3
%未満や3%を超えても一次被膜の評点がAであるが、
Bi含有量が5ppm以上の場合は、0.3〜3%で一
次被膜評点がAであり、この範囲外ではB、Cであるこ
とがわかる。
From FIG. 1, when the Bi content is less than 5 ppm, the water content of the annealing separator at the start of finish annealing is 0.3.
The primary coating score is A even if less than 3% or more than 3%,
It can be seen that when the Bi content is 5 ppm or more, the primary film rating is 0.3 to 3% and B and C are outside this range.

【0034】図2は、C:0.080%、Si:3.2
8%、Mn:0.08%、S:0.024%、酸可溶性
Al:0.025%、N:0.0088%、Bi:0.
0087%を含有するスラブを通常工程で脱炭焼鈍まで
行い、その後MgOを主成分とする焼鈍分離剤を鋼板片
面あたり6g/m2 塗布し、仕上げ焼鈍開始時の含水率
を0.1〜5%とし、1200℃の仕上げ焼鈍、二次被
膜塗布、さらにはレーザー照射による磁区制御を施した
時の、含水率と一次被膜量と鉄損W17/50 を示す。含水
率を0.3〜3%とすることによって、一次被膜量が
2.5g/m2 以上得られるため、付与張力も充分とな
り優れた鉄損が得られていることがわかる。
FIG. 2 shows C: 0.080%, Si: 3.2.
8%, Mn: 0.08%, S: 0.024%, acid-soluble Al: 0.025%, N: 0.0088%, Bi: 0.
A slab containing 0087% is subjected to decarburization annealing in a normal process, and then an annealing separator containing MgO as a main component is applied at 6 g / m 2 per side of the steel sheet, and the water content at the start of finish annealing is 0.1 to 5 %, And shows the water content, the primary coating amount, and the iron loss W 17/50 when the finish annealing at 1200 ° C., the secondary coating film coating, and the magnetic domain control by laser irradiation are performed. It can be seen that by setting the water content to 0.3 to 3%, the amount of primary coating is 2.5 g / m 2 or more, so that the applied tension is sufficient and excellent iron loss is obtained.

【0035】これは、以下のことが主原因と考えてい
る。仕上げ焼鈍は一般的にコイル状で行われるが、Mg
Oを主成分とする焼鈍分離剤によって持ち込まれた水分
によって必要を超えて酸化度が高まると、Bi系酸化物
とSi系酸化物やAl系酸化物との間に低融点複合酸化
物が生成し、一次被膜形成不良が生じる。逆にMgOを
主成分とする焼鈍分離剤によって持ち込まれた水分によ
る酸化度が必要未満に下がると、一次被膜の主化合物と
なるMg2 SiO4 の形成反応が進まず、一次被膜形成
不良が生じる。
The main reasons for this are as follows. Finish annealing is generally performed in a coil shape, but Mg
When the oxidization degree increases more than necessary due to the water introduced by the annealing separator containing O as a main component, a low melting point composite oxide is formed between the Bi-based oxide and the Si-based oxide or the Al-based oxide. However, defective primary film formation occurs. On the contrary, if the degree of oxidation caused by the water introduced by the annealing separator containing MgO as the main component falls below the required level, the formation reaction of Mg 2 SiO 4 which is the main compound of the primary coating does not proceed and the primary coating formation failure occurs. .

【0036】しかし、仕上げ焼鈍開始時の焼鈍分離剤の
含水率を適正に制御することによって、一次被膜形成が
安定して行われたと考えられる。仕上げ焼鈍開始時の焼
鈍分離剤塗膜の含水率は、スラリー状の焼鈍分離剤を鋼
板に塗布した後の乾燥時の板温、乾燥後仕上げ焼鈍開始
時までの経過時間やMgOのIg−loss等によって
異なる。例えば、スラリー状の焼鈍分離剤を塗布し乾燥
する際の板温が低ければ含水率が増加する。また、乾燥
後仕上げ焼鈍開始時までの経過時間が長くなると焼鈍分
離剤塗膜は吸湿し含水率が増加する傾向にある。従っ
て、これらを適度に制御することにより仕上げ焼鈍開始
時の含水率を本発明範囲内とすることが重要となる。
However, it is considered that the primary film formation was stably performed by appropriately controlling the water content of the annealing separator at the start of finish annealing. The water content of the annealing separator coating at the start of finish annealing is determined by the temperature of the sheet after drying after applying the slurry annealing separator to the steel sheet, the elapsed time until the start of finishing annealing after drying, and the MgO Ig-loss. Etc. For example, if the plate temperature at the time of applying and drying the slurry-like annealing separator is low, the water content increases. Further, when the elapsed time after the start of finish annealing after drying becomes long, the annealing separator coating film tends to absorb moisture and increase the water content. Therefore, it is important to control the water content appropriately so that the water content at the start of finish annealing falls within the range of the present invention.

【0037】高磁束密度一方向性電磁鋼板の製造におい
て、一次被膜を安定的に形成させる方法は、これまでに
様々述べられている。例えば、特開昭59−56582
号公報、特開昭62−54085号公報、特開平2−2
59017号公報が挙げられる。これらはいずれも焼鈍
分離剤中の成分を規定したり、焼鈍分離剤塗布量を規定
したり、脱炭焼鈍によって形成された表面酸化層の性質
を規定するものである。
Various methods have been described so far for stably forming a primary coating in the production of a high magnetic flux density unidirectional electrical steel sheet. For example, JP-A-59-56582
Japanese Patent Laid-Open No. 62-54085, Japanese Patent Laid-Open No. 2-2
No. 59017 is cited. These all define the components in the annealing separator, the amount of the annealing separator applied, and the properties of the surface oxide layer formed by decarburization annealing.

【0038】これらに対し本発明は、一次被膜形成に多
大な影響を及ぼす地鉄中のBiに着眼して、その酸化物
がSi系酸化物やAl系酸化物との低融点複合酸化物生
成することにより一次被膜形成不良を生じさせると考え
ているところが大きく違う。そしてその挙動を仕上げ焼
鈍開始時の焼鈍分離剤塗膜の含水率によって制御しよう
とするものであり、従来技術とはまったく異なる。
On the other hand, the present invention focuses on Bi in the base iron, which has a great influence on the formation of the primary coating, and forms a low melting point composite oxide whose oxide is a Si-based oxide or an Al-based oxide. This is a big difference in that it is considered that the formation of the primary coating film is caused by this. The behavior is to be controlled by the water content of the coating film for the annealing separator at the start of finish annealing, which is completely different from the prior art.

【0039】[0039]

【実施例】[実施例1] C:0.074%、Si:3.26%、Mn:0.08
%、S:0.027%、酸可溶性Al:0.025%、
N:0.0080%、Bi:0.0087%を含有する
スラブを1360℃で加熱後直ちに熱延して2.3mm厚
の熱延コイルとした。次いで得られた熱延コイルに10
80℃の焼鈍を施し、一回冷延で0.220mm厚とした
後、850℃で脱炭焼鈍を行った。
EXAMPLES [Example 1] C: 0.074%, Si: 3.26%, Mn: 0.08
%, S: 0.027%, acid-soluble Al: 0.025%,
A slab containing N: 0.0080% and Bi: 0.0087% was heated at 1360 ° C. and immediately hot rolled to give a hot rolled coil having a thickness of 2.3 mm. Then, the obtained hot-rolled coil has 10
It was annealed at 80 ° C., cold rolled once to a thickness of 0.220 mm, and then decarburized annealed at 850 ° C.

【0040】その後、TiO2 が3%添加されたMgO
焼鈍分離剤を鋼板に塗布後、乾燥する際の板温を変更す
ることにより含水率を0.1〜4.8%として、120
0℃の仕上げ焼鈍、二次被膜塗布、さらにはレーザー照
射による磁区制御を行った。仕上げ焼鈍後に一次被膜量
測定、レーザー照射による磁区制御後に鉄損測定を実施
した。一次被膜量と鉄損W17/50 を表1に示す。
Thereafter, MgO containing 3% of TiO 2 was added.
After the annealing separator is applied to the steel sheet, the water content is set to 0.1 to 4.8% by changing the sheet temperature at the time of drying.
The final annealing was performed at 0 ° C., the secondary coating was applied, and the magnetic domains were controlled by laser irradiation. After the finish annealing, the primary coating amount was measured, and the iron loss was measured after controlling the magnetic domains by laser irradiation. Table 1 shows the amount of primary coating and the iron loss W 17/50 .

【0041】[0041]

【表1】 [Table 1]

【0042】表1より明らかなように、含水率が0.3
〜3%で、2.5g/m2 以上の良好な一次被膜量が形
成されている。またこのことによって、0.70W/k
g以下の極めて優れた鉄損が得られている。
As is clear from Table 1, the water content is 0.3.
At ~ 3%, a good primary coating amount of 2.5 g / m 2 or more is formed. In addition, 0.70 W / k
An extremely excellent iron loss of g or less is obtained.

【0043】[実施例2] C:0.075%、Si:3.22%、Mn:0.08
%、S:0.027%、酸可溶性Al:0.025%、
N:0.0080%、Bi:0.046%を含有するス
ラブを1360℃で加熱後直ちに熱延して2.3mm厚の
熱延コイルとした。得られた熱延コイルを酸洗後1.6
0mmに予備冷延し、1000℃の焼鈍後0.200mmと
した。その後MgOにTiO2 が10%、Na2 4
7 が0.6%添加された焼鈍分離剤を塗布後、乾燥する
際の板温を変更することにより仕上げ焼鈍開始時の含水
率を0.1〜5.0%として、1200℃の仕上げ焼
鈍、二次被膜塗布、さらにはレーザー照射による磁区制
御を行った。仕上げ焼鈍後に一次被膜測定、レーザー照
射による磁区制御後に鉄損測定を実施した。
Example 2 C: 0.075%, Si: 3.22%, Mn: 0.08
%, S: 0.027%, acid-soluble Al: 0.025%,
A slab containing N: 0.0080% and Bi: 0.046% was heated at 1360 ° C. and immediately hot rolled to give a hot rolled coil having a thickness of 2.3 mm. The picked hot-rolled coil was pickled 1.6
It was pre-cold rolled to 0 mm and annealed at 1000 ° C. to 0.200 mm. After that, 10% of TiO 2 was added to MgO, and Na 2 B 4 O was added.
After applying the annealing separator containing 0.6% of 7 added, the water content at the start of finish annealing is set to 0.1 to 5.0% by changing the plate temperature during drying, and the finish annealing is performed at 1200 ° C. , The secondary coating was applied, and the magnetic domain was controlled by laser irradiation. After the finish annealing, the primary coating film was measured, and the core loss was measured after controlling the magnetic domains by laser irradiation.

【0044】一次被膜評点、一次被膜量と鉄損W17/50
を表2に示す。評点は以下のようにして決めた。20mm
径の丸棒にそって製品を曲げても剥離しない場合をA、
30mm径の丸棒に沿って製品を曲げても剥離しない場合
をB、30mm径の丸棒に沿って製品を曲げると剥離する
場合をCとした。すなわち評点Aが最も良好で、以下
B、Cと続く。
Primary coating rating, primary coating amount and iron loss W 17/50
Is shown in Table 2. The score was decided as follows. 20 mm
If the product does not peel off even if it is bent along a round bar,
The case where the product was not peeled off even if the product was bent along the 30 mm diameter round bar was designated as B, and the case where the product was peeled off when bent along the 30 mm diameter round bar was designated as C. That is, the score A is the best, followed by B and C.

【0045】[0045]

【表2】 [Table 2]

【0046】表2より明らかなように、含水率が0.3
〜3%で、2.5g/m2 以上の一次被膜量と一次被膜
密着性評点Aが得られている。またこのことによって、
0.70W/kg以下の極めて優れた鉄損が得られてい
る。
As is clear from Table 2, the water content is 0.3.
-3%, a primary coating amount of 2.5 g / m 2 or more and a primary coating adhesion rating A are obtained. By this,
An extremely excellent iron loss of 0.70 W / kg or less is obtained.

【0047】[実施例3] C:0.078%、Si:3.30%、Mn:0.08
%、S:0.025%、酸可溶性Al:0.029%、
N:0.0084%、Sn:0.14%、Cu:0.0
60%を含有する溶鋼にBiを0.0122%添加含有
したスラブを1350℃で加熱後直ちに熱延して2.0
mm厚の熱延コイルとした。次いで、得られた熱延コイル
に1050℃の焼鈍を施し、二回冷延で0.220mm厚
とした後、840℃で脱炭焼鈍を行った。
Example 3 C: 0.078%, Si: 3.30%, Mn: 0.08
%, S: 0.025%, acid-soluble Al: 0.029%,
N: 0.0084%, Sn: 0.14%, Cu: 0.0
A slab containing 0.0122% Bi added to molten steel containing 60% was heated at 1350 ° C. and immediately hot-rolled to 2.0.
A hot rolled coil having a thickness of mm was used. Next, the obtained hot rolled coil was annealed at 1050 ° C., cold rolled twice to a thickness of 0.220 mm, and then decarburized and annealed at 840 ° C.

【0048】その後、TiO2 が8%、Sb2 (S
4 3 が0.1%添加されたMgO焼鈍分離剤を鋼板
に塗布後、乾燥する際の板温を変更することにより仕上
げ焼鈍開始時の含水率を0.1〜5.3%として118
0℃の仕上げ焼鈍を行った。水洗後、一次被膜測定を実
施した。一次被膜密着性評点と一次被膜量を表3に示
す。評点は実施例2の評価方法と同一である。
After that, TiO 2 was 8% and Sb 2 (S
After the MgO annealing separator containing 0.1% of O 4 ) 3 is applied to the steel sheet, the water content at the start of finish annealing is set to 0.1 to 5.3% by changing the sheet temperature during drying. 118
Finish annealing was performed at 0 ° C. After washing with water, the primary coating film was measured. Table 3 shows the primary coating adhesion rating and the primary coating amount. The rating is the same as the evaluation method of Example 2.

【0049】[0049]

【表3】 [Table 3]

【0050】表3より明らかなように、含水率が0.3
〜3%で、2.5g/m2 以上の良好な一次被膜量で一
次被膜密着性評点Aが得られている。
As is clear from Table 3, the water content is 0.3.
At 3%, the primary coating adhesion rating A is obtained with a good primary coating amount of 2.5 g / m 2 or more.

【0051】[実施例4] C:0.078%、Si:3.30%、Mn:0.08
%、Se:0.025%、酸可溶性Al:0.025
%、N:0.0084%、Sb:0.022%、Mo:
0.014%、Bi:0.0080%を含有するスラブ
を1350℃で加熱後直ちに熱延して2.3mm厚の熱延
コイルとした。得られた熱延コイルを1000℃の中間
焼鈍を含む二回冷延で0.220mm厚とした後、860
℃で脱炭焼鈍を行った。
Example 4 C: 0.078%, Si: 3.30%, Mn: 0.08
%, Se: 0.025%, acid-soluble Al: 0.025
%, N: 0.0084%, Sb: 0.022%, Mo:
A slab containing 0.014% and Bi: 0.0080% was heated at 1350 ° C. and immediately hot rolled to give a hot rolled coil having a thickness of 2.3 mm. The obtained hot-rolled coil was cold-rolled twice including intermediate annealing at 1000 ° C. to a thickness of 0.220 mm, and then 860
Decarburization annealing was performed at ℃.

【0052】その後、TiO2 が10%、SrSO4
0.3%添加されたMgO焼鈍分離剤を鋼板に塗布後、
乾燥する際の板温を変更することにより仕上げ焼鈍開始
時の含水率を0.1〜5.5%として1200℃の仕上
げ焼鈍を行った。水洗後、一次被膜測定を実施した。一
次被膜密着性評点と一次被膜量を表4に示す。評点は実
施例2の評価方法と同一である。
Then, after applying the MgO annealing separator containing 10% of TiO 2 and 0.3% of SrSO 4 to the steel sheet,
By changing the plate temperature during drying, the water content at the start of finish annealing was set to 0.1 to 5.5%, and finish annealing was performed at 1200 ° C. After washing with water, the primary coating film was measured. Table 4 shows the primary coating adhesion rating and the primary coating amount. The rating is the same as the evaluation method of Example 2.

【0053】[0053]

【表4】 [Table 4]

【0054】表4より明らかなように、含水率が0.3
〜3%で、2.5g/m2 以上の良好な一次被膜量で一
次被膜密着性評点Aが得られている。
As is clear from Table 4, the water content is 0.3.
At 3%, the primary coating adhesion rating A is obtained with a good primary coating amount of 2.5 g / m 2 or more.

【0055】[0055]

【発明の効果】Biを添加含有した一方向性電磁鋼板用
スラブから得た熱延コイルを、熱延板焼鈍後仕上げ冷
延、あるいは中間焼鈍を含む複数の冷延、あるいは熱延
板焼鈍後中間焼鈍を含む複数の冷延によって製品板厚に
仕上げた後に、脱炭焼鈍し、焼鈍分離剤を塗布後、仕上
げ焼鈍をする超高磁束密度一方向性電磁鋼板の製造方法
において、仕上焼鈍開始時のMgOを主成分とする焼鈍
分離剤の含水率を0.3〜3%とすることによって、一
次被膜の良好な超高磁束密度一方向性電磁鋼板が得られ
るとともに、磁区細分化処理後の鉄損特性も極めて優れ
ており、工業的に非常に価値の高い有益なものといえ
る。
EFFECT OF THE INVENTION A hot rolled coil obtained from a slab for unidirectional electrical steel sheet containing Bi added is subjected to finish cold rolling after hot rolled sheet annealing, or a plurality of cold rolled sheets including intermediate annealing, or after hot rolled sheet annealing. After finishing the product sheet thickness by multiple cold rolling including intermediate annealing, decarburizing annealing, after applying the annealing separator, finish annealing is started in the manufacturing method of super high magnetic flux density unidirectional electrical steel sheet. By setting the moisture content of the annealing separator containing MgO as the main component at 0.3 to 3%, a super-high magnetic flux density unidirectional electrical steel sheet having a good primary coating can be obtained, and after the magnetic domain subdivision treatment. The iron loss characteristics of are extremely excellent and can be said to be industrially very valuable and useful.

【図面の簡単な説明】[Brief description of drawings]

【図1】Bi含有量と、仕上げ焼鈍開始時の焼鈍分離剤
の含水率と、一次被膜密着性評点との関係を示す図表で
ある。
FIG. 1 is a chart showing the relationship between the Bi content, the water content of the annealing separator at the start of finish annealing, and the primary coating adhesion rating.

【図2】仕上げ焼鈍開始時の焼鈍分離剤の含水率と、一
次被膜量と、レーザー照射による磁区制御後の鉄損W
17/50 との関係を示す図表である。
FIG. 2 shows the water content of the annealing separator at the start of finish annealing, the amount of primary coating, and the iron loss W after controlling the magnetic domains by laser irradiation.
It is a chart showing the relationship with 17/50 .

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01F 1/16 H01F 1/16 B (72)発明者 竹田 和年 兵庫県姫路市広畑区富士町1番地 新日 本製鐵株式会社 広畑製鐵所内 (72)発明者 阿部 憲人 兵庫県姫路市広畑区富士町1番地 新日 本製鐵株式会社 広畑製鐵所内 (56)参考文献 特開 平8−283865(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 8/12 C21D 9/46 501 C22C 38/00 - 38/60 H01F 1/16 - 1/18 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI H01F 1/16 H01F 1/16 B (72) Inventor Kazutoshi Takeda 1 Fuji-machi, Hirohata-ku, Himeji-shi, Hyogo Nippon Steel Corporation Hirohata Works Ltd. (72) Inventor Kento Abe No. 1 Fuji-machi, Hirohata-ku, Himeji City, Hyogo Prefecture Nippon Steel Corporation Hirohata Works (56) Reference JP-A-8-283865 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C21D 8/12 C21D 9/46 501 C22C 38/00-38/60 H01F 1/16-1/18

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、 C :0.03〜0.15%、 Si:2.5〜4.0%、 Mn:0.02〜0.30%、 S及びSeの一方若しくは双方:0.005〜0.04
0%、 酸可溶性Al:0.015〜0.040%、 N :0.0030〜0.0150%、 Bi:0.0005〜0.05% を含有し、残部がFeおよび不可避的不純物からなるス
ラブを出発材とし、このスラブを加熱した後熱延して製
造した熱延板を、熱延板焼鈍後仕上げ冷延をし、あるい
は中間焼鈍を含む複数の冷延をし、あるいは熱延板焼鈍
後中間焼鈍を含む複数の冷延をすることによって製品板
厚に仕上げ、脱炭焼鈍した後、鋼板表面にMgOを主成
分とした焼鈍分離剤を塗布し、仕上げ焼鈍する一方向性
電磁鋼板の製造方法において、仕上焼鈍開始時に焼鈍分
離剤塗膜の含水率を0.3〜3%とすることを特徴とす
る超高磁束密度一方向性電磁鋼板の製造方法。
1. By weight%, C: 0.03 to 0.15%, Si: 2.5 to 4.0%, Mn: 0.02 to 0.30%, one or both of S and Se: 0.005-0.04
0%, acid-soluble Al: 0.015 to 0.040%, N: 0.0030 to 0.0150%, Bi: 0.0005 to 0.05%, with the balance being Fe and inevitable impurities. A slab is used as a starting material, and the slab is heated and then hot-rolled to produce a hot-rolled sheet, which is subjected to hot-rolled sheet annealing and then finish cold-rolling, or multiple cold-rolling including intermediate annealing, or hot-rolled sheet. A unidirectional electrical steel sheet that is finish-annealed by finishing the product sheet thickness by performing multiple cold-rolling including intermediate annealing and decarburizing-annealing after annealing, and then applying an annealing separator containing MgO as a main component to the steel sheet surface. The method for producing an ultra-high magnetic flux density unidirectional electrical steel sheet according to the above method, wherein the water content of the annealing separator coating film is 0.3 to 3% at the start of finish annealing.
【請求項2】 重量%で、 C :0.03〜0.15%、 Si:2.5〜4.0%、 Mn:0.02〜0.30%、 S及びSeの一方若しくは双方:0.005〜0.04
0%、 酸可溶性Al:0.015〜0.040%、 N :0.0030〜0.0150%、 Sn:0.05〜0.50%、 Cu:0.01〜0.10%、 Bi:0.0005〜0.05% を含有し、残部がFeおよび不可避的不純物からなるス
ラブを出発材としたことを特徴とする請求項1記載の超
高磁束密度方向性電磁鋼板の製造方法。
2. By weight%, C: 0.03 to 0.15%, Si: 2.5 to 4.0%, Mn: 0.02 to 0.30%, one or both of S and Se: 0.005-0.04
0%, acid-soluble Al: 0.015 to 0.040%, N: 0.0030 to 0.0150%, Sn: 0.05 to 0.50%, Cu: 0.01 to 0.10%, Bi The method for producing an ultrahigh magnetic flux density grain-oriented electrical steel sheet according to claim 1, wherein the starting material is a slab containing 0.0005 to 0.05% and the balance being Fe and inevitable impurities.
【請求項3】 重量%で、 C :0.03〜0.15%、 Si:2.5〜4.0%、 Mn:0.02〜0.30%、 S及びSeの一方若しくは双方:0.005〜0.04
0%、 酸可溶性Al:0.015〜0.040%、 N :0.0030〜0.0150%、 Sb及びMoの一方若しくは双方:0.0030〜0.
3%、 Bi:0.0005〜0.05% を含有し、残部がFeおよび不可避的不純物からなるス
ラブを出発材としたことを特徴とする請求項1記載の超
高磁束密度方向性電磁鋼板の製造方法。
3. By weight%, C: 0.03 to 0.15%, Si: 2.5 to 4.0%, Mn: 0.02 to 0.30%, one or both of S and Se: 0.005-0.04
0%, acid-soluble Al: 0.015 to 0.040%, N: 0.0030 to 0.0150%, one or both of Sb and Mo: 0.0030 to 0.
3%, Bi: 0.0005 to 0.05%, and a balance of Fe and unavoidable impurities as a starting material is a slab as a starting material. Manufacturing method.
JP03499298A 1998-02-17 1998-02-17 Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet Expired - Fee Related JP3397293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03499298A JP3397293B2 (en) 1998-02-17 1998-02-17 Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03499298A JP3397293B2 (en) 1998-02-17 1998-02-17 Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH11229036A JPH11229036A (en) 1999-08-24
JP3397293B2 true JP3397293B2 (en) 2003-04-14

Family

ID=12429650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03499298A Expired - Fee Related JP3397293B2 (en) 1998-02-17 1998-02-17 Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3397293B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4893259B2 (en) * 2006-11-21 2012-03-07 Jfeスチール株式会社 Method for applying annealing separator for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
CN111133118B (en) * 2017-09-28 2021-10-12 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet
KR20230174266A (en) * 2021-05-26 2023-12-27 제이에프이 스틸 가부시키가이샤 Manufacturing method of grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JPH11229036A (en) 1999-08-24

Similar Documents

Publication Publication Date Title
JP3456862B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH0688171A (en) Production of ultrahigh magnetic flux density grain oriented silicon steel sheet
JP2019163516A (en) Production method of grain-oriented electromagnetic steel sheet
KR100293140B1 (en) Unidirectional Electronic Steel Sheet and Manufacturing Method Thereof
JP3656913B2 (en) Ultra high magnetic flux density unidirectional electrical steel sheet
JP3397293B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3397277B2 (en) Manufacturing method of ultra-low iron loss ultra-high magnetic flux density unidirectional electromagnetic steel strip
JP3098628B2 (en) Ultra high magnetic flux density unidirectional electrical steel sheet
JP3434936B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP2002348613A (en) Method for manufacturing grain-oriented electromagnetic steel sheet superior in blanking property without needing decarburization annealing
JP3561323B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3388116B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH11241120A (en) Production of grain-oriented silicon steel sheet having uniform forsterite film
JP3397273B2 (en) Manufacturing method for ultra-low iron loss ultra-high magnetic flux density unidirectional electrical steel sheet
JPH1025516A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JP3527309B2 (en) Heating method of slab for ultra high magnetic flux density unidirectional electrical steel sheet
JP3463417B2 (en) Method for producing grain-oriented silicon steel sheet stably obtaining excellent magnetic properties
JPH08253815A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JP3399721B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3061515B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3527276B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP2000345305A (en) High magnetic flux density grain oriented silicon steel sheet excellent in high magnetic field core loss and its production
JP3546114B2 (en) Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density
JP3324044B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP4163773B2 (en) Method for producing grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140214

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees