[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS58157118A - Manufacture of resin-bonded type rare earth cobalt magnet - Google Patents

Manufacture of resin-bonded type rare earth cobalt magnet

Info

Publication number
JPS58157118A
JPS58157118A JP3897982A JP3897982A JPS58157118A JP S58157118 A JPS58157118 A JP S58157118A JP 3897982 A JP3897982 A JP 3897982A JP 3897982 A JP3897982 A JP 3897982A JP S58157118 A JPS58157118 A JP S58157118A
Authority
JP
Japan
Prior art keywords
magnetic field
powder
rare earth
resin
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3897982A
Other languages
Japanese (ja)
Other versions
JPH0559572B2 (en
Inventor
Koji Akioka
宏治 秋岡
Tatsuya Shimoda
達也 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP3897982A priority Critical patent/JPS58157118A/en
Publication of JPS58157118A publication Critical patent/JPS58157118A/en
Publication of JPH0559572B2 publication Critical patent/JPH0559572B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0558Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To obtain a magnet with high orientation by a method wherein magnetic powder is magnetized in a state of a mixture with a resin before it is formed in a magnetic field stronger than the forming magnetic field to improve the degree of orientation of the powder. CONSTITUTION:The addition of a process before or after mixing wherein preparatory magnetization is performed in a magnetic field that is stronger that a forming magnetic field prepares magnetic powder to be sufficiently orientated even in a relatively weak magnetic field. Production of highly orientated magnets has thus become possible even in an industrially available forming magnetic fields. This method of improving orientation by magnetizing powder beforehand is more effective when it is employed in the treatment of materials of the R2TM17 type demanding a fairly strong field. Further, when Sm is used to be used as the rare earth element R, not only the 4xIs is larger, but also uniaxial anisotropy is higher at room temperatures, and anistropic energy is higher than other materials belonging to the R2TM17 type. A magnetizing field of not less than approximately 20kOe is required to obtain a good result.

Description

【発明の詳細な説明】 本発明は、樹脂結合型希土類コバルト磁石の製造方法に
関する。すなわち樹脂結合製希土類コバルト磁石の磁気
性能を成形前に樹脂と混練後、あるいは混練前の粉末の
状態で、成形磁場より高い磁場で着磁することにより高
めるという、製造方法に関するものである。希土類コバ
ルト磁石は、フェライト磁石やアルニコ磁石に比して非
常に高性能である。そしてその製造方法としては、焼結
法によるものと樹脂結合法によるものがある。そのうち
11脂結合法のものは、焼結法のものに比して、加工性
の良さ、製品の均質性、低コスト、低比重9機械的強度
の強さなどの利点を持っている、しかし一方では、磁性
粉以外のもの(樹脂)を少くとも8マ01%含む結果、
従来の製造方法であると、磁気性能(B H) !11
4Xは焼結法によるものの半分程度になってしまうとい
う欠点があった。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a resin bonded rare earth cobalt magnet. That is, it relates to a manufacturing method in which the magnetic performance of a resin-bonded rare earth cobalt magnet is enhanced by magnetizing it in a magnetic field higher than the molding magnetic field after kneading it with a resin before molding or in the powder state before kneading. Rare earth cobalt magnets have much higher performance than ferrite magnets and alnico magnets. The manufacturing method includes a sintering method and a resin bonding method. Among these, 11 the fat bonding method has advantages over the sintering method, such as better workability, product homogeneity, lower cost, lower specific gravity, 9 higher mechanical strength, etc. On the other hand, as a result of containing at least 801% of something other than magnetic powder (resin),
With conventional manufacturing methods, magnetic performance (B H)! 11
4X had the disadvantage that it was about half the size of that produced by the sintering method.

本発明は、この欠点を、成形前に樹脂と混合した粉末の
状態で、成形磁場より高い磁場で着磁し、粉末の配向度
を高めることにより解決せんとするものである。第1図
は、希土類をR,コバルトを主体とした遷移金属をTM
とした、RITMtT系磁石の製造工程を、焼結法と樹
脂結合法にわけて示したものである。第1図(1)は焼
結法による、BATMlT系磁石の製造工程を図示した
ものであり、合金を溶解鋳造する工1i! (1)と、
その合金を粗粉砕(2)、微粉砕(1)する工程、粉砕
したRITMlf系磁石粉末を成形製を用いて磁場中で
、圧縮成形する工程(4)、かかる圧縮成形粉末を焼結
する工程(5)、更に磁石の性能を向上させるために行
う溶体化処理行1iA(6)及び時効処理工1i(Y″
)、最後に着磁する工!!! (j)とから成る。また
第1図(旬は樹脂結合法による製造工程を図示したもの
であり、合金を溶解鋳造すル工程Qυと、磁石の性能を
向上させるために行う溶体化処理工程(ロ)及び時効処
理工mus、合金を粗粉砕(ロ)、微粉砕(2)する工
程、できあがった粉末を樹脂と混練する工程(至)、粉
砕、m練したR1’1”M17する工程(ロ)、かかる
圧縮成形粉末にキュアソングを施し、樹脂を硬化させる
工程(至)、最後に着磁する工程(2)とから成る。こ
の図から、磁場成形時において、樹脂結合法では時効処
理を終えているが、焼結法では、まだ終えていないこと
がわかる。
The present invention aims to solve this drawback by magnetizing the powder mixed with resin with a magnetic field higher than the molding magnetic field before molding to increase the degree of orientation of the powder. Figure 1 shows R for rare earths and TM for transition metals mainly composed of cobalt.
The manufacturing process of the RITMtT magnet is shown divided into a sintering method and a resin bonding method. FIG. 1 (1) illustrates the manufacturing process of BATMIT-based magnets using the sintering method. (1) and
A step of coarsely pulverizing (2) and finely pulverizing the alloy (1), a step of compression molding the pulverized RITMlf magnet powder in a magnetic field using a compactor (4), and a step of sintering the compression molded powder. (5), solution treatment line 1iA (6) and aging treatment line 1i (Y″) to further improve the performance of the magnet.
), the final step is magnetization! ! ! It consists of (j). In addition, Figure 1 (Figure 1) illustrates the manufacturing process using the resin bonding method, and shows the process of melting and casting the alloy (Qυ), the solution treatment process (B), and the aging treatment process performed to improve the performance of the magnet. mus, the step of coarsely pulverizing (b) and finely pulverizing the alloy (2), the step of kneading the resulting powder with resin (to), the step of pulverizing and kneading R1'1''M17 (b), and such compression molding. It consists of the step of applying a cure song to the powder and curing the resin (end), and finally the step of magnetizing it (step 2).From this figure, it can be seen that during magnetic field molding, the aging treatment is completed in the resin bonding method, but It can be seen that the sintering method is not yet finished.

第2図(α)は、第1図(旬の工程(4)におけるヒス
テリシス曲線、第28iff(A)は、第1図(A)の
工程側におけるヒステリシス曲線を示したものである。
FIG. 2(α) shows the hysteresis curve in the step (4) of FIG. 1 (the latest step), and FIG. 28iff(A) shows the hysteresis curve in the step of FIG. 1(A).

両者でヒステリシス曲線の形状が大きく異っていること
がわかる。つまり、時効処理というのは、本来の保持力
1Hoを得るための工程であるから、磁場成形時におい
てすでに時効処理を終えている、樹脂結合法のものは、
大きなiHoを持つヒステリシス曲線になっているわけ
である。一般に、磁場成形時に配向を充分に行うには、
1)(aの3〜5倍程度の磁場が必要と言われている。
It can be seen that the shapes of the hysteresis curves are significantly different between the two. In other words, since aging treatment is a process to obtain the original coercive force of 1Ho, the resin bonding method, which has already undergone aging treatment at the time of magnetic field molding,
This is a hysteresis curve with a large iHo. Generally, in order to achieve sufficient orientation during magnetic field forming,
1) (It is said that a magnetic field about 3 to 5 times as large as a is required.

つまり第2図より焼結法によるものは、5x〜10KO
e  の磁場で充分なのに対し、樹脂結合法のものでは
、30!〜50KO・ もの磁場が必要となる。このこ
とを配向度との関係で示したのが第3図である。(この
図では配向度はs o to・ の磁場のものを1とし
ている。)しかし、114図に示すような、従来の磁場
成形機によれば、磁場発生用コイル1間のギャップが成
j[I12をセットするために、余り小さくできない。
In other words, from Figure 2, the sintering method has a 5x to 10KO
While a magnetic field of e is sufficient, for the resin bonding method, 30! A magnetic field of ~50 KO· is required. FIG. 3 shows this in relation to the degree of orientation. (In this figure, the degree of orientation is set to 1 in the magnetic field of so to.) However, according to the conventional magnetic field forming machine as shown in Fig. 114, the gap between the magnetic field generating coils 1 is [To set I12, it cannot be made too small.

そのため20KO・ 以上の磁場な出すのは困難であっ
た。それゆえに、焼結法によるものなら、従来の10器
で充分な配向が可能であったが、樹脂結合法によるもの
では、不完全な配向しかできないため、磁石粉末本来の
性能が発揮できなかった。本発明は、樹脂結合型希土類
コバルト磁石の製造工11(第1EI(A))において
、樹脂混線後、あるいは、混線前にあらかじめ成形磁場
より高い磁場で着磁を行う行Ij(第5図C16′))
を加えて、第5wAのような製造工程にすれば、比較的
低い配向磁場でも充分、磁石粉末を配向させることがで
き、従来の製造方法の欠点を解決し得ることを見い出し
たものである。つまり、本発明により、工業的に可能な
i&形磁場でも、高い配向度を有する。樹脂結合型希土
類コバルト磁石の製造が可能となったわけである。また
本発明は、RTMs系よりR意TM17系の希土類コバ
ルト磁石磁石粉末に使用した場合に、その効果はより大
きなものとなる。第6図は、RTMs系とR1TM17
系の樹脂結合戯希土類コバルト磁石のヒステリシス曲線
と初磁化曲義を示したものである。R1TM17系では
、初磁化曲纏の立ち上がりがRTMs Jに比して非常
に遅い。つまり図に示すようにR2TM17系のvJ磁
化曲線が立ち上がる直前の磁場H1を与えた場合、4x
工の値が両糸で大きな差を生ずるノテある。言いかえれ
ばRTMII系のものは、わずかな磁場で配向しやすく
、R1TM17系のものは、かなりの磁場を配向に必要
とする。そのため、あらかじめ磁石粉末を着磁して配向
を高める。該製造法の効果が大きいのである。そしてl
ll8金属TMとしてOO以外に10を加えることによ
り、飽和磁束密[Brの上昇が、またOuを加えること
により、RzTMxtii4希土類コバルト磁石の保持
力の根本となるRTMI系化合物が得られ、Zr。
Therefore, it was difficult to generate a magnetic field of 20 KO• or more. Therefore, if the sintering method was used, it was possible to achieve sufficient orientation with the conventional 10-piece device, but if the resin bonding method was used, only incomplete orientation could be achieved, and the original performance of the magnetic powder could not be demonstrated. . In the manufacturing process 11 (first EI (A)) of resin-bonded rare earth cobalt magnets, the present invention includes a process in which magnetization is carried out in advance with a magnetic field higher than the forming magnetic field after or before resin cross-talk (FIG. 5 C16). ′))
In addition, it has been discovered that if a manufacturing process such as the 5th wA is used, the magnet powder can be sufficiently oriented even with a relatively low orientation magnetic field, and the drawbacks of the conventional manufacturing method can be solved. In other words, the present invention provides a high degree of orientation even in an industrially possible i&-type magnetic field. This makes it possible to manufacture resin-bonded rare earth cobalt magnets. Furthermore, the present invention is more effective when used for RTM17-based rare earth cobalt magnet magnet powder than for RTMs-based magnet powder. Figure 6 shows the RTMs system and R1TM17
This figure shows the hysteresis curve and initial magnetization curve of the resin-bonded rare earth cobalt magnet. In the R1TM17 series, the initial magnetization curve rises very slowly compared to RTMs J. In other words, as shown in the figure, when applying the magnetic field H1 just before the vJ magnetization curve of the R2TM17 system rises, 4x
There is a note that there is a big difference in the work value between the two threads. In other words, RTMII-based materials are easily oriented with a small magnetic field, while R1TM17-based materials require a considerable magnetic field for orientation. Therefore, the magnet powder is magnetized in advance to enhance its orientation. This manufacturing method is highly effective. and l
By adding 10 in addition to OO as the 118 metal TM, the saturation magnetic flux density [Br increases, and by adding O, an RTMI-based compound, which is the basis of the coercive force of the RzTMxtii4 rare earth cobalt magnet, is obtained, and Zr.

If、Wb、Tiなどを加えることにより、RTMiM
化合物の析出が助長されることが確かめられており、こ
れらをうまく組み合わせて、より高性能なRITM17
系磁石を生み出すことができる。また、希土類Rの中で
もRとして、Smを使用したものが工業的に量産されて
いる、RITMIT系磁石のほとんどをしめている。こ
れは、一般にR2TM17系はRTMI系に比して飽和
磁化4πニーが高く、高性fIA磁石の製造に有利なわ
けだが、その中でもRとしてSmlを使用したものは、
4πニーが高いだけでなく、室温での一軸員方性が大き
く、異方性エネルギーもRITMI?系の中では大きい
からである。次に本発明を効果的に利用するにあたって
は、着磁磁−が約20区0・ 以上、必要となる。前述
したように、従来の磁場成形機では、約2 Q KO・
 が限界磁場であるが、樹脂結合型希土類コバルト磁石
の場合には、充分な配向に30に〜50xO・ の磁場
が必要であった。
By adding If, Wb, Ti, etc., RTMiM
It has been confirmed that the precipitation of compounds is promoted, and by skillfully combining these, higher performance RITM17
system magnets can be created. Furthermore, among the rare earths R, most of the RITMIT magnets that are industrially mass-produced use Sm as R. This is because the R2TM17 system generally has a higher saturation magnetization 4π knee than the RTMI system, which is advantageous for manufacturing high-performance fIA magnets, but among them, those using Sml as R are
Not only does it have a high 4π knee, but it also has a large uniaxial anisotropy at room temperature and an anisotropy energy of RITMI? This is because it is large in the system. Next, in order to effectively utilize the present invention, a magnetization of about 20 sections or more is required. As mentioned above, with the conventional magnetic field forming machine, approximately 2 Q KO・
is the critical magnetic field, but in the case of resin-bonded rare earth cobalt magnets, a magnetic field of 30 to 50 x O· was required for sufficient orientation.

粉末を着磁する場合、成形機と異なり、成形部なセット
する必要がないので、磁場発生コイルのメールピース間
のギャップを少なくでき、発生磁場を高めることができ
る。該製造法は、成形磁場より高い磁場で着磁すること
により、粉末の配向度を高めるものであるから、できる
だけ着磁磁場を高めなければならない。このとき、少な
くとも約20!O・ 以上の磁場があれば、50 KO
e  以上で着磁したときの98≦程度の磁気性能を得
ることびできるため、本発明を効果的に利用できる。
When magnetizing powder, unlike a molding machine, there is no need to set a molding section, so the gap between the mail pieces of the magnetic field generating coil can be reduced, and the generated magnetic field can be increased. In this manufacturing method, the degree of orientation of the powder is increased by magnetizing with a magnetic field higher than the forming magnetic field, so the magnetizing magnetic field must be increased as much as possible. At this time, at least about 20! If there is a magnetic field of O. or more, 50 KO
Since it is possible to obtain a magnetic performance of about 98≦ when magnetized with e or more, the present invention can be effectively utilized.

実施例(1) まず組成S N (oo@、@720uo、os Fs
o、zzZr@、eaa)s、s  の合金1とs m
 (Ooo、5ozOus、eys 1eo、s Zr
s、os)t、sの合金2と(S!110.7Pro、
s) + 00mの合金3の3種類の合金を溶解する。
Example (1) First, composition S N (oo@, @720uo, os Fs
o, zzZr@, eaa) s, s alloy 1 and s m
(Ooo, 5ozOus, eys 1eo, s Zr
s, os) t, s alloy 2 and (S!110.7Pro,
s) Melt the three alloys of alloy 3 of +00m.

次に合金1,2を1150〜1190℃の温度範囲でム
r雰囲気のもとて溶体化処理を行い、800〜850℃
の温度範囲で同じくムr雰凹気のもとて多段時効処理を
行う。そして合金1,2゜3を粉砕1粒度調整を経てエ
ホ″キシ樹脂と混練する。できあがった混練粉末を新た
に粉末1.2.    ’3と名付ける。
Next, Alloys 1 and 2 were subjected to solution treatment at a temperature range of 1150 to 1190°C under a murky atmosphere, and then heated to a temperature of 800 to 850°C.
A multi-stage aging treatment is performed in the same temperature range under the same atmosphere. Then, alloy 1,2゜3 is pulverized and the particle size is adjusted, and then kneaded with epoxy resin.The resulting kneaded powder is newly named powder 1.2゜3.

粉末1,2.3を15〜30KOe の種々の磁場で着
磁し、それを成形磁場15KO・ で成形したときの最
大エネルギー積(B H) wm*xの値の変化を図7
に示す。図かられかるように、着磁磁場が増すに従って
JTM17系粉末1゜2の(III)m&xは大きく増
加しているが、RTMl系粉末3は前述したように、本
発明の効果が少ない。
Figure 7 shows the change in the value of the maximum energy product (BH) wm*x when powders 1 and 2.3 are magnetized with various magnetic fields of 15 to 30 KOe and then molded with a forming magnetic field of 15 KO.
Shown below. As can be seen from the figure, as the magnetizing magnetic field increases, (III) m&x of JTM17 powder 1°2 increases greatly, but as mentioned above, the effect of the present invention is small in RTML powder 3.

実施例(2) 実施例(1)で作製された粉末2を着磁磁場3QIOe
で着磁し、それを20KO・ 未満の種々の磁場で成形
したときと1着磁しないで同様の磁場で成形したときの
、残留磁束密[mrの変化を第8図に示す。図から着磁
を行えば成形磁場が少なくとも、大きなりrが得られる
ことがわかる。つまりBrは配向度の目安となるもので
あるから、着磁を行えば、少ない磁場でも大きな配向度
を持つ磁石が得られるわけである。
Example (2) Powder 2 produced in Example (1) was magnetized with a magnetic field of 3QIOe.
Figure 8 shows the changes in the residual magnetic flux density [mr] when magnetized with 1 and then molded in various magnetic fields of less than 20 KO. It can be seen from the figure that if magnetization is performed, at least a large radius r can be obtained for the forming magnetic field. In other words, since Br is a measure of the degree of orientation, by magnetizing it, a magnet with a large degree of orientation can be obtained even with a small magnetic field.

実施例(8) 実施例(1)で作製された粉末1.3を実施例(1)と
同様の条件で成形したときの角形性(S Q = −e
iH。
Example (8) Squareness (S Q = −e
iH.

Hkは4π工がBrの90≦の大きさを示すときの減磁
界の強さ、)の変化を図8に示す。JTM17系粉末1
の場合は、実施例(1)で示した(Bill)IIIL
Xだけでなく、aQ値も、着磁磁場が増すと増加してい
る。しかしITM、糸粉末3は、(BH)wax、8q
値とも着磁の効果が少ない。
FIG. 8 shows the change in the strength of the demagnetizing field (Hk is the strength of the demagnetizing field when 4π work indicates a magnitude of 90≦Br). JTM17 series powder 1
In the case of (Bill) IIIL shown in Example (1)
Not only X but also the aQ value increases as the magnetizing magnetic field increases. However, ITM, yarn powder 3 is (BH) wax, 8q
The effect of magnetization is small for both values.

以上のように、本発明によれば希土類コバルト磁石粉末
と樹脂を混合した後、最初に成形磁場より高い磁場で着
磁し、次いで磁場成形を行うような製造方法であるため
、従来の樹脂結合型希土類コバルト磁石の欠点を解消し
、低成形磁場でも高配向度の磁石を得ることが可能とな
った。現在、本発明は、プリンターやモーターなどの大
塩磁石のみならず、ウォッチ用ロータ磁石などの小型磁
石にも応用され、好評を博している。
As described above, according to the present invention, after mixing rare earth cobalt magnet powder and resin, the manufacturing method is first magnetized in a higher magnetic field than the molding magnetic field, and then magnetic field molding. The drawbacks of rare earth cobalt type magnets have been overcome, and it has become possible to obtain magnets with a high degree of orientation even with a low forming magnetic field. Currently, the present invention is being applied not only to Oshio magnets for printers and motors, but also to small magnets such as rotor magnets for watches, and has been well received.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はR1TM□7系希土類コバルト磁石の製造工程
を、焼結法(1りと樹脂結合法(b)にわけて示した洩
れ図、第2図(cL) (j)は第1図における磁場成
形時の各々のヒステリシス曲線、第5図は、製造方法の
ちかいによる、成形磁場と配向度の関係を示したグラフ
、第4図は、磁場成形機の概略図である。1・・・・・
・磁場発生用コイル、2・・・・・・成形臘、5・・・
・・・シリンダー、4・・・・・・成形パンチ。第5図
は、予備着磁工程(15’)を加えて本発明を利用した
、JTMlj系の樹脂結合重希土類コバルト磁石の製造
工程の流れ図。第6gIは、RTMi系とJ TMlT
  系の樹脂結合型希土類コバルト磁石のヒステリシス
曲線と初磁化曲線を示すグラフ。第7図は、着磁磁場を
変化させて成形磁場を1510・ にしたときの(B 
H) waxの変化を示したグラフ。 第8図は30xO・ で着磁したときと着磁しないとき
で、成形磁場の変化によって、残留磁束密度Brがいか
に変化するかを示したグラフ。第9図は着磁磁場を変化
させて或IM磁場を15【o・ にしたときの8Q値の
変化を示したグラフ。 以上 出願人 株式会社撤訪精工舎 第2図 第3図 第5図 第7図
Figure 1 is a leakage diagram showing the manufacturing process of R1TM□7 rare earth cobalt magnets, divided into sintering method (1) and resin bonding method (b), Figure 2 (cL) (j) is the same as Figure 1 5 is a graph showing the relationship between the forming magnetic field and the degree of orientation depending on the manufacturing method, and FIG. 4 is a schematic diagram of the magnetic field forming machine.1. ...
・Magnetic field generation coil, 2... Molded lug, 5...
... Cylinder, 4... Forming punch. FIG. 5 is a flowchart of the manufacturing process of a JTMlj-based resin-bonded heavy rare earth cobalt magnet using the present invention with the addition of a preliminary magnetization step (15'). The 6th gI is the RTMi system and J TMIT
Graph showing the hysteresis curve and initial magnetization curve of the resin-bonded rare earth cobalt magnet. Figure 7 shows (B
H) Graph showing changes in wax. FIG. 8 is a graph showing how the residual magnetic flux density Br changes depending on the change in the shaping magnetic field when magnetized at 30xO・ and when not magnetized. FIG. 9 is a graph showing changes in the 8Q value when the magnetizing magnetic field is changed to a certain IM magnetic field of 15[o. Applicant: Hekiha Seikosha Co., Ltd. Figure 2 Figure 3 Figure 5 Figure 7

Claims (1)

【特許請求の範囲】 (1)希土類コバルト磁石粉末と樹脂を混合し、最初に
成形磁場より高い磁場でms石粉末な着磁した後、磁場
成形を行うことを特徴とする、樹脂結合臘希土l!Iコ
バルト磁石の製造方法。 (2)  希土類コバルト磁石粉車として、希土類を罠
とし、コバルトを主体とした遷移金属をTMとしたR3
!MlT系磁石粉末を用いることを特徴とする特許請求
omim第(1)項記載の*m結金臘希土類コバルト磁
石の製造方法。 (m)  *として8!lを用いることを特徴とする時
評請求011!lI籐(2)項記載の樹脂結合臘希土I
Il:2バルト磁石の製造方法。 (4)  着磁磁場rt2010・以上にすることを特
徴とする特許請求0@囲第(1)、α)あるいは(a)
項いずれか&:記載の倒産結合型希土類コバルト磁石の
製造方法。
[Claims] (1) A resin-bonded magnet, characterized in that rare earth cobalt magnet powder and resin are mixed, firstly magnetized as MS stone powder in a magnetic field higher than the molding magnetic field, and then subjected to magnetic field molding. Earth! Method for manufacturing I cobalt magnet. (2) As a rare earth cobalt magnet powder wheel, R3 uses a rare earth as a trap and a transition metal mainly composed of cobalt as a TM.
! A method for manufacturing a rare earth cobalt magnet with *m crystallization as described in item (1) of patent claim omim, characterized in that MIT-based magnet powder is used. (m) *as 8! Current review request 011 characterized by using l! lI rattan resin-bonded rare earth I described in item (2)
Il: 2 Method of manufacturing Baltic magnet. (4) Patent claim 0 @ Enclosure (1), α) or (a) characterized in that the magnetizing magnetic field is set to rt2010.
Any &: A method for producing a bankruptcy bonded rare earth cobalt magnet.
JP3897982A 1982-03-12 1982-03-12 Manufacture of resin-bonded type rare earth cobalt magnet Granted JPS58157118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3897982A JPS58157118A (en) 1982-03-12 1982-03-12 Manufacture of resin-bonded type rare earth cobalt magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3897982A JPS58157118A (en) 1982-03-12 1982-03-12 Manufacture of resin-bonded type rare earth cobalt magnet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1056391A Division JPH0256904A (en) 1989-03-10 1989-03-10 Manufacture of resin-bound rare-earth magnet

Publications (2)

Publication Number Publication Date
JPS58157118A true JPS58157118A (en) 1983-09-19
JPH0559572B2 JPH0559572B2 (en) 1993-08-31

Family

ID=12540265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3897982A Granted JPS58157118A (en) 1982-03-12 1982-03-12 Manufacture of resin-bonded type rare earth cobalt magnet

Country Status (1)

Country Link
JP (1) JPS58157118A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088418A (en) * 1983-10-20 1985-05-18 Seiko Epson Corp Manufacture of cylindrical permanent magnet
JPS60235416A (en) * 1984-05-08 1985-11-22 Seiko Epson Corp Manufacture of permanent magnet
JPS6455814A (en) * 1987-08-26 1989-03-02 Fuji Electrochemical Co Ltd Manufacture of anisotropic bonding magnet
US7531050B2 (en) 2002-09-19 2009-05-12 Nec Tokin Corporation Method for manufacturing bonded magnet and method for manufacturing magnetic device having bonded magnet
CN103600070A (en) * 2013-10-24 2014-02-26 厦门钨业股份有限公司 Production method for rare earth alloy magnetic powder forming body and rare-earth magnet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55105314A (en) * 1979-02-08 1980-08-12 Matsushita Electric Ind Co Ltd Manufacturing method of roll-shaped magnet
JPS55154721A (en) * 1979-05-22 1980-12-02 Matsushita Electric Ind Co Ltd Annular permanent magnet and manufacture thereof
JPS57170501A (en) * 1981-04-14 1982-10-20 Fuji Xerox Co Ltd Production of magneto roll

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55105314A (en) * 1979-02-08 1980-08-12 Matsushita Electric Ind Co Ltd Manufacturing method of roll-shaped magnet
JPS55154721A (en) * 1979-05-22 1980-12-02 Matsushita Electric Ind Co Ltd Annular permanent magnet and manufacture thereof
JPS57170501A (en) * 1981-04-14 1982-10-20 Fuji Xerox Co Ltd Production of magneto roll

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088418A (en) * 1983-10-20 1985-05-18 Seiko Epson Corp Manufacture of cylindrical permanent magnet
JPS60235416A (en) * 1984-05-08 1985-11-22 Seiko Epson Corp Manufacture of permanent magnet
JPS6455814A (en) * 1987-08-26 1989-03-02 Fuji Electrochemical Co Ltd Manufacture of anisotropic bonding magnet
JPH0419685B2 (en) * 1987-08-26 1992-03-31 Fuji Electrochemical Co Ltd
US7531050B2 (en) 2002-09-19 2009-05-12 Nec Tokin Corporation Method for manufacturing bonded magnet and method for manufacturing magnetic device having bonded magnet
CN103600070A (en) * 2013-10-24 2014-02-26 厦门钨业股份有限公司 Production method for rare earth alloy magnetic powder forming body and rare-earth magnet

Also Published As

Publication number Publication date
JPH0559572B2 (en) 1993-08-31

Similar Documents

Publication Publication Date Title
JPH01257308A (en) Magnet for voice coil motor
JPS58157118A (en) Manufacture of resin-bonded type rare earth cobalt magnet
JPH01205403A (en) Rare earth iron resin coupling type magnet
JPS60221550A (en) Rare earth permanent magnet
Strnat Permanent magnets based on 4f-3d compounds
JPS62229803A (en) Nd-fe-b alloy powder for plastic magnet
JPH0256904A (en) Manufacture of resin-bound rare-earth magnet
JPH04112504A (en) Manufacture of pare-earth magnet
JP3538762B2 (en) Method for producing anisotropic bonded magnet and anisotropic bonded magnet
JP2585443B2 (en) Manufacturing method of resin-bonded permanent magnet molding
WO1991001562A1 (en) Anisotropic plastic-bonded magnet
JPH06260360A (en) Production of rare-earth metal and iron-based magnet
JPS60255941A (en) Manufacture of rare earth element-transition metal element-semimetal alloy magnet
JPH1174143A (en) Method of molding magnetic powder
JP2018152526A (en) Method for manufacturing rare earth-iron-boron based sintered magnet
Brown et al. The comparison of anisotropic (and isotropic) powders for polymer bonded Rare-Earth permanent magnets
JP2860910B2 (en) Manufacturing method of rare earth permanent magnet
JPH02153507A (en) Manufacture of resin-bonded type permanent magnet
JPH01290205A (en) Manufacture of high-polymer composite type rare-earth magnet
JPH0450725B2 (en)
JPS60224201A (en) Manufacture of rare earth cobalt magnet
JPS59148302A (en) Manufacture of cylindrical permanent magnet
JPS63308904A (en) Manufacture of bond magnet
JPH0218905A (en) Radial anisotropic rare earth magnet
JPH0531806B2 (en)