[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0450725B2 - - Google Patents

Info

Publication number
JPH0450725B2
JPH0450725B2 JP62226951A JP22695187A JPH0450725B2 JP H0450725 B2 JPH0450725 B2 JP H0450725B2 JP 62226951 A JP62226951 A JP 62226951A JP 22695187 A JP22695187 A JP 22695187A JP H0450725 B2 JPH0450725 B2 JP H0450725B2
Authority
JP
Japan
Prior art keywords
magnetic field
coercive force
bonded
powder
inorganic adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62226951A
Other languages
Japanese (ja)
Other versions
JPS6469002A (en
Inventor
Hirofumi Nakano
Masakuni Kamya
Kazuo Matsui
Masanori Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP62226951A priority Critical patent/JPS6469002A/en
Publication of JPS6469002A publication Critical patent/JPS6469002A/en
Publication of JPH0450725B2 publication Critical patent/JPH0450725B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、無機材質系接着剤を用いて磁石粉体
を結合したボンド磁石の製造方法に関し、更に詳
しくは、時効処理前の低保磁力状態にある2−17
系希土類磁石粉体と無機材質系接着剤とを混練し
て磁場中でプレス成形を行い、その後に時効処理
を施し結合固化するボンド磁石の製造方法に関す
るものである。 [従来の技術] 希土類磁石粉体を無機材質系接着剤により結合
固化した永久磁石は従来公知であり、高エネルギ
ー積を生じさせるため一般には磁場中で圧縮成形
することによつて製造されている(例えば特開昭
59−136908号公報参照)。 このような無機接着剤結合型磁石は、樹脂結合
型磁石に比べて圧縮強度や耐熱性が高く、寸法精
度が出し易く、また形状の自由度が大きい等の利
点があり、近年急速に様々な用途で使用されつつ
ある。 従来の無機接着剤結合型の希土類磁石の製造
は、例えば第2図に示すように行われていた。先
ず原料である合金を粉砕し成形して焼結した後そ
のまま時効処理を行う。そして最終製品として得
られる高保磁力を有するこの合金を粉砕した後、
得られた粉体と無機材質系接着剤とを混練する。
次に粉末成形磁場プレス装置を用い金型中で成形
し、金型から取り出し加熱固化する方法である。 [発明が解決しようとする問題点] 磁場中で成形を行う時に磁石粉体を十分に配向
させるためには、印加する磁場の強さは素材であ
る磁石粉体の保磁力の4〜5倍以上が必要である
と言われている。このため従来技術において、例
えばSm2Co17系のボンド磁石の場合には、成形時
に40〜50kOe以上の強い磁場を印加しなければな
らない。 しかし現在広く用いられている磁場プレス装置
において発生させ得る磁場の強さは磁極間隔や成
形体の寸法などにより大きく影響され、上記の値
を満足できない(一般に製造ラインで印加可能な
磁場は15kOe程度である)。つまり実際に行われ
ている磁場中プレス成形では十分な配向磁場を印
加できず、成形体に十分な磁気異方性を与えるこ
とができなかつた。 このため従来の無機接着剤結合型希土類磁石
は、圧縮強度や耐熱性には優れていたものの、素
材本来のもつ磁気特性を十分に引き出すことがで
きなかつた。 本発明の目的は、上記のような従来技術の欠点
を解消し、比較的小さな配向磁場しか印加できな
い状態でも十分な磁気異方性を与えることがで
き、そのため従来の無機接着剤結合型磁石のもつ
高い圧縮強度や耐熱性等の長所に加えて、角形性
がよく(BH)maxが高く、より一層磁気特性を
向上させることができるボンド磁石の製造方法を
提供することにある。 [問題点を解決するための手段] 上記のような目的を達成することのできる本発
明は、時効処理する以前の保磁力が6kOe以下の
2−17系希土類磁石粉体と、無機材質系接着剤と
を混練し、磁場中でプレス成形した後、時効処理
して高保磁力を発現させ結合固化するようにした
ボンド磁石の製造方法である。 原料となる2−17系の希土類磁石粉体は、R2
TM17(但し、RはYを含むSm,Ce,Pr,Nd等
の希土類元素の1種または2種以上、TMはFe,
Co,Ni等の遷移金属元素の1種または2種以上)
で表される組成を主成分とするものである。この
ような原料は通常、所定の組成を有する合金を粉
砕した後、一定の形状に成形し焼結し、また必要
があればそれを所定の条件で溶体化処理すること
によつて得られる。 2−17系希土類磁石は、時効処理により析出硬
化が起こり高保磁力が出現する。本発明はこの現
象を巧みに利用しているものである。 第1図に示すように本発明では上記のような原
料焼結体を先ず粉砕する。これにより得られた磁
石粉体は時効処理前であり6kOe以下の低保磁力
状態である。このような低保磁力の磁石粉体を使
用するのは、本発明者等が磁場成形前の磁石粉体
の保磁力と時効処理後のボンド磁石の磁気特性の
関係について種々の実験を行つた結果、保磁力が
6kOe以下の磁石粉体を用いてボンド磁石を作製
すれば、本発明法の方が従来法により得られた同
じ保磁力を有するボンド磁石に比べて極めて磁気
特性、特にBrと(BH)maxが良好になることを
見出したことによる。 そして無機材質系接着剤を使用し、それと前記
磁石粉体とを混合する。ここで無機材質系接着剤
としては、 結合剤のみ 結合剤と硬化剤の組み合わせ 結合剤と骨剤の組み合わせ 結合剤と硬化剤と骨剤の組み合わせ がある。無機材質系接着剤の配合量は、磁石粉体
に対して2重量%以上とする。2重量%未満では
結合力が弱くボンド磁石としての強度が得られな
いからである。なお30重量%を超えると磁気特性
が大幅に低下してしまうため好ましくない。 結合剤は例えばアルカリ金属ケイ酸塩、リン酸
塩、ホウ酸塩、コロイダルシリカから選ばれる1
種または2種以上である。これらを用いる理由
は、有機高分子接着剤に比べて耐熱性が非常に良
好で、そのため高温においても強い結合力を保ち
磁気的な特性の変化が非常に少ないし、不燃性で
酸化され難いため耐老化性、耐久性にすぐれ耐薬
品性も良く、接着強さも大きいためである。しか
し気密性や耐水性の点で問題がある場合には、そ
れを改善するため硬化剤として酸化亜鉛、マグネ
シア、シリカなどから選ばれる1種または2種以
上を加えたり、更に接着強さや耐熱性を向上させ
るため骨剤としてアルミナ、ジルコニア、チタニ
アなどから選ばれる1種または2種以上を加える
のが好ましい。 次にこの混練物を磁場中でプレス成形し、成形
された形状を保持したまま時効処理を行つて高い
保磁力を出現させ同時に結合固化処理するのであ
る。 [作用] 本発明では成形時の磁石粉体の保磁力は6kOe
以下と低い状態にあるから、比較的小さな磁場で
も、即ち一般に製造ラインで用いられているよう
な磁場プレス装置を用いても十分な配向がなされ
る。そしてその状態のまま時効処理が施されると
高保磁力が発現するとともに、磁石粉体と無機材
質系接着剤とが結合固化するため、高い磁石特性
を発生させることができる。 また結合固化後は、従来の無機接着剤結合型磁
石と同様、高い圧縮強度や耐熱性が得られる。 [実施例 1] 溶体化処理後、時効処理していないSm2Co17
合金を粉砕して平均粒径200μmの粉体とし、これ
に無機材質系接着剤としてボンド・エツクス86
(商品名:日産化学(株)製)を10重量%加えて混練
した。この無機材質系接着剤は、主としてアルカ
リ金属ケイ酸塩とアルミナを含んでいる。この混
練品を磁場プレス装置の金型中に充填し8kOeの
磁場を印加しながらプレス成形した。そして得ら
れた成形体について、真空中で800℃で1時間の
時効処理を施し、無機材質系接着剤と磁石粉体と
を固化させた(本発明品)。 また比較のため従来法でも試料を作成した。こ
れは溶体化処理後、800℃で1時間の時効処理し
たSm2Co17系合金を粉砕して平均粒径200μmの粉
体とし、これに上記と同じ無機材質系接着剤を混
練した。この混練品を磁場プレス装置の同じ金型
中に充填し8kOeの磁場を印加しながらプレス成
形した。次に得られた成形体を、真空中にて800
℃で1時間熱処理し、無機材質系接着剤と磁石粉
体とを固化させた(従来品)。 このようにして得られた磁石の磁気特性を第1
表に示す。
[Industrial Application Field] The present invention relates to a method for manufacturing a bonded magnet in which magnetic powder is bonded using an inorganic adhesive, and more specifically, the present invention relates to a method for manufacturing a bonded magnet in which magnetic powder is bonded using an inorganic adhesive.
The present invention relates to a method for manufacturing a bonded magnet, in which rare earth magnet powder and an inorganic adhesive are kneaded, press-molded in a magnetic field, and then subjected to an aging treatment to be bonded and solidified. [Prior Art] Permanent magnets made by bonding and solidifying rare earth magnet powder with an inorganic adhesive are conventionally known, and are generally produced by compression molding in a magnetic field in order to generate a high energy product. (For example, Tokukai Sho
59-136908). These inorganic adhesive-bonded magnets have advantages such as higher compressive strength and heat resistance, easier dimensional accuracy, and greater freedom of shape than resin-bonded magnets, and have rapidly become popular in recent years. It is being used for various purposes. Conventional inorganic adhesive bonded rare earth magnets have been manufactured, for example, as shown in FIG. First, the raw material alloy is crushed, shaped and sintered, and then subjected to aging treatment. After pulverizing this alloy with high coercive force obtained as a final product,
The obtained powder and an inorganic adhesive are kneaded.
Next, it is molded in a mold using a powder molding magnetic field press device, and then taken out from the mold and heated to solidify. [Problems to be solved by the invention] In order to sufficiently orient the magnetic powder when molding is performed in a magnetic field, the strength of the applied magnetic field must be 4 to 5 times the coercive force of the magnetic powder that is the material. It is said that more than that is necessary. For this reason, in the prior art, for example, in the case of Sm 2 Co 17- based bonded magnets, a strong magnetic field of 40 to 50 kOe or more must be applied during molding. However, the strength of the magnetic field that can be generated by the currently widely used magnetic field press equipment is greatly affected by the magnetic pole spacing and the dimensions of the compact, and the above values cannot be satisfied (generally, the magnetic field that can be applied on the production line is about 15 kOe). ). In other words, in the press forming in a magnetic field that is actually carried out, it is not possible to apply a sufficient orienting magnetic field, and it is not possible to impart sufficient magnetic anisotropy to the molded product. For this reason, although conventional rare earth magnets bonded with inorganic adhesives have excellent compressive strength and heat resistance, they have not been able to fully utilize the magnetic properties inherent in the materials. The purpose of the present invention is to eliminate the drawbacks of the prior art as described above, to provide sufficient magnetic anisotropy even when only a relatively small orienting magnetic field can be applied, and to achieve this, it is possible to provide sufficient magnetic anisotropy even when only a relatively small orienting magnetic field can be applied. It is an object of the present invention to provide a method for manufacturing a bonded magnet that has good squareness (BH)max and can further improve magnetic properties in addition to advantages such as high compressive strength and heat resistance. [Means for Solving the Problems] The present invention, which can achieve the above objects, consists of a 2-17 rare earth magnet powder with a coercive force of 6 kOe or less before aging treatment, and an inorganic adhesive. This is a method for producing a bonded magnet, in which the bonded magnet is kneaded with a bonded magnet, press-molded in a magnetic field, and then subjected to aging treatment to develop a high coercive force and to bond and solidify. The raw material 2-17 rare earth magnet powder is R 2
TM 17 (However, R is one or more rare earth elements such as Sm, Ce, Pr, Nd, etc. including Y, TM is Fe,
One or more transition metal elements such as Co, Ni, etc.)
The main component is the composition represented by: Such raw materials are usually obtained by pulverizing an alloy having a predetermined composition, shaping it into a predetermined shape, sintering it, and, if necessary, subjecting it to solution treatment under predetermined conditions. 2-17 rare earth magnets undergo precipitation hardening due to aging treatment and develop a high coercive force. The present invention takes advantage of this phenomenon. As shown in FIG. 1, in the present invention, the raw material sintered body as described above is first pulverized. The magnet powder thus obtained has a low coercive force of 6 kOe or less before aging treatment. The reason for using such low coercive force magnet powder is that the present inventors conducted various experiments on the relationship between the coercive force of magnet powder before magnetic field forming and the magnetic properties of bonded magnets after aging treatment. As a result, the coercive force
If a bonded magnet is manufactured using magnet powder of 6 kOe or less, the method of the present invention has much better magnetic properties, especially Br and (BH)max, than a bonded magnet with the same coercive force obtained by the conventional method. This is due to the fact that it was found to be good. Then, an inorganic adhesive is used and mixed with the magnetic powder. Here, inorganic adhesives include only a binder, a combination of a binder and a hardening agent, a combination of a binder and an aggregate, and a combination of a binder, a hardener, and an aggregate. The blending amount of the inorganic adhesive is 2% by weight or more based on the magnet powder. This is because if it is less than 2% by weight, the bonding force is weak and the strength as a bonded magnet cannot be obtained. It should be noted that if it exceeds 30% by weight, the magnetic properties will be significantly reduced, which is not preferable. The binder is selected from e.g. alkali metal silicates, phosphates, borates, colloidal silica.
species or two or more species. The reason for using these is that they have very good heat resistance compared to organic polymer adhesives, so they maintain strong bonding strength even at high temperatures, have very little change in magnetic properties, and are nonflammable and oxidized. This is because it has excellent aging resistance and durability, good chemical resistance, and high adhesive strength. However, if there are problems with airtightness or water resistance, one or more hardening agents selected from zinc oxide, magnesia, silica, etc. may be added to improve adhesive strength and heat resistance. In order to improve this, it is preferable to add one or more selected from alumina, zirconia, titania, etc. as an aggregate. Next, this kneaded material is press-molded in a magnetic field, and subjected to an aging treatment while maintaining the molded shape to develop a high coercive force, and at the same time undergo a bonding and solidification treatment. [Function] In the present invention, the coercive force of the magnet powder during molding is 6 kOe.
Since the magnetic field is in a low state of less than or equal to 1, sufficient orientation can be achieved even with a relatively small magnetic field, that is, even when using a magnetic field pressing device such as that generally used on a manufacturing line. When aging treatment is performed in this state, high coercive force is developed, and the magnet powder and inorganic adhesive are bonded and solidified, so that high magnetic properties can be generated. Furthermore, after bonding and solidification, high compressive strength and heat resistance can be obtained, similar to conventional inorganic adhesive bonded magnets. [Example 1] After solution treatment, an unaged Sm 2 Co 17 alloy was ground into powder with an average particle size of 200 μm, and Bond X86 was applied as an inorganic adhesive to this powder.
(trade name: manufactured by Nissan Chemical Co., Ltd.) was added in an amount of 10% by weight and kneaded. This inorganic adhesive mainly contains an alkali metal silicate and alumina. This kneaded product was filled into a mold of a magnetic field press machine and press-molded while applying a magnetic field of 8 kOe. The obtained molded body was then subjected to aging treatment at 800° C. for 1 hour in a vacuum to solidify the inorganic adhesive and the magnet powder (product of the present invention). For comparison, samples were also prepared using the conventional method. After solution treatment, an Sm 2 Co 17 alloy that had been aged at 800° C. for 1 hour was ground into a powder with an average particle size of 200 μm, and the same inorganic adhesive as above was kneaded into the powder. This kneaded product was filled into the same mold of a magnetic field press machine and press-molded while applying a magnetic field of 8 kOe. Next, the obtained molded body was heated to 800°C in a vacuum.
Heat treatment was performed at ℃ for 1 hour to solidify the inorganic adhesive and the magnet powder (conventional product). The magnetic properties of the magnet obtained in this way are
Shown in the table.

【表】 本発明品では、成形時の磁石粉体の保磁力が従
来品と比べて小さいため小さな磁場でも十分に配
向がなされ、その状態のまま磁石粉体と無機材質
系接着剤とが結合固化し、保磁力が大きくなつて
もそのままの配向が保たれているため、磁気特性
が良好になる。 [実施例 2] 溶体化処理後、時効処理していないSm2Co17
合金を粉砕して平均粒径200μmの粉体とし、これ
と第2表に示す無機材質系接着剤を混練した。こ
の混練品を磁場プレス装置の金型中に充填し磁場
を印加しながらプレス成形した。そして得られた
成形体について、真空中800℃で1時間の時効処
理を施し、無機材質系接着剤と磁石粉体とを結合
固化させた。 また比較のため接着剤としてエポキシ樹脂を用
いたものも同様の方法で製作した。 得られた各永久磁石の接着剤の種類とその量、
並びに180℃×1000時間における不可逆減磁率を
第2表に示す。
[Table] In the product of the present invention, the coercive force of the magnet powder during molding is smaller than that of conventional products, so even a small magnetic field is sufficient to achieve orientation, and the magnet powder and inorganic adhesive are bonded in that state. Even when solidified and the coercive force increases, the orientation is maintained, resulting in good magnetic properties. [Example 2] After solution treatment, an unaged Sm 2 Co 17 alloy was ground into powder with an average particle size of 200 μm, and this was kneaded with an inorganic adhesive shown in Table 2. This kneaded product was filled into a mold of a magnetic field press device and press-molded while applying a magnetic field. The obtained molded body was then subjected to aging treatment at 800° C. for 1 hour in a vacuum to bond and solidify the inorganic adhesive and the magnet powder. For comparison, a sample using epoxy resin as an adhesive was also fabricated using the same method. The type and amount of adhesive for each permanent magnet obtained,
Table 2 also shows the irreversible demagnetization rate at 180°C for 1000 hours.

【表】 無機材質系接着剤は高温下でも劣化や接着力の
低下が生じないため配向は乱れない。その結果、
本発明品は樹脂結合型磁石に比べて不可逆減磁が
大幅に少なくなつており、温度に対する磁気特性
の安定性が格段に向上する。 また第3表に、本発明品と比較例について、
200℃の恒温槽に1000時間放置し、放置前と放置
後に圧縮強さを測定した結果を示す。
[Table] Inorganic adhesives do not deteriorate or lose adhesive strength even at high temperatures, so orientation is not disturbed. the result,
The product of the present invention has significantly less irreversible demagnetization than resin-bonded magnets, and the stability of magnetic properties against temperature is significantly improved. Table 3 also shows the products of the present invention and comparative examples.
The compressive strength was measured before and after leaving the sample in a constant temperature bath at 200°C for 1000 hours.

【表】 本発明品の圧縮強さは高温中に放置しておいて
もあまり低下しない。このように本発明品は樹脂
結合型磁石に比べて機械的強度の面でも温度に対
して安定性がある。 [発明の効果] 本発明は上記のように時効処理により析出硬化
する磁石粉体を析出硬化前の低保磁力状態の時に
無機材質系接着剤と混練し、磁場中でプレス成形
し、その形状を保持したまま時効処理して析出硬
化させ高保磁力を出現させるとともに磁石粉体と
無機材質系接着剤とを結合一体化させる方法であ
るから、従来同様に圧縮強度や耐熱性に富む磁石
が得られることは無論のこと、従来技術では実現
できなかつた高配向度が従来よりも小さな磁場に
より行なえるという極めて優れた効果を有するも
のである。 従つて本発明において従来技術と同じ大きさの
磁場を作用させれば、更に大幅な磁気特性の向上
を図ることができる効果が生じる。
[Table] The compressive strength of the products of the present invention does not decrease much even when left at high temperatures. As described above, the product of the present invention is more stable against temperature than resin-bonded magnets in terms of mechanical strength. [Effects of the Invention] As described above, in the present invention, magnet powder that undergoes precipitation hardening through aging treatment is kneaded with an inorganic adhesive in a low coercive force state before precipitation hardening, and then press-molded in a magnetic field. This method produces a high coercive force by aging through precipitation hardening while retaining the magnet powder, and also bonds and integrates the magnet powder and the inorganic adhesive, so it is possible to obtain magnets with high compressive strength and heat resistance, just like conventional methods. Of course, this method has an extremely excellent effect in that a high degree of orientation, which could not be achieved with conventional techniques, can be achieved with a smaller magnetic field than conventional techniques. Therefore, in the present invention, if a magnetic field of the same magnitude as in the prior art is applied, the effect of further improving the magnetic properties is produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法によるボンド磁石の製造工
程の一例を示す工程説明図、第2図は従来技術の
一例を示す工程説明図である。
FIG. 1 is a process explanatory diagram showing an example of the manufacturing process of a bonded magnet according to the method of the present invention, and FIG. 2 is a process explanatory diagram showing an example of the conventional technique.

Claims (1)

【特許請求の範囲】[Claims] 1 2−17系希土類磁石粉体を、時効処理する以
前の保磁力が6kOe以下の状態のときに無機材質
系接着剤と混練し、磁場中でプレス成形した後、
得られた成形体を時効処理して高保磁力を発現さ
せながら結合固化することを特徴とするボンド磁
石の製造方法。
1 2-17 rare earth magnet powder is kneaded with an inorganic adhesive when the coercive force is 6 kOe or less before aging treatment, and after press-forming in a magnetic field,
A method for producing a bonded magnet, which comprises subjecting the obtained molded body to an aging treatment and bonding and solidifying it while developing a high coercive force.
JP62226951A 1987-09-10 1987-09-10 Manufacture of bond magnet Granted JPS6469002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62226951A JPS6469002A (en) 1987-09-10 1987-09-10 Manufacture of bond magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62226951A JPS6469002A (en) 1987-09-10 1987-09-10 Manufacture of bond magnet

Publications (2)

Publication Number Publication Date
JPS6469002A JPS6469002A (en) 1989-03-15
JPH0450725B2 true JPH0450725B2 (en) 1992-08-17

Family

ID=16853173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62226951A Granted JPS6469002A (en) 1987-09-10 1987-09-10 Manufacture of bond magnet

Country Status (1)

Country Link
JP (1) JPS6469002A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4925481B2 (en) * 2009-07-01 2012-04-25 株式会社ソディック Wire cut electric discharge machine
CN104550944B (en) * 2013-10-11 2017-05-03 有研稀土新材料股份有限公司 Preparation method of composite rare earth magnetostriction material
CN111739725B (en) * 2020-07-10 2021-11-09 太原科技大学 Method and equipment for preparing anisotropic bonded magnet

Also Published As

Publication number Publication date
JPS6469002A (en) 1989-03-15

Similar Documents

Publication Publication Date Title
JPS60207302A (en) Rare earth element-iron magnet coupled with epoxy resin
JPH0450725B2 (en)
JPH056323B2 (en)
JPH05335120A (en) Anisotropic bonded manget manufacturing magnet powder coated with solid resin binder and manufacture thereof
JPS6112001B2 (en)
JPS6353201A (en) Production of permanent magnet material
JPH0559572B2 (en)
KR100201684B1 (en) Rare-earth magnet manufacturing method
JPS63308904A (en) Manufacture of bond magnet
JPH01310522A (en) Manufacture of resin-bonded type permanent magnet
JPH10199717A (en) Anisotropic magnet and its manufacturing method
JPH02109305A (en) Manufacture of polymer complex type rare earth magnet
JPS62261102A (en) Bonded magnet for starter motor
JPH0444402B2 (en)
JPH02155203A (en) Manufacture of polymer composite type rare earth magnet
JPH0256904A (en) Manufacture of resin-bound rare-earth magnet
JPH06260360A (en) Production of rare-earth metal and iron-based magnet
JPS63146414A (en) Manufacture of bonded magnet
JPS63155603A (en) Manufacture of bond magnet
WO2015003849A1 (en) Anisotropic rare earths-free plastic-bonded high-performance permanent magnet having nanocristalline structure, and method for production thereof
JPS6355908A (en) Manufacture of rare-earth resin magnet
JPH0531805B2 (en)
JPH03129802A (en) Resin bonded rare-earth magnet
JPH0715124B2 (en) Method for producing magnetic composite material having excellent magnetic properties
JPH0544161B2 (en)