[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH11279639A - Production of steel plate for high strength linepipe excellent in hic resistance - Google Patents

Production of steel plate for high strength linepipe excellent in hic resistance

Info

Publication number
JPH11279639A
JPH11279639A JP8354198A JP8354198A JPH11279639A JP H11279639 A JPH11279639 A JP H11279639A JP 8354198 A JP8354198 A JP 8354198A JP 8354198 A JP8354198 A JP 8354198A JP H11279639 A JPH11279639 A JP H11279639A
Authority
JP
Japan
Prior art keywords
less
steel sheet
steel
cooling
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8354198A
Other languages
Japanese (ja)
Other versions
JP3941211B2 (en
Inventor
Shigeru Endo
茂 遠藤
Nobuyuki Ishikawa
信行 石川
Minoru Suwa
稔 諏訪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP08354198A priority Critical patent/JP3941211B2/en
Publication of JPH11279639A publication Critical patent/JPH11279639A/en
Application granted granted Critical
Publication of JP3941211B2 publication Critical patent/JP3941211B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for economically and stably producing a steel excellent in HIP resistance which is a high strength material of X70 and X80 as well as X65 in the API standard. SOLUTION: A steel contg., by weight, 0.03 to 0.08% C, 0.05 to 0.5% Si, 1 to 1.8% Mn, <=0.01% P, <=0.002% S, 0.02 to 0.05% Nb, 0.005 to 0.02% Ti, 0.01 to 0.07% Al and 0.0005 to 0.0025% Ca, in which Ceq>=0.28 is also satisfied, and the balance Fe with inevitable impurities, and in which the total Fe+MnO in the slag at the time of ladle refining furthermore satisfies 0.5 to 3% is heated to 1000 to 1200 deg.C to be subjected to hot rolling and is subjected to accelerated cooling till the steel plate surface temp. reaches <=500 deg.C, thereafter, the cooling is once stopped, and it is recuperated till the steel plate surface temp. reaches >=500 deg.C. Then, it is again subjected to accelerated cooling at the steel plate average cooling rate of 3 to 50 deg.C/sec to the steel plate surface temp. of <=600 deg.C, where Ceq=C%+Mn%/6+(Cu%+Ni%)/15+(Cr%+Mo%+V%)/5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、厚板ミルや熱延ミ
ルにて製造され、UOE成形、プレスべンド成形、ロー
ル成形などにより管状に成形され、サブマージドアーク
溶接や電縫溶接などにより溶接接合されて、原油や天然
ガスを輸送するためのラインパイプとして利用される鋼
板の製造方法に係り、耐水素誘起割れ性に優れた、強度
レべルがAPI規格X65グレード以上のラインパイプ
の素材として使用される鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a tube by hot plate mill or hot rolling mill, forming the tube by UOE forming, press bend forming, roll forming, etc., and by submerged arc welding or electric resistance welding. The present invention relates to a method for manufacturing a steel sheet which is welded and used as a line pipe for transporting crude oil and natural gas, and which is excellent in hydrogen-induced cracking resistance and has a strength level of API standard X65 grade or higher. The present invention relates to a method for manufacturing a steel sheet used as a material.

【0002】[0002]

【従来の技術】一般に、硫化水素を含む原油や天然ガス
の輸送に用いられるラインパイプには、強度・靭性・溶
接性などパイプラインとして必要な特性の他に、耐水素
誘起割れ性(耐HIC性)や耐応力腐食割れ性(耐SS
CC性)などのいわゆる耐サワー性能が要求される。こ
こでHICは、腐食反応により生成した水素イオンが鋼
表面に吸着し、原子状の水素として鋼内部に侵入、鋼中
のMnSなどの非金属介在物や硬い第2相組織のまわり
に拡散・集積し、その内圧により割れを生ずるものとさ
れている。このため、HICの発生を防ぐために以下の
方法がこれまでに考案されている。 (1)鋼中のS含有量を下げるとともに、CaやREM
などを適量添加することにより、長く伸展したMnSの
生成を抑制し、応力集中の小さい微細に分散した球状の
介在物に形態を変えて割れの発生・伝播を抑制する(例
えば、特開昭54−110119号公報)。 (2)中央偏析部での割れについては、起点となりうる
島状マルテンサイトの生成を抑制するとともに、割れの
伝播経路となりやすいマルテンサイトやべイナイトなど
の硬化組織の生成を抑制するために、鋼中のC、Mn、
Pなど偏析傾向の高い元素の含有量を低減したり、圧延
前のスラブ加熱段階で合金元素の偏析を解消するための
均熱処理を施す、あるいは圧延後の冷却時の変態途中で
のCの拡散による硬化組織の生成を防ぐために加速冷却
を施す(例えば、特開昭61−60866号公報、特開
昭61−165207号公報など)。
2. Description of the Related Art In general, line pipes used for transporting crude oil and natural gas containing hydrogen sulfide have properties required for pipelines such as strength, toughness and weldability, as well as hydrogen-induced cracking resistance (HIC resistance). Resistance) and stress corrosion cracking resistance (SS resistance)
CC performance) is required. Here, the HIC is that hydrogen ions generated by the corrosion reaction are adsorbed on the steel surface, penetrate into the steel as atomic hydrogen, and diffuse around the non-metallic inclusions such as MnS in the steel and the hard second phase structure. It accumulates and it is said that the internal pressure causes cracks. For this reason, the following methods have been devised so far in order to prevent the occurrence of HIC. (1) While reducing the S content in steel, Ca and REM
By adding an appropriate amount of MnS or the like, the formation of long-extended MnS is suppressed, and the generation and propagation of cracks is suppressed by changing the form into finely dispersed spherical inclusions with low stress concentration (see, for example, No. 110119). (2) Regarding cracks at the central segregation part, steel is required to suppress the formation of island-like martensite which can be a starting point and to suppress the formation of hardened structures such as martensite and bainite which are likely to be crack propagation paths. C, Mn,
Reduce the content of elements with high segregation tendency such as P, apply soaking to eliminate segregation of alloying elements in the slab heating stage before rolling, or diffuse C during transformation during cooling after rolling. In order to prevent the formation of a hardened structure due to the above, accelerated cooling is performed (for example, JP-A-61-60866, JP-A-61-165207, etc.).

【0003】(3)焼入れ・焼戻しなどの熱処理を施し
たり、圧延仕上温度をオーステナイトの再結晶温度以上
とするなど、割れ感受性の低いミクロ組織を得る(特開
昭54−12782号公報、特開昭62−7819号公
報、特開平6−73450号公報)。 (4)鋼中へのCuの添加により、表面に保護膜を形成
して、鋼中への水素侵入を抑制する(特開昭52−11
1815号公報)。
(3) A microstructure having low crack susceptibility is obtained, for example, by performing heat treatment such as quenching and tempering, or by setting the finishing temperature of rolling to be equal to or higher than the recrystallization temperature of austenite (Japanese Patent Application Laid-Open No. 54-12782, JP-A-62-7819, JP-A-6-73450). (4) By adding Cu to steel, a protective film is formed on the surface to suppress hydrogen intrusion into steel (Japanese Patent Laid-Open No. 52-11 / 1982)
No. 1815).

【0004】これらの方法を採用することにより耐HI
C性は向上し、耐サワー性を必要とするラインパイプも
API規格X65グレードまで大量生産されるようにな
った。
By adopting these methods, HI resistance can be improved.
The C property has been improved, and line pipes requiring sour resistance have been mass-produced up to API standard X65 grade.

【0005】しかしながら、近年になって輸送効率の増
大や敷設費用低減のために、より高強度の鋼管に対する
要求が高まり、サワー環境で使用されるラインパイプに
もX80グレードまでの高強度化が要求される可能性が
でてきた。しかしながら、HICは強度の上昇とともに
発生しやすくなるため、上記(1)〜(4)の方法では
完全にHICの発生を抑制することができなくなってき
た。このような高強度材になると、上記(1)の形態制
御を行った介在物からも割れが発生するようになり、
(2)の中央偏析対策を施した中心部以外の部分で割れ
が発生するようになる。また(3)の焼入れ焼戻し処理
や再結晶温度域仕上による組織制御はラインパイプの大
量生産にはコスト・能率の面から不適当であるし、充分
な低温靭性も得にくい。さらに(4)のCu被膜の効果
も、pHの低い環境ではその効果が期待できず、実際に
pHが約3の硫化水素を飽和させた5%NaCl+0.
5%CH3 COOH水溶液(通称NACE溶液)では、
被膜の効果が得られていない。
However, in recent years, there has been an increasing demand for higher-strength steel pipes in order to increase transportation efficiency and reduce laying costs, and line pipes used in sour environments have also been required to have higher strength up to X80 grade. The possibility has come out. However, since HIC is likely to occur as the strength increases, the methods (1) to (4) cannot completely suppress the occurrence of HIC. When such a high-strength material is used, cracks also occur from the inclusions subjected to the shape control of (1) above,
Cracks occur in portions other than the central portion where the countermeasures against the central segregation of (2) are taken. In addition, the structure control by the quenching and tempering treatment or the recrystallization temperature range finish in (3) is inappropriate for mass production of line pipes from the viewpoint of cost and efficiency, and it is difficult to obtain sufficient low-temperature toughness. Furthermore, the effect of the Cu coating of (4) cannot be expected in an environment with a low pH, and 5% NaCl + 0.
In a 5% CH 3 COOH aqueous solution (so-called NACE solution),
The effect of the coating has not been obtained.

【0006】このような課題に対応すべく最近、耐サワ
ー性を有するX80グレードのラインパイプ用鋼板の製
造方法がいくつか開示されている。その骨子は、低S・
Ca添加により介在物の形態制御を行いつつ、低C、低
Mnとして中央偏析を抑制し、それに伴う強度低下をC
r添加(特開平5−9575号公報)、Cr−Mo添加
(特開平5−271766号公報、特開平7−1095
19号公報)、Ni‐Cr−Mo添加(特開平7−17
3536号公報)と圧延後の加速冷却で補うというもの
である。
In order to cope with such a problem, recently, several methods for producing a sour-resistant X80 grade linepipe steel plate have been disclosed. The essence is low S
While controlling the morphology of inclusions by adding Ca, the center segregation is suppressed as low C and low Mn, and the accompanying decrease in strength is reduced by C.
addition of r (JP-A-5-9575), addition of Cr-Mo (JP-A-5-271766, JP-A-7-1095)
No. 19), Ni-Cr-Mo addition (Japanese Unexamined Patent Publication No.
No. 3536) and accelerated cooling after rolling.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記し
たX80の製造方法に関係する製造技術(特開平5−9
575号公報、特開平5−271766号公報、特開平
7−109519号公報、特開平7−173536号公
報)は、いずれも中央偏析部のHIC発生防止方法であ
って、中央偏析部以外の部分で発生するHICの防止に
ついては、具体的な割れ対策とはなっていない。すなわ
ち、サワー環境で使用される鋼管の強度水準が上昇する
と、素材である鋼板の介在物の形態制御と中央偏析部の
組織制御を行なっても、HICが発生しやすくなり、特
に加速冷却を施した材料では表面近くの硬さが上昇し、
HICが発生しやすくなる。このような表面近くのHI
Cの発生防止が大きな課題となる。
However, a manufacturing technique (Japanese Unexamined Patent Publication No. 5-9) related to the above-described method of manufacturing X80.
575, JP-A-5-271766, JP-A-7-109519, and JP-A-7-173536) are methods for preventing the occurrence of HIC in the central segregation part, and the method for preventing the occurrence of HIC in the central segregation part The prevention of HIC generated in the above is not a specific measure against cracking. In other words, when the strength level of the steel pipe used in the sour environment increases, HIC is likely to occur even if the morphology control of the inclusions of the steel sheet as the material and the structure control of the central segregation part are performed. The hardness of the material near the surface increases,
HIC is likely to occur. HI near such a surface
Preventing the generation of C is a major issue.

【0008】本発明の目的は、API規格X65に加え
てX70,X80といった高強度材で、耐HIC性に優
れた鋼材を経済的に安定して製造する方法を提供するこ
とにある。
An object of the present invention is to provide a method for economically and stably producing a steel material having high strength such as X70 and X80 and excellent HIC resistance in addition to API standard X65.

【0009】[0009]

【課題を解決するための手段】前記課題を解決し目的を
達成するために、本発明は以下に示す手段を用いてい
る。 (1)本発明の製造方法は、重量%で、C:0. 03〜
0.08%と、Si:0.05〜0.5%と、Mn:1
〜1.8%と、P:0.01%以下と、S:0.002
%以下と、Nb:0.005〜0.05%と、Ti:
0.005〜0.02%と、Al:0.01〜0.07
%と、Ca:0.0005〜0.004%とを含有し、
かつ炭素当量:Ceq≧0.28%であり、残部Fe及
び不可避的不純物からなり、さらに取鍋精錬時のスラグ
のトータルFe+MnOが0.5〜3%を満足する鋼板
を製造する方法において、該鋼を1000〜1200℃
に加熱して熱間圧延する工程と、熱間圧延された鋼板
を、鋼板表面温度で500℃以下となるまで加速冷却し
た後、一旦冷却を中断し、鋼板表面温度が500℃以上
になるまで復熱させる工程と、鋼板表面温度が500℃
以上になるまで復熱させた鋼板を、再び600℃以下の
鋼板表面温度まで、3〜50℃/秒の鋼板平均冷却速度
で加速冷却する工程と、 を備えたことを特徴とする、
耐HIC性に優れた高強度ラインパイプ用鋼板の製造方
法である。
In order to solve the above problems and achieve the object, the present invention uses the following means. (1) In the production method of the present invention, C: 0.03-
0.08%, Si: 0.05 to 0.5%, Mn: 1
~ 1.8%, P: 0.01% or less, S: 0.002
% Or less, Nb: 0.005 to 0.05%, and Ti:
0.005 to 0.02%, Al: 0.01 to 0.07
% And Ca: 0.0005 to 0.004%,
And a carbon equivalent: Ceq ≧ 0.28%, the balance being Fe and unavoidable impurities, and a method for producing a steel sheet in which the total Fe + MnO of slag at the time of ladle refining satisfies 0.5 to 3%. 1000-1200 ° C steel
Step of heating and hot rolling, and hot-rolled steel sheet, after accelerated cooling until the steel sheet surface temperature is 500 ℃ or less, temporarily suspend cooling, until the steel sheet surface temperature becomes 500 ℃ or more Reheating process and steel plate surface temperature 500 ℃
A step of accelerating and cooling the steel sheet that has been reheated to the above temperature again to a steel sheet surface temperature of 600 ° C. or less at an average cooling rate of the steel sheet of 3 to 50 ° C./sec.
This is a method for producing a high-strength linepipe steel sheet having excellent HIC resistance.

【0010】但し、炭素当量:Ceq=C%+Mn%/
6+(Cu%+Ni%)/15+(Cr%+Mo%+V
%)/5 (2)本発明の製造方法は、鋼成分として、重量%でさ
らに、Cu:0.5%以下、Ni:0.5%以下、C
r:0.5%以下、Mo:0.5%以下、及びV:0.
1%以下の群から選択された1種または2種以上を含有
することを特徴とする、上記(1)に記載の耐HIC性
に優れた高強度ラインパイプ用鋼板の製造方法である。
However, carbon equivalent: Ceq = C% + Mn% /
6+ (Cu% + Ni%) / 15+ (Cr% + Mo% + V
%) / 5 (2) In the production method of the present invention, as a steel component, Cu: 0.5% or less, Ni: 0.5% or less, C
r: 0.5% or less, Mo: 0.5% or less, and V: 0.
The method for producing a high-strength linepipe steel sheet having excellent HIC resistance according to the above (1), comprising one or more selected from the group of 1% or less.

【0011】[0011]

【発明の実施の形態】本発明者らは、上記の課題を解決
すべく、添加元素と熱処理条件を変化させて種々の成分
系・ミクロ組織を有する母材を作成し、耐HIC性と強
度、靭性とを調べた。
BEST MODE FOR CARRYING OUT THE INVENTION In order to solve the above-mentioned problems, the present inventors prepared base materials having various component systems and microstructures by changing additive elements and heat treatment conditions, and developed HIC resistance and strength. , And toughness.

【0012】その結果、添加元素量ならびに式(1)で
示される炭素当量、取鍋スラグのトータルFe+MnO
とを規定した鋼に間欠冷却型の加速冷却を行うことによ
り表層部の硬さの上昇を抑え、高強度と靭性、良好な耐
HIC性能が得られることが分かった。
As a result, the amount of the added element, the carbon equivalent represented by the formula (1), the total Fe + MnO of the ladle slag,
It has been found that by performing intermittent cooling type accelerated cooling on the steel defined as above, an increase in the hardness of the surface layer portion is suppressed, and high strength, toughness, and good HIC resistance are obtained.

【0013】 炭素当量:Ceq=C%+Mn%/6+(Cu%+Ni%)/15+(Cr% +Mo%+V%)/5 …(1) 以上の知見に基づき、本発明者らは、特定量の化学成分
を有し、取鍋スラグのトータルFe+MnOを規定した
鋼の熱間圧延条件、冷却中断、復熱工程を含む加速冷却
条件を一定範囲内に制御するようにして、耐HIC性に
優れた高強度ラインパイプ用鋼の製造方法を見出し、本
発明を完成させた。すなわち、本発明は、鋼組成及び製
造条件を下記範囲に限定することにより、耐HIC性に
優れたAPI規格X80グレードのラインパイプ用鋼板
を安価にかつ安定して製造する方法を提供することがで
きる。
Carbon equivalent: Ceq = C% + Mn% / 6 + (Cu% + Ni%) / 15+ (Cr% + Mo% + V%) / 5 (1) Based on the above findings, the present inventors have determined the specific amount Excellent in HIC resistance by controlling the hot rolling conditions of steel with the total Fe + MnO of ladle slag and the accelerated cooling conditions including the cooling interruption and recuperation steps within a certain range. The present inventors have found a method for producing a high-strength linepipe steel and completed the present invention. That is, the present invention provides a method for inexpensively and stably producing an API standard X80 grade linepipe steel sheet having excellent HIC resistance by limiting the steel composition and production conditions to the following ranges. it can.

【0014】以下に、本発明の成分添加理由、成分限定
理由、及び製造条件の限定理由について説明する。 (1)成分組成範囲 C:0.03〜0.08% Cは鋼の強化元素として必要でありX65からX80の
所定の強度を確保するためには0.03%以上の含有が
必要である。一方、0.08%を超える過剰なCの含有
は鋼板の靭性と耐HIC性の劣化を招くので0.08%
以下とする必要があり、溶接性や耐硫化物応力腐食割れ
性の観点からもC量の低減が望ましいため、上限は0.
08%である。 Si:0.05〜0.5% Siは脱酸のために添加され、0.05%未満では充分
な脱酸効果が得られず、一方0.5%を越えると靭性や
溶接性の劣化を引き起こすため、0.05〜0.5%で
ある。
The reasons for adding the components, the reasons for limiting the components, and the reasons for limiting the manufacturing conditions of the present invention are described below. (1) Component composition range C: 0.03 to 0.08% C is necessary as a strengthening element for steel, and in order to secure a predetermined strength of X65 to X80, the content of 0.03% or more is necessary. . On the other hand, excessive C content exceeding 0.08% causes deterioration of the toughness and HIC resistance of the steel sheet.
It is necessary to reduce the amount of C from the viewpoint of weldability and sulfide stress corrosion cracking resistance.
08%. Si: 0.05-0.5% Si is added for deoxidation. If it is less than 0.05%, a sufficient deoxidizing effect cannot be obtained, while if it exceeds 0.5%, toughness and weldability deteriorate. , It is 0.05 to 0.5%.

【0015】Mn:1〜1.8% Mnは鋼の強度および靭性の向上に有効な鋼の基本元素
として添加されるが、1%未満ではその効果が小さく、
また1.8%を越えると溶接性と耐HIC性が著しく劣
化するため、1〜1.8%である。
Mn: 1 to 1.8% Mn is added as a basic element of steel effective for improving the strength and toughness of steel.
On the other hand, if it exceeds 1.8%, the weldability and the HIC resistance are remarkably deteriorated, so that the content is 1 to 1.8%.

【0016】P:0.01%以下 本発明鋼の場合、Pは溶接性と耐HIC性とを劣化させ
る不純物元素であり極力低減することが望ましいが、過
度の脱Pはコスト上昇を招くため上限は0.01%であ
る。 S:0.002%以下 Caを添加してMnSからCaS系の介在物に形態制御
を行ったとしても、X80グレードの高強度材の場合に
は微細に分散したCaS系介在物も割れの起点となり得
るために、S含有量を0.002%以下に低減する必要
がある。
P: 0.01% or less In the case of the steel of the present invention, P is an impurity element deteriorating weldability and HIC resistance, and it is desirable to reduce P as much as possible. However, excessive removal of P causes a rise in cost. The upper limit is 0.01%. S: 0.002% or less Even if the form is controlled from MnS to CaS-based inclusions by adding Ca, in the case of a high-strength material of X80 grade, the finely dispersed CaS-based inclusions are also the starting points of cracking. Therefore, it is necessary to reduce the S content to 0.002% or less.

【0017】Nb:0.005〜0.05% Nbは圧延時や焼入れ時の粒成長を抑制することにより
ミクロ組織を微細化し、ラインパイプとして充分な靭性
を付与するために必要な成分である。0.005%以上
でその効果が顕著であり、0.05%を超えるとその効
果がほぼ飽和して溶接熱影響部の靭性を劣化させるた
め、0.005〜0.05%である。
Nb: 0.005 to 0.05% Nb is a component necessary for miniaturizing the microstructure by suppressing grain growth during rolling and quenching and imparting sufficient toughness as a line pipe. . The effect is remarkable at 0.005% or more, and when it exceeds 0.05%, the effect is almost saturated and the toughness of the heat affected zone is deteriorated.

【0018】Ti:0.005〜0.02% TiはTiNを形成してスラブ加熱時と焼入れ時の粒成
長を抑制し、結果としてミクロ組織の微細化をもたらし
て靭性を改善する効果があるが、その効果は0.005
%以上で現われ、0.02%を越えると逆に靭性の劣化
を引き起こすため、0.005〜0.02%である。 Al:0.01〜0.07% Alは脱酸剤として添加され、0.01%以上でその効
果が顕著であり、0.07%を超えると清浄度が低下し
て耐HIC性の劣化を引き起こすため、0.01〜0.
07%である。
Ti: 0.005 to 0.02% Ti forms TiN and suppresses grain growth during slab heating and quenching, resulting in an effect of improving microstructure and improving toughness. But the effect is 0.005
% Or more, and if it exceeds 0.02%, the toughness deteriorates conversely, so it is 0.005 to 0.02%. Al: 0.01 to 0.07% Al is added as a deoxidizing agent, and its effect is remarkable when it is 0.01% or more, and when it exceeds 0.07%, the cleanliness is reduced and the HIC resistance is deteriorated. Cause 0.01 to 0.
07%.

【0019】Ca:0.0005〜0.004% Caは硫化物系介在物の形態制御に不可欠な元素であ
り、0.0005%以上でその効果が現われ、0.00
4%を超えると効果が飽和し、逆に清浄度を低下させて
耐HIC性を劣化させるため、0.0005〜0.00
4%である。 炭素当量:Ceq≧0.28%,但し、炭素当量:Ce
q=C%+Mn%/6+(Cu%+Ni%)/15+
(Cr%+Mo%+V%)/5 炭素当量CeqはX65からX80としての充分な強度
を得るために0.28%以上が必要であるので、その下
限は0.28%である。その上限は特に限定しない。な
おCeqは次式で示される。
Ca: 0.0005% to 0.004% Ca is an element indispensable for controlling the form of sulfide inclusions, and its effect appears at 0.0005% or more.
If it exceeds 4%, the effect is saturated, and conversely, the cleanliness is reduced and the HIC resistance is deteriorated.
4%. Carbon equivalent: Ceq ≧ 0.28%, provided that carbon equivalent: Ce
q = C% + Mn% / 6 + (Cu% + Ni%) / 15+
(Cr% + Mo% + V%) / 5 Since the carbon equivalent Ceq needs to be 0.28% or more in order to obtain sufficient strength as X65 to X80, the lower limit is 0.28%. The upper limit is not particularly limited. Ceq is shown by the following equation.

【0020】Ceq=C%+Mn%/6+(Cu%+N
i%)/15+(Cr%+Mo%+V%)/5 トータルFe+MnO:0.5〜3% 取鍋精錬時のスラグのトータルFe+MnOが3%を超
えると鋼板表面近傍でのHICが発生するので上限は3
%である。また、0.5%を下回るようにトータルFe
+MnOを制御することは経済性を阻害する。本発明で
は上記の成分以外に、必要に応じて以下の選択成分群か
ら選択された1種または2種以上を含有してもよい。
Ceq = C% + Mn% / 6 + (Cu% + N
i%) / 15+ (Cr% + Mo% + V%) / 5 Total Fe + MnO: 0.5-3% If the total Fe + MnO of the slag during ladle refining exceeds 3%, HIC occurs near the steel sheet surface, so the upper limit is set. Is 3
%. In addition, total Fe is set to be less than 0.5%.
Controlling + MnO impairs economic efficiency. In the present invention, one or more selected from the following selected component groups may be contained, if necessary, in addition to the above components.

【0021】(選択成分群) Cu:0.5%以下 Cuは靭性の改善と強度の上昇に有効な元素の1つであ
るが,0.5%を超えるCuの含有は溶接性を阻害する
ため、添加する場合には0.5%以下に限定されなけれ
ばならない。
(Selective component group) Cu: 0.5% or less Cu is one of the elements effective in improving toughness and increasing strength, but containing Cu exceeding 0.5% inhibits weldability. Therefore, when added, it must be limited to 0.5% or less.

【0022】Ni:0.5%以下 Niは靭性の改善と強度の上昇に有効な元素の1つであ
るが、0.5%を超えると効果が飽和して応力腐食割れ
が発生しやすくなるため、添加する場合は0.5%以下
である。
Ni: 0.5% or less Ni is one of the elements effective in improving toughness and increasing the strength, but when it exceeds 0.5%, the effect is saturated and stress corrosion cracking is likely to occur. Therefore, when it is added, it is 0.5% or less.

【0023】Mo:0.5%以下 Moは靭性の改善と強度の上昇に有効な元素の1つであ
るが、0.5%を超えると効果が飽和し、溶接性や耐H
IC性を阻害するため、添加する場合は0.5%以下で
ある。 Cr:0.5%以下 CrはMnとともに低CでもX80グレードとして充分
な強度を得るために有効な元素であるが、0.5%を超
えて添加すると溶接性に悪影響を与えるため、上限は
0.5%である。 V:0.1%以下 適量のVの添加は靭性・溶接性や耐サワー性を劣化させ
ずに強度を高めるため、Crとともに低CでもX80グ
レードとして充分な強度を得るために有効な任意添加元
素であるが、0.1%を越えると溶接性を著しく損なう
ため0.1%以下である。上記の成分組成範囲に調整す
ることにより、良好な耐HIC性に加えて、良好な靭性
も有するX65,X70,X80グレードといった高強
度鋼板を得ることが可能となる。
Mo: 0.5% or less Mo is one of the elements effective in improving the toughness and increasing the strength, but when it exceeds 0.5%, the effect is saturated and the weldability and the H resistance are reduced.
In order to inhibit IC properties, the content is 0.5% or less when added. Cr: 0.5% or less Cr is an effective element for obtaining sufficient strength as X80 grade even with low C, together with Mn. However, if added in excess of 0.5%, the weldability is adversely affected. 0.5%. V: 0.1% or less Addition of an appropriate amount of V enhances the strength without deteriorating toughness, weldability and sour resistance, and is an optional addition effective for obtaining sufficient strength as X80 grade even with low C with Cr. Although it is an element, if it exceeds 0.1%, the weldability is significantly impaired, so that the content is 0.1% or less. By adjusting to the above component composition range, it becomes possible to obtain a high-strength steel sheet such as X65, X70, X80 grade having good toughness in addition to good HIC resistance.

【0024】このような特性の鋼板は以下の製造方法に
より製造することができる。 (2)鋼板製造工程 (製造方法)上記の成分組成範囲に調整した鋼を溶製
し、連続鋳造で得られた鋼スラブを1000〜1200
℃に加熱して熱間圧延し、鋼板表面温度で500℃以下
となるまで加速冷却した後、一旦冷却を中断し、鋼板表
面温度が500℃以上になるまで復熱させる。次いで、
再び600℃以下の鋼板表面温度まで、3〜50℃/秒
の平均冷却速度で加速冷却する。
The steel sheet having such characteristics can be manufactured by the following manufacturing method. (2) Steel plate manufacturing process (Manufacturing method) A steel slab obtained by melting steel adjusted to the above-described component composition range and continuously casting is used to produce a steel slab of 1000 to 1200.
After being heated to ℃ and hot-rolled, accelerated cooling until the steel sheet surface temperature becomes 500 ° C or lower, cooling is once suspended, and the steel sheet is reheated until the steel sheet surface temperature becomes 500 ° C or higher. Then
The steel sheet is again cooled at an average cooling rate of 3 to 50 ° C./sec to a steel sheet surface temperature of 600 ° C. or less.

【0025】a.スラブ加熱温度 スラブ加熱温度が1000℃を下回ると充分な強度が得
られない。またスラブ加熱温度が1200℃を超えると
良好な靭性が得られない。従って、スラブ加熱温度は1
000〜1200℃である。また、熱間圧延終了温度は
Ar3 変態温度以上であることが望ましい。 b.加速冷却開始温度 加速冷却開始温度が低いと復熱に時間を要する、また、
耐HIC性も劣化するので750℃+300/t以上が
望ましい。ここでtは鋼板板厚(mm)。
A. Slab heating temperature If the slab heating temperature is lower than 1000 ° C, sufficient strength cannot be obtained. If the slab heating temperature exceeds 1200 ° C., good toughness cannot be obtained. Therefore, the slab heating temperature is 1
000-1200 ° C. Further, the hot rolling end temperature is desirably equal to or higher than the Ar 3 transformation temperature. b. Accelerated cooling start temperature If the accelerated cooling start temperature is low, it takes time to regain heat,
750 ° C. + 300 / t or more is desirable because the HIC resistance also deteriorates. Here, t is the thickness of the steel plate (mm).

【0026】c.加速冷却中断表面温度 加速冷却中断時の表面温度が500℃を上回ると、表面
近傍での変態が充分に進行しておらず、復熱後の急冷時
にべイナイトなどに変態し硬化してしまう。従って加速
冷却中断時の表面温度は500℃以下である。 d.表面復熱温度 表面復熱温度が500℃未満では、500℃以下まで冷
却した時に変態した表層部分の硬さが低下せずHICの
発生原因となるので表面復熱温度は500℃以上であ
る。
C. When the surface temperature at the time of the accelerated cooling interruption is higher than 500 ° C., transformation near the surface is not sufficiently advanced, and the material is transformed into bainite or the like at the time of quenching after recuperation and hardens. Therefore, the surface temperature when the accelerated cooling is interrupted is 500 ° C. or less. d. Surface recuperation temperature When the surface recuperation temperature is lower than 500 ° C, the hardness of the transformed surface layer does not decrease when cooled to 500 ° C or lower, which causes HIC. Therefore, the surface recuperation temperature is 500 ° C or higher.

【0027】e.加速冷却停止温度 加速冷却停止温度が表面温度で600℃を上回ると充分
な強度が得られない場合がある。従って、加速冷却停止
温度は600℃以下である。 f.冷却速度 鋼板の平均冷却速度が3℃/秒未満になると充分な強度
が得られない場合がある。また、50℃/秒を超えると
強度が上昇し耐HIC性の劣化をまねく。従って、冷却
速度は3〜50℃/秒である。
E. Accelerated cooling stop temperature If the accelerated cooling stop temperature exceeds 600 ° C. at the surface temperature, sufficient strength may not be obtained. Therefore, the accelerated cooling stop temperature is 600 ° C. or less. f. Cooling rate If the average cooling rate of the steel sheet is less than 3 ° C / sec, sufficient strength may not be obtained. On the other hand, if the temperature exceeds 50 ° C./sec, the strength increases and the HIC resistance is deteriorated. Therefore, the cooling rate is 3-50 ° C / sec.

【0028】上記条件を満たすかぎりその他の鋼板の圧
延条件は特に規定しない。また鋼管の成形方法も冷間で
あるかぎり特に規定しない。以下に本発明の実施例を挙
げ、本発明の効果を立証する。
As long as the above conditions are satisfied, other rolling conditions of the steel sheet are not particularly defined. The method of forming the steel pipe is not particularly limited as long as it is cold. Hereinafter, examples of the present invention will be described to demonstrate the effects of the present invention.

【0029】[0029]

【実施例】表1にその化学成分を示した鋼(A〜K:本
発明鋼、L〜R:比較鋼)を表2に示した圧延加速冷却
条件で熱間圧延した(A−4,7,B−1〜K−1:本
発明鋼板、A−1〜3,5,6,8,9,L−1,2,
M−1〜R−1:比較鋼板)。鋼板の機械的性質(降伏
強さ、引張強さ、靭性)、耐HIC性、及び溶接性を表
2に示す。HIC試験はpHが約3の硫化水素を飽和さ
せた5%NaCl+0.5%CH3 COOH水溶液(通
称NACE溶液)中で行い、割れ長さ率(CLR)が1
5%以下で耐HIC性は良好と判断した。靭性はシャル
ピー衝撃試験での破面遷移温度が−60℃以下の場合良
好とした。強度は降伏強さが448MPa以上で良好と
判断した。また、溶接性は実鋼管のシーム溶接に相当す
るサブマージアーク溶接を行ない、溶接高温割れ、低温
割れの有無を溶接部の断面観察により調査した。溶接部
に割れの発生の無い場合を、溶接性は良好と判断した。
本発明の鋼に本発明の圧延加速冷却処理を行った本発明
鋼板A−4,A−7,B−1,C−1,D−1,E−
1,F−1,G−1,H−1,I−1,J−1,K−1
ではいずれも充分な強度と良好な耐HIC性能が得られ
た。一方、本発明の鋼を用いても本発明の圧延加速冷却
を行わない比較鋼板A−1,A−2,A−3,A−5,
A−6,A−8,A−9では充分な性能が得られていな
い。また、本発明でない鋼に本発明の圧延加速冷却を行
った比較鋼板L−1,Q−1,R−1あるいは、本発明
でない鋼に本発明でない圧延加速冷却を行った比較鋼板
L−2,M−1,N−1,O−1,P−1では充分な性
能が得られていない。
EXAMPLES Steels having the chemical components shown in Table 1 (A to K: steels of the present invention, LR to comparative steels) were hot-rolled under accelerated rolling conditions shown in Table 2 (A-4, 7, B-1 to K-1: steel sheet of the present invention, A-1 to 3, 5, 6, 8, 9, L-1, 2,
M-1 to R-1: Comparative steel sheet). Table 2 shows the mechanical properties (yield strength, tensile strength, toughness), HIC resistance, and weldability of the steel sheet. The HIC test was performed in a 5% NaCl + 0.5% CH 3 COOH aqueous solution (commonly called NACE solution) saturated with hydrogen sulfide having a pH of about 3, and the crack length ratio (CLR) was 1
The HIC resistance was judged to be good at 5% or less. The toughness was determined to be good when the fracture surface transition temperature in the Charpy impact test was −60 ° C. or less. The strength was determined to be good when the yield strength was 448 MPa or more. In addition, the weldability was examined by performing a submerged arc welding equivalent to seam welding of an actual steel pipe, and observing the presence or absence of welding hot cracks and cold cracks by observing the cross section of the welded portion. When there was no crack in the weld, the weldability was judged to be good.
Inventive steel sheets A-4, A-7, B-1, C-1, D-1, E-E in which the steel of the present invention is subjected to the accelerated rolling treatment of the present invention.
1, F-1, G-1, H-1, I-1, J-1, K-1
In each case, sufficient strength and good HIC resistance were obtained. On the other hand, comparative steel sheets A-1, A-2, A-3, A-5, which do not perform the accelerated rolling of the present invention even when using the steel of the present invention.
A-6, A-8, and A-9 do not provide sufficient performance. Further, comparative steel sheets L-1, Q-1, R-1 obtained by subjecting a non-invented steel to the accelerated rolling of the present invention, or comparative steel sheet L-2 obtained by subjecting a non-invented steel to the accelerated rolling-in non-inventive cooling , M-1, N-1, O-1, and P-1 did not provide sufficient performance.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【発明の効果】以上説明したように、本発明によれば鋼
組成及び製造条件を特定することにより、耐HIC性に
優れたAPI規格X80グレードのラインパイプ用鋼板
を安価にかつ安定して製造することが可能となった。
As described above, according to the present invention, by specifying the steel composition and the manufacturing conditions, it is possible to inexpensively and stably manufacture an API standard X80 grade line pipe steel sheet having excellent HIC resistance. It became possible to do.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0. 03〜0.08%
と、Si:0.05〜0.5%と、Mn:1〜1.8%
と、P:0.01%以下と、S:0.002%以下と、
Nb:0.005〜0.05%と、Ti:0.005〜
0.02%と、Al:0.01〜0.07%と、Ca:
0.0005〜0.004%とを含有し、かつ炭素当
量:Ceq≧0.28%であり、残部Fe及び不可避的
不純物からなり、さらに取鍋精錬時のスラグのトータル
Fe+MnOが0.5〜3%を満足する鋼板を製造する
方法において、 該鋼を1000〜1200℃に加熱して熱間圧延する工
程と、 熱間圧延された鋼板を、鋼板表面温度で500℃以下と
なるまで加速冷却した後、一旦冷却を中断し、鋼板表面
温度が500℃以上になるまで復熱させる工程と、 鋼板表面温度が500℃以上になるまで復熱させた鋼板
を、再び600℃以下の鋼板表面温度まで、3〜50℃
/秒の鋼板平均冷却速度で加速冷却する工程と、 を備えたことを特徴とする、耐HIC性に優れた高強度
ラインパイプ用鋼板の製造方法。但し、炭素当量:Ce
q=C%+Mn%/6+(Cu%+Ni%)/15+
(Cr%+Mo%+V%)/5
C: 0.03 to 0.08% by weight
And Si: 0.05 to 0.5% and Mn: 1 to 1.8%
And P: 0.01% or less, S: 0.002% or less,
Nb: 0.005 to 0.05%, Ti: 0.005 to
0.02%, Al: 0.01 to 0.07%, and Ca:
0.0005 to 0.004%, and the carbon equivalent: Ceq ≧ 0.28%, the balance being Fe and unavoidable impurities, and the total Fe + MnO of the slag at the time of ladle refining is 0.5 to 50%. In a method for producing a steel sheet satisfying 3%, a step of heating the steel to 1000 to 1200 ° C. and hot rolling, and accelerating cooling the hot-rolled steel sheet to 500 ° C. or less at a steel sheet surface temperature. After the cooling, the cooling is interrupted, and the steel sheet is reheated until the steel sheet surface temperature becomes 500 ° C. or more. Up to 3-50 ° C
And a step of accelerated cooling at an average cooling rate of the steel sheet per second. 2. A method for manufacturing a high-strength line pipe steel sheet excellent in HIC resistance, comprising: However, carbon equivalent: Ce
q = C% + Mn% / 6 + (Cu% + Ni%) / 15+
(Cr% + Mo% + V%) / 5
【請求項2】 鋼成分として、重量%でさらに、Cu:
0.5%以下、Ni:0.5%以下、Cr:0.5%以
下、Mo:0.5%以下、及びV:0.1%以下の群か
ら選択された1種または2種以上を含有することを特徴
とする、請求項1に記載の耐HIC性に優れた高強度ラ
インパイプ用鋼板の製造方法。
2. The steel composition further comprises Cu:
One or more selected from the group of 0.5% or less, Ni: 0.5% or less, Cr: 0.5% or less, Mo: 0.5% or less, and V: 0.1% or less The method for producing a high-strength steel sheet for line pipes having excellent HIC resistance according to claim 1, characterized by containing:
JP08354198A 1998-03-30 1998-03-30 Manufacturing method of steel plate for high-strength line pipe with excellent HIC resistance Expired - Fee Related JP3941211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08354198A JP3941211B2 (en) 1998-03-30 1998-03-30 Manufacturing method of steel plate for high-strength line pipe with excellent HIC resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08354198A JP3941211B2 (en) 1998-03-30 1998-03-30 Manufacturing method of steel plate for high-strength line pipe with excellent HIC resistance

Publications (2)

Publication Number Publication Date
JPH11279639A true JPH11279639A (en) 1999-10-12
JP3941211B2 JP3941211B2 (en) 2007-07-04

Family

ID=13805376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08354198A Expired - Fee Related JP3941211B2 (en) 1998-03-30 1998-03-30 Manufacturing method of steel plate for high-strength line pipe with excellent HIC resistance

Country Status (1)

Country Link
JP (1) JP3941211B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348609A (en) * 2001-03-23 2002-12-04 Nkk Corp Method for manufacturing steel with high strength for line pipe superior in hic resistance
KR100605679B1 (en) * 1999-11-11 2006-07-31 주식회사 포스코 HSLA Cast Steel for Slag Pot Having Improved High Temperature Strength
CN1318631C (en) * 2004-06-30 2007-05-30 宝山钢铁股份有限公司 Method for producing high strength high toughness X80 pipeline steel and its hot-rolled plate
CN100352962C (en) * 2004-06-30 2007-12-05 宝山钢铁股份有限公司 Method for producing X80 pipeline steel having anti-HIC property and its hot-rolled plate
WO2012043984A3 (en) * 2010-09-29 2012-05-24 현대제철 주식회사 Steel plate for line pipe, having excellent hydrogen induced crack resistance, and preparation method thereof
KR101455459B1 (en) * 2012-08-30 2014-10-27 현대제철 주식회사 Steel sheet and method of manufacturing the same
KR101467031B1 (en) * 2012-06-28 2014-12-01 현대제철 주식회사 Steel and method of manufacturing the same
CN107151765A (en) * 2017-04-19 2017-09-12 南京钢铁股份有限公司 A kind of antiacid anti-corrosion pipe line steel and its production method
CN111235489A (en) * 2020-02-17 2020-06-05 柳州钢铁股份有限公司 Method for manufacturing X65MS acid-resistant pipeline steel
CN111254352A (en) * 2020-02-17 2020-06-09 柳州钢铁股份有限公司 X65MS acid-resistant pipeline steel
CN114645181A (en) * 2022-03-14 2022-06-21 安阳钢铁集团有限责任公司 Method for reducing separation proportion of X65 pipeline steel impact fracture

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102676744A (en) * 2012-06-18 2012-09-19 北京科技大学 Technique for refined production of antiacid pipeline steel through VD-LF-VD
CN109487064A (en) * 2018-11-30 2019-03-19 张家港宏昌钢板有限公司 X80 pipe line steel slab controlling hot rolling method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100605679B1 (en) * 1999-11-11 2006-07-31 주식회사 포스코 HSLA Cast Steel for Slag Pot Having Improved High Temperature Strength
JP2002348609A (en) * 2001-03-23 2002-12-04 Nkk Corp Method for manufacturing steel with high strength for line pipe superior in hic resistance
CN1318631C (en) * 2004-06-30 2007-05-30 宝山钢铁股份有限公司 Method for producing high strength high toughness X80 pipeline steel and its hot-rolled plate
CN100352962C (en) * 2004-06-30 2007-12-05 宝山钢铁股份有限公司 Method for producing X80 pipeline steel having anti-HIC property and its hot-rolled plate
EP2623625A4 (en) * 2010-09-29 2017-09-27 Hyundai Steel Company Steel plate for line pipe, having excellent hydrogen induced crack resistance, and preparation method thereof
KR101344638B1 (en) * 2010-09-29 2014-01-16 현대제철 주식회사 Line pipe steel with excellent hic resistance and method of manufacturing the line pipe steel
WO2012043984A3 (en) * 2010-09-29 2012-05-24 현대제철 주식회사 Steel plate for line pipe, having excellent hydrogen induced crack resistance, and preparation method thereof
KR101467031B1 (en) * 2012-06-28 2014-12-01 현대제철 주식회사 Steel and method of manufacturing the same
KR101455459B1 (en) * 2012-08-30 2014-10-27 현대제철 주식회사 Steel sheet and method of manufacturing the same
CN107151765A (en) * 2017-04-19 2017-09-12 南京钢铁股份有限公司 A kind of antiacid anti-corrosion pipe line steel and its production method
CN111235489A (en) * 2020-02-17 2020-06-05 柳州钢铁股份有限公司 Method for manufacturing X65MS acid-resistant pipeline steel
CN111254352A (en) * 2020-02-17 2020-06-09 柳州钢铁股份有限公司 X65MS acid-resistant pipeline steel
CN114645181A (en) * 2022-03-14 2022-06-21 安阳钢铁集团有限责任公司 Method for reducing separation proportion of X65 pipeline steel impact fracture

Also Published As

Publication number Publication date
JP3941211B2 (en) 2007-07-04

Similar Documents

Publication Publication Date Title
US8147626B2 (en) Method for manufacturing high strength steel plate
JP5672916B2 (en) High-strength steel sheet for sour line pipes, method for producing the same, and high-strength steel pipe using high-strength steel sheets for sour line pipes
JP5277648B2 (en) High strength steel sheet with excellent delayed fracture resistance and method for producing the same
JP5900303B2 (en) High-strength steel sheet for sour-resistant pipes with excellent material uniformity in the steel sheet and its manufacturing method
JP5055774B2 (en) A steel plate for line pipe having high deformation performance and a method for producing the same.
JP5141073B2 (en) X70 grade or less low yield ratio high strength high toughness steel pipe and method for producing the same
JP5928405B2 (en) Tempered steel sheet excellent in resistance to hydrogen-induced cracking and method for producing the same
JP4951997B2 (en) A method for producing a high-tensile steel sheet having a tensile strength of 550 MPa or more.
JP5991175B2 (en) High-strength steel sheet for line pipes with excellent material uniformity in the steel sheet and its manufacturing method
JP2013213283A (en) Electroseamed steel pipe and method for production thereof
JP6137435B2 (en) High strength steel and method for manufacturing the same, steel pipe and method for manufacturing the same
JP3941211B2 (en) Manufacturing method of steel plate for high-strength line pipe with excellent HIC resistance
JP3546726B2 (en) Method for producing high-strength steel plate with excellent HIC resistance
JP5991174B2 (en) High-strength steel sheet for sour-resistant pipes with excellent material uniformity in the steel sheet and its manufacturing method
JP5157387B2 (en) Method for manufacturing thick-walled, high-strength, high-toughness steel pipe material with high deformability
JP5151034B2 (en) Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe
JP2005171300A (en) High tensile steel for high heat input welding, and weld metal
JPH0931536A (en) Production of ultrahigh strength steel plate excellent in low temperature toughness
JPH09209037A (en) Production of high strength steel plate for line pipe excellent in hic resistance
JPH1180833A (en) Production of steel sheet for high strength line pipe excellent in hic resistance
JPH08104922A (en) Production of high strength steel pipe excellent in low temperature toughness
JP2012072423A (en) Method of manufacturing high-strength steel plate for line pipe
WO2019064459A1 (en) High-strength steel plate for sour resistant line pipe, method for manufacturing same, and high-strength steel pipe using high-strength steel plate for sour resistant line pipe
JPH09324216A (en) Manufacture of high strength steel or line pipe, excellent in hic resistance
JPH09324217A (en) Manufacture of high strength steel for line pipe, excellent in hic resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees