JPH0419685B2 - - Google Patents
Info
- Publication number
- JPH0419685B2 JPH0419685B2 JP62212365A JP21236587A JPH0419685B2 JP H0419685 B2 JPH0419685 B2 JP H0419685B2 JP 62212365 A JP62212365 A JP 62212365A JP 21236587 A JP21236587 A JP 21236587A JP H0419685 B2 JPH0419685 B2 JP H0419685B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- magnetic
- coercive force
- molding
- aging treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000465 moulding Methods 0.000 claims description 22
- 230000032683 aging Effects 0.000 claims description 20
- 239000006247 magnetic powder Substances 0.000 claims description 19
- 238000004519 manufacturing process Methods 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 13
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 11
- 150000002910 rare earth metals Chemical class 0.000 claims description 10
- 229920005989 resin Polymers 0.000 claims description 10
- 239000011347 resin Substances 0.000 claims description 10
- 239000002994 raw material Substances 0.000 description 8
- 238000000748 compression moulding Methods 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000000696 magnetic material Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- KPLQYGBQNPPQGA-UHFFFAOYSA-N cobalt samarium Chemical compound [Co].[Sm] KPLQYGBQNPPQGA-UHFFFAOYSA-N 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 229910000828 alnico Inorganic materials 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 230000005347 demagnetization Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Manufacturing Cores, Coils, And Magnets (AREA)
Description
[産業上の利用分野]
本発明は、樹脂を用いて磁性粉体を結合するボ
ンド磁石の製造方法に関し、更に詳しくは、2−
17系希土類磁性粉体を時効処理する前に永久磁石
を使用した磁場中で成形し、その後に時効処理を
施して高保磁力化する異方性ボンド磁石の製造方
法に関するものである。
[従来の技術]
希土類コバルト磁石は、フエライト磁石やアル
ニコ磁石等に比べて磁気特性が優れているため
様々な用途で使用されてきている。
希土類磁石の製造方法は、焼結の他に樹脂結合
剤による複合化があり、近年広く実施されるに至
つている。結合剤としては熱可塑性あるいは熱硬
化性樹脂が用いられ、それらと希土類磁性粉体を
混合して、射出や圧縮、押出等の成形法により製
造されている。特にこの種のボンド磁石は、磁気
特性が高いことのみならず、量産性に優れ寸法精
度が出し易く、また形状の自由度が大きい等の利
点を有する。
従来、ボンド磁石を異方性化するには、原料合
金を粉砕し成形して焼結した後、そのまま時効処
理を行い、それを粉砕し、その時効処理後の粉体
を用いて電磁石により発生させた磁場中で射出や
圧縮あるいは押出し等の成形を行う方法が採用さ
れている。
[発明が解決しようとする問題点]
磁場中で成形を行う際に磁性粉体を完全配向さ
せるためには、印加する磁場の強さは素材である
磁性粉体の保磁力の約4〜5倍以上が必要である
と言われている。従つて従来方法によつて例えば
Sm2Co17系異方性ボンド磁石を製造する場合に
は、必要な配向磁場は最低でも12〜15kOe程度は
必要となる。
従来技術ではこの配向磁場を電磁石により発生
させているため、設備が大型化して設備費が高く
なるし、また特にラジアル配向のような場合には
多数個取りが技術的に困難となり、大量生産する
場合には必然的に成形機を多数設置しなければな
らず、これが生産効率の向上やコストの低減を阻
害していた。
また前記の配向磁場を永久磁石で作成しようと
しても、磁気回路が非常に大型化し実施が極めて
困難となるばかりでなく、通常の磁場中成形では
製品のノツクアウト前に磁場の極性を反転させて
製品の実価を打ち消す脱磁の工程が必要であり、
永久磁石を用いた磁気回路ではその極性反転が容
易にできないからである。
本発明の目的は、上記のような従来技術の欠点
を解消し、磁気特性の優れた2−17系異方性希土
類ボンド磁石を比較的簡単な設備によつて安価に
且つ大量に生産できる方法を提供することにあ
る。
[問題点を解決するための手段]
上記のような目的を達成することのできる本発
明は、2−17系の希土類磁性粉体を、時効処理前
の低保磁力状態の時に、永久磁石による磁場中で
成形する第1の工程と、その後、その磁場中成形
品に時効処理を施して高保磁力状態を出現させる
第2の工程と、その時効処理済みの高保磁力成形
品に結合用の樹脂を含浸又は浸漬して一体化する
第3の工程を具備している異方性ボンド磁石の製
造方法である。
原料となる2−17系の希土類磁性粉体は、
R2TM17(但し、RはY(イツトリウム)を含む
Sm、Ce、Pr、Nd等の希土類元素の1種又は2
種以上、TMはCo、Fe、Niを主体とする遷移金
属元素)で表される組成を主成分とするものであ
る。このような原料は、通常、所定の組成を有す
る合金を粉砕した後、一定の形状に成形し焼結し
たもの、また必要があればそれを所定の条件で溶
体化処理したものである。
2−17系希土類磁石は、時効処理により析出硬
化が起こり高保磁力が出現する。時効処理後の粉
体を磁場中成形するには、前述のように最低でも
12〜15kOeの配向磁場が必要になるが、時効処理
前の粉体であれば遥かに小さな磁場で配向させる
ことができ、従来技術と同等もしくはそれ以上の
優れた磁気特性が生じ、そのため永久磁石による
磁気回路で必要な配向磁場を形成できることを見
出した。本発明はかかる知得に基づきなされたも
のである。
第5図に示すように、本発明では上記のような
原料焼結体を先ず粉砕し、時効処理前の低保磁力
状態の時に永久磁石による磁場中で成形を行い、
次に成形された状態を保持したまま時効処理を行
つて高い保磁力を出現させ、樹脂と一体化させる
ものである。このように低保磁力の状態で永久磁
石による磁場中で成形を行い、その後に時効処理
を行う点に本発明の大きな特徴がある。因に従来
技術について述べれば、第6図に示すように、原
料焼結体をそのまま先ず時効処理し、それを粉砕
した磁性粉体と樹脂とを混練し電磁石を用いた磁
場中で成形を行い、キユアー処理を行つている。
なお本発明において使用する結合用の樹脂とし
ては、時効処理後に含浸または浸漬できるエポキ
シ樹脂やフエノール樹脂、アクリル樹脂等の熱硬
化性合成樹脂が望ましい。また磁気特性、特に残
留磁束密度を向上させるため、あるいは成形性を
良くするために、成形時にPVA(ポリビニルアル
コール)、PVB(ポリビニルブチラール)、CMC
(カルボキシメチルセルロース)、PEG(ポリエチ
レングリコール)、パラフイン、ポリブテン、リ
ノール酸、オレイン酸等の成形助剤を用い、時効
処理前あるいは時効処理中に脱成形助剤を行つて
もよい。
本発明は特にラジアル異方性のボンド磁石の製
造に好適であるが、それに限らず縦、横、多極
等、任意の方向に配向させる異方性ボンド磁石の
製造に適用できる。
[作 用]
本発明では、磁場中成形を行う時の磁性粉体は
時効処理前の粉体であるから、その保磁力はかな
り小さい。このため従来方法の1/2〜1/3程度の配
向磁場で異方性を付与することができる。例えば
従来12〜15kOeの配向磁場を必要としていた製品
と同等の特性が4〜6kOe程度の配向磁場により
実現可能となる。そしてその配向状態のまま時効
処理が行われるから、時効処理後に磁性粉体の保
磁力が大きくなつても配向状態はそのまま保持さ
れることになる。
また通常の磁場中成形では配向磁場の方向に関
わらず製品のノツクアウト前に磁場の極性を反転
させて製品の磁化を打ち消す脱磁の工程が必要で
ある。これは被成形物自身が大きな保磁力を持つ
ているために必要だつたのであるが、本発明のよ
うに保磁力の非常に低い状態での磁場中成形では
その必要もなくなる。
このように必要な配向磁場の強さが小さくて済
むことと、ノツクアウト前の磁場の極性反転が不
必要となることのために、本発明のような永久磁
石を用いた磁場発生装置でも十分にその機能を果
たすことができる。従つてコイルや電源等が不要
となり、磁場成形装置が簡素化され、ラジアル配
向磁場を印加する場合であつても容易に多数個取
りの配置が可能となる。
実施例 1
Sm(Co0.68Fe0.20Cu0.10Zr0.02)7.52で示される組成
の2−17系サマリウム−コバルト合金をアルゴン
雰囲気中で高周波溶解した後、ジヨークラツシヤ
ーおよびジエツトミルを用いて平均粒径4μmの
粉体とし、磁場中成形後焼結し実験における原料
とした。
実施例1では、この原料焼結品を粉砕して平均
粒径200μmとし、永久磁石を用いた磁気回路に
よるラジアル磁場中で成形する。成形時に用いた
磁性粉体の特性は次の通りである。
Br=11.0kG
bHc=0.5kOe
ここで使用した圧縮成形機の金型を第1図に示
す。ラジアル方向に着磁した2個の円筒状サマリ
ウム−コバルト永久磁石10,12が同心状に位
置し、それぞれ軟磁性材料(高透磁率材料)から
なるダイス14およびロツド16に埋設されてい
る。それらダイス14とロツド16との間の空隙
に下パンチ18と上パンチ20が位置し、それら
によつて形成されるキヤビテイー内に磁性粉体2
2を充填する。両方の永久磁石10,12によつ
てキヤビテイー内にラジアル配向磁場が印加さ
れ、上パンチ20の押し下げによつて磁性粉体2
2はその配向磁場中で圧縮成形される。
永久磁石10,12の特性および体積を変え、
外径20mm、内径16mm、高さ8mmのキヤビテイー内
での発生磁界が2、5、7.5、10kOeとなる金型
を製作し、3ton/cm2の成形圧力で第2図Aに示す
ようなリング状のボンド磁石24を作成した。そ
して真空中で800℃−1時間の時効処理を行い、
エポキシ樹脂を含浸させて樹脂と一体化した。
次に第2図Aに示すようなリング状のボンド磁
石から2mm×1mm×3mmの直方体状の試料を9個
切り出して同図Bに示すように積み重ねてB−H
曲線を測定し各種磁気特性を求めた。測定結果を
第1表に示す。
[Industrial Application Field] The present invention relates to a method for manufacturing a bonded magnet in which magnetic powder is bonded using a resin.
The present invention relates to a method for manufacturing an anisotropic bonded magnet, in which 17-series rare earth magnetic powder is molded in a magnetic field using a permanent magnet before being aged, and then subjected to aging treatment to increase coercive force. [Prior Art] Rare earth cobalt magnets have superior magnetic properties compared to ferrite magnets, alnico magnets, and the like, and have therefore been used in a variety of applications. In addition to sintering, methods for producing rare earth magnets include compounding using a resin binder, which has become widely practiced in recent years. A thermoplastic or thermosetting resin is used as the binder, and the resin is mixed with rare earth magnetic powder and manufactured by a molding method such as injection, compression, or extrusion. In particular, this type of bonded magnet has advantages such as not only high magnetic properties but also excellent mass productivity, easy dimensional accuracy, and a large degree of freedom in shape. Conventionally, in order to make a bonded magnet anisotropic, the raw material alloy is crushed, formed and sintered, then subjected to aging treatment as it is, then crushed, and the aged powder is used to generate electricity using an electromagnet. Molding methods such as injection, compression, or extrusion in a magnetic field are used. [Problems to be solved by the invention] In order to completely orient the magnetic powder when molding in a magnetic field, the strength of the applied magnetic field must be approximately 4 to 5 times the coercive force of the magnetic powder as a material. It is said that more than double the amount is required. Therefore, by conventional methods, e.g.
When producing an anisotropic bonded Sm 2 Co 17 magnet, the required orientation magnetic field is at least about 12 to 15 kOe. In the conventional technology, this orientation magnetic field is generated by an electromagnet, which increases the size of the equipment and increases the equipment cost.In addition, especially in the case of radial orientation, it is technically difficult to produce multiple pieces, which requires mass production. In some cases, a large number of molding machines must be installed, which hinders improvements in production efficiency and cost reductions. Furthermore, even if an attempt is made to create the above-mentioned orienting magnetic field using a permanent magnet, not only will the magnetic circuit become extremely large and it will be extremely difficult to implement, but in normal molding in a magnetic field, the polarity of the magnetic field must be reversed before the product is knocked out. A demagnetization process is required to cancel the actual value of
This is because a magnetic circuit using permanent magnets cannot easily reverse its polarity. The purpose of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide a method for producing 2-17 anisotropic rare earth bonded magnets with excellent magnetic properties at low cost and in large quantities using relatively simple equipment. Our goal is to provide the following. [Means for Solving the Problems] The present invention, which can achieve the above-mentioned objects, is characterized in that 2-17 rare earth magnetic powder is treated with a permanent magnet when it is in a low coercive force state before aging treatment. A first step of molding in a magnetic field, followed by a second step of aging the molded product in the magnetic field to create a high coercive force state, and applying a bonding resin to the aged high coercive force molded product. This is a method for manufacturing an anisotropic bonded magnet, which includes a third step of impregnating or dipping and integrating. The raw material 2-17 rare earth magnetic powder is
R 2 TM 17 (However, R includes Y (yttrium)
One or two rare earth elements such as Sm, Ce, Pr, Nd, etc.
Above all, TM has a composition mainly composed of transition metal elements (mainly Co, Fe, and Ni). Such raw materials are usually obtained by pulverizing an alloy having a predetermined composition, forming it into a predetermined shape and sintering it, and, if necessary, solution-treating it under predetermined conditions. 2-17 rare earth magnets undergo precipitation hardening due to aging treatment and develop a high coercive force. In order to mold the powder after aging treatment in a magnetic field, at least
An orienting magnetic field of 12 to 15 kOe is required, but if the powder has not been aged, it can be oriented with a much smaller magnetic field, resulting in superior magnetic properties that are equal to or better than those of conventional technology, and are therefore suitable for use with permanent magnets. We have discovered that the necessary orientation magnetic field can be created using a magnetic circuit. The present invention has been made based on this knowledge. As shown in FIG. 5, in the present invention, the raw material sintered body as described above is first crushed, and then molded in a magnetic field by a permanent magnet when it is in a low coercive force state before aging treatment.
Next, while maintaining the molded state, an aging treatment is performed to develop a high coercive force and to integrate it with the resin. A major feature of the present invention is that the molding is performed in a magnetic field by a permanent magnet under such a low coercive force state, and then the aging treatment is performed. Regarding the conventional technology, as shown in Figure 6, the raw material sintered body is first aged as it is, then crushed magnetic powder and resin are kneaded and molded in a magnetic field using an electromagnet. , is performing queue processing. The bonding resin used in the present invention is preferably a thermosetting synthetic resin such as an epoxy resin, a phenol resin, or an acrylic resin that can be impregnated or immersed after aging treatment. In addition, in order to improve magnetic properties, especially residual magnetic flux density, or to improve moldability, PVA (polyvinyl alcohol), PVB (polyvinyl butyral), CMC, etc. are used during molding.
De-molding aids such as (carboxymethyl cellulose), PEG (polyethylene glycol), paraffin, polybutene, linoleic acid, oleic acid, etc. may be used before or during the aging treatment. The present invention is particularly suitable for manufacturing radially anisotropic bonded magnets, but is not limited thereto and can be applied to manufacturing anisotropic bonded magnets oriented in any direction, such as vertically, horizontally, multipolarly, etc. [Function] In the present invention, since the magnetic powder used for molding in a magnetic field is a powder before aging treatment, its coercive force is quite small. Therefore, anisotropy can be imparted with an orientation magnetic field that is about 1/2 to 1/3 that of conventional methods. For example, the same characteristics as conventional products that required an orientation magnetic field of 12 to 15 kOe can be achieved with an orientation magnetic field of about 4 to 6 kOe. Since the aging treatment is carried out in this oriented state, the oriented state is maintained as is even if the coercive force of the magnetic powder increases after the aging treatment. Furthermore, in conventional molding in a magnetic field, a demagnetization process is required to reverse the polarity of the magnetic field and cancel the magnetization of the product before knocking out the product, regardless of the direction of the orienting magnetic field. This was necessary because the object to be molded itself has a large coercive force, but this is no longer necessary when molding is performed in a magnetic field with a very low coercive force as in the present invention. Because the strength of the required orientation magnetic field is small and there is no need to reverse the polarity of the magnetic field before knockout, a magnetic field generator using permanent magnets such as the present invention is sufficient. It can fulfill that function. Therefore, a coil, a power source, etc. are not required, the magnetic field forming device is simplified, and even when applying a radial alignment magnetic field, it is possible to easily arrange multiple pieces. Example 1 Sm (Co 0.68 Fe 0.20 Cu 0.10 Zr 0.02 ) A 2-17 samarium-cobalt alloy having the composition shown in 7.52 was high-frequency melted in an argon atmosphere, and then the average particle size was reduced using a di-york crusher and a jet mill. It was made into a powder of 4 μm, molded in a magnetic field, and then sintered to serve as a raw material for experiments. In Example 1, this raw material sintered product is pulverized to an average particle size of 200 μm, and molded in a radial magnetic field generated by a magnetic circuit using permanent magnets. The characteristics of the magnetic powder used during molding are as follows. Br=11.0kG bHc=0.5kOe Figure 1 shows the mold of the compression molding machine used here. Two radially magnetized cylindrical samarium-cobalt permanent magnets 10 and 12 are located concentrically and are embedded in a die 14 and a rod 16, respectively, made of a soft magnetic material (high magnetic permeability material). A lower punch 18 and an upper punch 20 are located in the gap between the die 14 and the rod 16, and the magnetic powder 2 is placed in the cavity formed by them.
Fill 2. A radial orientation magnetic field is applied in the cavity by both permanent magnets 10 and 12, and the magnetic powder 2 is pushed down by the upper punch 20.
2 is compression molded in the orienting magnetic field. By changing the characteristics and volume of the permanent magnets 10 and 12,
A mold with a magnetic field of 2, 5, 7.5, and 10 kOe was produced in a cavity with an outer diameter of 20 mm, an inner diameter of 16 mm, and a height of 8 mm, and a ring as shown in Figure 2 A was produced at a molding pressure of 3 ton/cm 2 . A bonded magnet 24 having a shape was created. Then, aging treatment is performed at 800℃ for 1 hour in a vacuum.
It was impregnated with epoxy resin and integrated with the resin. Next, nine rectangular parallelepiped samples of 2 mm x 1 mm x 3 mm were cut out from the ring-shaped bonded magnet as shown in Figure 2 A, and stacked as shown in Figure 2 B.
The curves were measured and various magnetic properties were determined. The measurement results are shown in Table 1.
【表】
[比較例]
従来法に従つて、原料焼結品を先ず真空中800
℃−1時間の時効処理を行い、粉砕して平均粒径
200μmとし、エポキシ樹脂と混合してラジアル
配向磁場中で成形する。成形時に用いた磁性粉体
の特性は次の通りである。
Br=11.0kG
bHc=6.0kOe
(B・H)max=27MGOe
磁場中成形は、実施例1と同じキヤビテイー内
の発生磁界で行つた。成形後、キユアー処理を行
い、実施例1と同様に試料を作成し、特性を測定
した。測定結果を第2表に示す。[Table] [Comparative example] According to the conventional method, the raw material sintered product was first heated at 800℃ in vacuum.
℃ - 1 hour aging treatment, pulverization and average particle size
200 μm, mixed with epoxy resin and molded in a radial orientation magnetic field. The characteristics of the magnetic powder used during molding are as follows. Br=11.0kG bHc=6.0kOe (B·H)max=27MGOe The molding in the magnetic field was performed using the same magnetic field generated in the cavity as in Example 1. After molding, a curing treatment was performed, a sample was prepared in the same manner as in Example 1, and the characteristics were measured. The measurement results are shown in Table 2.
【表】
このことから、従来法では永久磁石を用いた磁
場では十分配向せず、満足しうる特性は得られな
いことが分かる。
実施例 2
第3図に示す金型を用いて実施例1と同様の実
験を行つた。この金型もラジアル配向ボンド磁石
を製造する圧縮成形機用の金型である。軸方向に
着磁を施した円筒状サマリウム−コバルト永久磁
石30を軟磁性材料からなるダイス32とヨーク
34とで挾むように設け、中央に軟磁性材料から
なるロツド36を配置した構造である。その他の
上パンチ20および下パンチ18は前記実施例の
場合と同様である。
このような構造の金型によつても実施例1と同
様の良好な結果が得られた。
実施例 3
第4図に示す金型を用いて同様の実験を行つ
た。この金型は軸方向に着磁を施した円柱状のサ
マリウム−コバルト磁石40を軟磁性材料からな
るロツド46中に埋設し、外側にはダイス42と
ヨーク44とを設けてラジアル配向磁場を発生し
得るように構成したものである。
このような構造の金型を用いた場合にも実施例
1と同様の良好な結果が得られた。
なお上記の各実施例では、キヤビテイー内に磁
界を印加する永久磁石としてサマリウム−コバル
ト磁石を用いているが、永久磁石であればそれ以
外の例えばアルニコ磁石、フエライト磁石、Nd
−Fe−B磁石など任意のものを用いうる。
[発明の効果]
本発明は上記のように2−17系希土類磁性粉体
を時効処理前の低保磁力状態の時に永久磁石によ
る配向磁場中で成形する工程を含む異方性ボンド
磁石の製造方法だから、成形時の磁性粉体の保磁
力が小さいため永久磁石によつて発生する小さな
磁場であつても十分な配向がなされ、その状態の
まま時効処理がなされるため時効処理後の磁性粉
体の保磁力が大きくなつても十分な配向が保た
れ、この結果、磁気特性の優れた異方性ボンド磁
石が従来技術よりも小さな磁場強さで、それも永
久磁石で発生する磁場によつて製造可能となる。
このため電磁石を用いて磁界を発生させる従来
技術に比し、構造が簡素化され設備費がかからず
低コスト化できるし、多数個同時成形が可能とな
るため量産に適し、また連続的に成形ができるロ
ータリープレスの使用も可能となる等、製造コス
トを低減する上で極めて顕著な効果を有するもの
である。[Table] From this, it can be seen that in the conventional method, sufficient orientation is not achieved in a magnetic field using a permanent magnet, and satisfactory characteristics cannot be obtained. Example 2 An experiment similar to Example 1 was conducted using the mold shown in FIG. This mold is also a mold for a compression molding machine that manufactures radially oriented bonded magnets. It has a structure in which a cylindrical samarium-cobalt permanent magnet 30 magnetized in the axial direction is sandwiched between a die 32 made of a soft magnetic material and a yoke 34, and a rod 36 made of a soft magnetic material is placed in the center. The other upper punch 20 and lower punch 18 are the same as in the previous embodiment. Good results similar to those of Example 1 were also obtained using the mold having such a structure. Example 3 A similar experiment was conducted using the mold shown in FIG. In this mold, a cylindrical samarium-cobalt magnet 40 magnetized in the axial direction is embedded in a rod 46 made of soft magnetic material, and a die 42 and a yoke 44 are provided on the outside to generate a radial orientation magnetic field. It is structured so that it can be done. Even when a mold having such a structure was used, good results similar to those of Example 1 were obtained. In each of the above embodiments, a samarium-cobalt magnet is used as a permanent magnet that applies a magnetic field inside the cavity, but other permanent magnets such as alnico magnets, ferrite magnets, Nd
An arbitrary magnet such as -Fe-B magnet can be used. [Effects of the Invention] As described above, the present invention provides a method for manufacturing an anisotropic bonded magnet, which includes the step of molding 2-17 rare earth magnetic powder in an orienting magnetic field by a permanent magnet when it is in a low coercive force state before aging treatment. Because of this method, the coercive force of the magnetic powder during molding is small, so even with a small magnetic field generated by a permanent magnet, sufficient orientation is achieved, and the aging treatment is performed in that state, so the magnetic powder after aging Sufficient orientation is maintained even when the coercive force of the body increases, and as a result, anisotropic bonded magnets with excellent magnetic properties can be produced with a smaller magnetic field strength than conventional technology, which is also due to the magnetic field generated by the permanent magnet. It becomes possible to manufacture the product. For this reason, compared to conventional technology that uses electromagnets to generate a magnetic field, the structure is simplified and equipment costs are reduced, making it possible to reduce costs.It is also suitable for mass production as it allows for simultaneous molding of many pieces, and is suitable for continuous production. This has an extremely significant effect in reducing manufacturing costs, such as making it possible to use a rotary press that can perform molding.
第1図は本発明で用いるに好適なラジアル配向
ボンド磁石を製造する圧縮成形機の金型の一部を
示す断面図、第2図Aはそれにより得られるリン
グ状ボンド磁石の説明図、第2図Bはそれを切り
出して作成した試料の説明図、第3図は本発明で
用いるに好適な圧縮成形機の金型の他の例を示す
断面図、第4図は圧縮成形機の金型の更に他の例
を示す断面図、第5図は本発明に係る製造方法の
工程説明図、第6図は従来技術の工程説明図であ
る。
10,12,30,40……永久磁石、14,
32,42……ダイス、16,36,46……ロ
ツド、18……下パンチ、20……上パンチ、2
2……磁性粉体。
FIG. 1 is a cross-sectional view showing a part of a mold of a compression molding machine for manufacturing a radially oriented bonded magnet suitable for use in the present invention, FIG. Figure 2B is an explanatory diagram of a sample cut out from the sample, Figure 3 is a sectional view showing another example of a mold for a compression molding machine suitable for use in the present invention, and Figure 4 is a diagram of a mold for a compression molding machine. FIG. 5 is a cross-sectional view showing still another example of the mold, FIG. 5 is a process explanatory diagram of the manufacturing method according to the present invention, and FIG. 6 is a process explanatory diagram of the conventional technique. 10, 12, 30, 40...Permanent magnet, 14,
32, 42... Dice, 16, 36, 46... Rod, 18... Lower punch, 20... Upper punch, 2
2...Magnetic powder.
Claims (1)
磁力状態の時に磁場中で成形する第1の工程と、
その後、その磁場中成形品に時効処理を施し高保
磁力状態を出現させる第2の工程と、その時効処
理済みの高保磁力成形品に結合用の樹脂を含浸ま
たは浸漬して一体化する第3の工程を具備してお
り、前記第1の工程における配向磁場が永久磁石
を用いた磁気回路によつて与えられることを特徴
とする異方性ボンド磁石の製造方法。1. A first step of molding the 2-17-based rare earth magnetic powder in a magnetic field when it is in a low coercive force state before aging treatment;
After that, there is a second step in which the molded product is aged in a magnetic field to make it appear in a high coercive force state, and a third step is in which the aged high coercive force molded product is impregnated or immersed in a bonding resin and integrated. 1. A method for manufacturing an anisotropic bonded magnet, comprising the steps of: a magnetic circuit using a permanent magnet;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21236587A JPS6455814A (en) | 1987-08-26 | 1987-08-26 | Manufacture of anisotropic bonding magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21236587A JPS6455814A (en) | 1987-08-26 | 1987-08-26 | Manufacture of anisotropic bonding magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6455814A JPS6455814A (en) | 1989-03-02 |
JPH0419685B2 true JPH0419685B2 (en) | 1992-03-31 |
Family
ID=16621346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21236587A Granted JPS6455814A (en) | 1987-08-26 | 1987-08-26 | Manufacture of anisotropic bonding magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6455814A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0452580B1 (en) * | 1990-04-19 | 1999-06-23 | Seiko Epson Corporation | A resin bound magnet and its production process |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58157118A (en) * | 1982-03-12 | 1983-09-19 | Seiko Epson Corp | Manufacture of resin-bonded type rare earth cobalt magnet |
JPS5972703A (en) * | 1982-10-20 | 1984-04-24 | Tohoku Metal Ind Ltd | Molding device of ferrite slurry in magnetic field |
-
1987
- 1987-08-26 JP JP21236587A patent/JPS6455814A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58157118A (en) * | 1982-03-12 | 1983-09-19 | Seiko Epson Corp | Manufacture of resin-bonded type rare earth cobalt magnet |
JPS5972703A (en) * | 1982-10-20 | 1984-04-24 | Tohoku Metal Ind Ltd | Molding device of ferrite slurry in magnetic field |
Also Published As
Publication number | Publication date |
---|---|
JPS6455814A (en) | 1989-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7740714B2 (en) | Method for preparing radially anisotropic magnet | |
JPS59211549A (en) | Adhered rare earth element-iron magnet | |
JP2911017B2 (en) | Manufacturing method of radial anisotropic rare earth sintered magnet | |
EP1180772A2 (en) | Anisotropic magnet and process of producing the same | |
JPH0419685B2 (en) | ||
JP3538762B2 (en) | Method for producing anisotropic bonded magnet and anisotropic bonded magnet | |
JP2000182867A (en) | Anisotropically bonded magnet, manufacture thereof, and press apparatus | |
JPH0559572B2 (en) | ||
JP3651098B2 (en) | Manufacturing method of long radial anisotropic ring magnet | |
JP2002057014A (en) | Anisotropic magnet, its manufacturing method, and motor using the same | |
JP3051906B2 (en) | Rare earth magnet | |
JP2952914B2 (en) | Manufacturing method of anisotropic bonded magnet | |
JP2916879B2 (en) | Manufacturing method of radially oriented magnet | |
JPH1174143A (en) | Method of molding magnetic powder | |
JPH04112504A (en) | Manufacture of pare-earth magnet | |
JPH03235311A (en) | Manufacture of anisotropic plastic magnet | |
JP2763259B2 (en) | Manufacturing method of radial anisotropic rare earth magnet | |
JPH0626169B2 (en) | Method and apparatus for forming rare earth magnet in magnetic field | |
JPH0786070A (en) | Manufacture of bond magnet | |
JPS60931B2 (en) | Anisotropic magnet manufacturing method and manufacturing device | |
JP3182979B2 (en) | Anisotropic magnet, manufacturing method and manufacturing apparatus | |
JPH09148165A (en) | Manufacture of radially anisotropic bonded magnet and bonded magnet | |
JPS63310356A (en) | Cylindrical permanent magnet | |
JPH0626162B2 (en) | Method for manufacturing C-type anisotropic resin bonded magnet | |
JPH0997730A (en) | Manufacture of sintered permanent magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |