[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH09324216A - Manufacture of high strength steel or line pipe, excellent in hic resistance - Google Patents

Manufacture of high strength steel or line pipe, excellent in hic resistance

Info

Publication number
JPH09324216A
JPH09324216A JP14602696A JP14602696A JPH09324216A JP H09324216 A JPH09324216 A JP H09324216A JP 14602696 A JP14602696 A JP 14602696A JP 14602696 A JP14602696 A JP 14602696A JP H09324216 A JPH09324216 A JP H09324216A
Authority
JP
Japan
Prior art keywords
steel
less
strength
hic
hic resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14602696A
Other languages
Japanese (ja)
Inventor
Shigeru Endo
茂 遠藤
Moriyasu Nagae
守康 長江
Masamitsu Doi
正充 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP14602696A priority Critical patent/JPH09324216A/en
Publication of JPH09324216A publication Critical patent/JPH09324216A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacture of a high strength steel for line pipe, excellent in HIC resistance, capable of stably and inexpensively preventing the occurrence of HIC while having strength as high as X80 grade. SOLUTION: This steel can be manufactured by subjecting a steel slab, having a composition which contains, by weight, 0.02-0.08% C, 0.05-0.50% Si, 1.0-1.8% Mn, <=0.010% P, <=0.002% S, 0.005-0.05% Nb, 0.005-0.10% Ti, 0.01-0.07% Al, and 0.0005-0.0040% Ca and in which the carbon equivalent represented by (carbon equivalent)=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 is regulated to >=0.32%, to heating and to rolling and then subjecting the resultant steel plate or a steel pipe, prepared by using the steel plate, to hardening treatment from >=850 deg.C at (5 to 40) deg.C/sec cooling rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、耐水素誘起割れ性
に優れ、強度レベルがAPI規格X80グレードのライ
ンパイプの素材として使用される鋼板または鋼管の製造
方法に関する。本発明の製造方法においては、厚板ミル
や熱延ミルにて鋼板とされ、UOE成形、プレスベンド
成形、ロール成形などにより成形され、サブマージドア
ーク溶接や電縫溶接などにより溶接接合されて鋼管とさ
れ、原油や天然ガスを輸送するためのラインパイプとし
て利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a steel plate or a steel pipe which is excellent in hydrogen-induced cracking resistance and is used as a material for a line pipe having a strength level of API standard X80 grade. In the manufacturing method of the present invention, a steel pipe is formed into a steel plate by a thick plate mill or a hot rolling mill, formed by UOE forming, press bend forming, roll forming, etc., and welded by submerged arc welding or electric resistance welding. It is used as a line pipe for transporting crude oil and natural gas.

【0002】[0002]

【従来の技術】硫化水素を含む原油や天然ガスの輸送に
用いられるラインパイプには、一般に、強度、靭性、溶
接性などラインパイプとして必要な特性の他に、耐水素
誘起割れ性(耐HIC性)や耐応力腐食割れ性(耐SS
CC性)などのいわゆる耐サワー性能が要求される。
2. Description of the Related Art In general, line pipes used for transporting crude oil and natural gas containing hydrogen sulfide have properties such as strength, toughness, and weldability required for line pipes, as well as hydrogen-induced cracking resistance (HIC resistance). Resistance) and stress corrosion cracking resistance (SS resistance)
So-called sour resistance performance such as CC property) is required.

【0003】ここでHICは、腐食反応により生成した
水素イオンが鋼表面に吸着し、原子状の水素として鋼内
部に侵入して、鋼中のMnSなどの非金属介在物や硬い
第2相組織のまわりに拡散・集積し、その内圧により発
生するとされている。このため、HICの発生を防ぐた
めの方法としてこれまでに以下の方法が提案されてい
る。
In HIC, hydrogen ions generated by the corrosion reaction are adsorbed on the steel surface and penetrate into the steel as atomic hydrogen, and non-metallic inclusions such as MnS in the steel and a hard second phase structure are present. It is said that it diffuses and accumulates around and is generated by the internal pressure. Therefore, the following methods have been proposed so far as methods for preventing the occurrence of HIC.

【0004】(1)鋼中のS含有量を低下させるととも
に、CaやREMなどを適量添加することにより、長く
伸展したMnSの生成を抑制し、応力集中の小さい微細
に分散した球状の介在物に形態を変えて割れの発生・伝
播を抑制する(例えば、特開昭54−110119号公
報)。
(1) By reducing the S content in steel and adding Ca, REM, and the like in appropriate amounts, the formation of long-stretched MnS is suppressed, and finely dispersed spherical inclusions with low stress concentration are formed. To suppress the generation and propagation of cracks (for example, Japanese Patent Laid-Open No. 54-110119).

【0005】(2)中央偏析部での割れについては起点
となり得る島状マルテンサイトの生成を抑制するととも
に、割れの伝播経路となりやすいマルテンサイトやベイ
ナイトなどの硬化組織の生成を抑制するために、鋼中の
C、Mn、Pなどの偏析傾向の高い元素の含有量を低減
したり、圧延前のスラブ加熱段階で合金元素偏析を解消
するための均熱処理を施すか、あるいは圧延後の冷却時
の変態途中でCの拡散による硬化組織の生成を防ぐため
に加速冷却を施す(例えば、特開昭61−60866号
公報、特開昭61−165207号公報など)。
(2) In order to suppress the formation of island-like martensite which can be a starting point for cracks at the central segregation portion, and to suppress the formation of a hardened structure such as martensite or bainite which easily becomes a propagation path of cracks, When reducing the content of elements with a high segregation tendency such as C, Mn, and P in steel, or performing soaking treatment to eliminate alloy element segregation in the slab heating stage before rolling, or during cooling after rolling In order to prevent the formation of a hardened structure due to the diffusion of C during the transformation of (1), accelerated cooling is performed (for example, JP-A-61-60866 and JP-A-61-165207).

【0006】(3)焼入・焼戻しなどの熱処理を施した
り、圧延仕上温度をオーステナイトの再結晶下限温度以
上とするなど、割れ感受性の低いミクロ組織を得る(例
えば、特開昭54−12782号公報、特開昭62−7
819号公報、特開平6−73450号公報など)。
(3) A microstructure with low cracking susceptibility is obtained by performing heat treatment such as quenching and tempering, or by setting the rolling finish temperature to the recrystallization lower limit temperature of austenite or higher (for example, JP-A-54-12782). Japanese Laid-Open Patent Publication No. 62-7
819, JP-A-6-73450, etc.).

【0007】(4)鋼中へのCuの添加により、表面に
保護膜を形成して、鋼中への水素の侵入を抑制する(特
開昭52−111815号公報)。 これらの各種方法で耐HIC性は向上し、耐サワー性を
必要とするラインパイプもAPI規格X65グレードあ
るいはX70グレードまで大量生産されるようになっ
た。
(4) By adding Cu to the steel, a protective film is formed on the surface to prevent hydrogen from penetrating into the steel (Japanese Patent Laid-Open No. 52-11118). The HIC resistance is improved by these various methods, and line pipes requiring sour resistance have also been mass-produced up to API standard X65 grade or X70 grade.

【0008】しかしながら、近年になって輸送効率の増
大や敷設費用低減のためにより高強度の鋼管に対する要
求が高まり、サワー環境で使用されるラインパイプにも
X80グレードまでの高強度化が要求されるようになっ
ている。
However, in recent years, there has been an increasing demand for high-strength steel pipes in order to increase transportation efficiency and reduce laying costs, and line pipes used in sour environments are also required to have high strength up to X80 grade. It is like this.

【0009】ところが、HICは強度の上昇とともに発
生しやすくなるため、上記(1)〜(4)の方法ではH
ICの発生を完全に抑制することができなくなってき
た。具体的には、(1)の方法によって形態制御された
介在物からも割れが発生するようになり、(2)の方法
によって中央偏析対策を施した中心部以外の部分で割れ
が発生するようになる。また、(3)の方法のうち、焼
入・焼戻し処理はラインパイプの大量生産にはコストお
よび能率の面から不適当であるし、再結晶温度域仕上げ
による組織制御もその効果が十分でなくなってくる。さ
らに(4)の方法によるCu被膜も、pHの低い環境で
はその効果が期待できず、実際にpHが約3の硫化水素
を飽和させた5%NaCl+0.5%CH3 COOH水
溶液(通称NACE溶液)では被膜の効果が得られてい
ない。
However, since HIC is likely to occur as the strength increases, HIC is reduced by the methods (1) to (4).
It has become impossible to completely suppress the generation of IC. Specifically, cracks are generated from inclusions whose shape is controlled by the method (1), and cracks are generated at portions other than the central portion where the countermeasure for central segregation is taken by the method (2). become. Further, among the methods of (3), quenching and tempering treatments are not suitable for mass production of line pipes in terms of cost and efficiency, and the effect of microstructure control by recrystallization temperature region finishing is not sufficient. Come on. In addition, the Cu coating formed by the method (4) cannot be expected to be effective in an environment having a low pH, and is actually a 5% NaCl + 0.5% CH 3 COOH aqueous solution saturated with hydrogen sulfide having a pH of about 3 (commonly called NACE solution). In (), the effect of the coating is not obtained.

【0010】最近になって、耐サワー性を有するX80
グレードのラインパイプ用鋼板の製造方法が相次いで提
案されている。その骨子は、低SおよびCa添加により
介在物の形態制御を行いつつ、低C、低Mnとして中央
偏析を抑制し、それに伴う強度の低下をCr、Mo、N
iなどの添加と圧延後の加速冷却で補うというものであ
り、特開平5−9575号公報にはCr添加が、特開平
5−271766号、特開平7−109519号の各公
報にはCr−Mo添加が、特開平7−173536号公
報にはNi−Cr−Mo添加が示されている。
Recently, X80 having sour resistance
A method of manufacturing grade steel sheets for line pipes has been proposed one after another. The skeleton controls the morphology of inclusions by adding low S and Ca, suppresses central segregation as low C and low Mn, and reduces the accompanying strength reduction of Cr, Mo, N.
The addition of i or the like and accelerated cooling after rolling make up for this, and the addition of Cr is disclosed in JP-A-5-9575, and the addition of Cr-in JP-A-271766 and 7-109519. The addition of Mo is disclosed in JP-A-7-173536, and the addition of Ni-Cr-Mo is disclosed.

【0011】しかし、これらはいずれも中央偏析部のH
IC発生を防止するための方法であって、中央偏析部以
外については具体的な割れ対策は施されていない。すな
わち、引張強さが上昇すると、中央偏析部だけでなく板
厚方向全体にHICが発生しやすくなるが、これら技術
には板厚方向全体のHIC防止対策は示されていない。
また、これらの方法はいずれも加速冷却ままあるいは加
速冷却後に焼戻し処理を行いX80グレードの鋼板を得
ようとするものである。
However, these are all H of the central segregation part.
This is a method for preventing the generation of IC, and no specific measures against cracking are applied to the parts other than the central segregation part. That is, when the tensile strength is increased, HIC is likely to occur not only in the central segregated portion but also in the entire plate thickness direction, but these techniques do not show a measure for preventing HIC in the entire plate thickness direction.
Further, all of these methods are intended to obtain a steel sheet of X80 grade by performing tempering treatment as it is or after accelerated cooling.

【0012】良好な耐HIC性を得る熱処理方法とし
て、特開昭62−7819号に加熱急冷の熱処理方法が
示されているが、X80といった高強度を得ることは示
されていない。
As a heat treatment method for obtaining good HIC resistance, Japanese Patent Application Laid-Open No. 62-7819 discloses a heat treatment method of heating and quenching, but it has not been shown to obtain high strength such as X80.

【0013】[0013]

【発明が解決しようとする課題】本発明はかかる事情に
鑑みてなされたものであって、X80グレードといった
高強度を有しながら、HICの発生を安価にかつ安定し
て防止することができる耐HIC性に優れた高強度ライ
ンパイプ用鋼の製造方法を提供することを課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has a high strength such as X80 grade, while at the same time, it is possible to stably and inexpensively prevent the occurrence of HIC. An object of the present invention is to provide a method for manufacturing a high-strength line pipe steel excellent in HIC property.

【0014】[0014]

【課題を解決するための手段】本発明者らは、鋼の添加
元素と熱処理条件を変化させて種々の成分系・ミクロ組
織を有する母材を作成し、耐HIC性と強度・靱性とを
調査した。その結果、添加元素量および以下の式で示さ
れてる炭素当量を規定した鋼に対して特定の焼入れ処理
を行うことにより、X80グレードとして十分な強度と
靱性および良好な耐HIC性能が得られることを見出し
た。 炭素当量=C+Mn/6+(Cu+Ni)/15+(C
r+Mo+V)/5 本発明はこのような知見に基づいて完成されたものであ
り、第1に、重量%で、C:0.02〜0.08%、S
i:0.05〜0.50%以下、Mn:1.0〜1.8
%、P:0.010%以下、S:0.002%以下、N
b:0.005〜0.05%、Ti:0.005〜0.
10%、Al:0.01〜0.07%、Ca:0.00
05〜0.0040%を含有し、上記炭素当量が0.3
2%以上である鋼スラブを加熱圧延した鋼板あるいはそ
の鋼板を用いた鋼管に対し、850℃以上から5〜40
℃/secの冷却速度で焼入れ処理を行うことを特徴と
する耐HIC性に優れた高強度ラインパイプ用鋼の製造
方法を提供するものである。
[Means for Solving the Problems] The inventors of the present invention produced a base material having various component systems and microstructures by changing the additive elements of steel and the heat treatment conditions to obtain HIC resistance and strength / toughness. investigated. As a result, sufficient hardness and toughness as X80 grade and good HIC resistance performance can be obtained by performing specific quenching treatment on the steel in which the amount of added elements and the carbon equivalent shown by the following formula are specified. Found. Carbon equivalent = C + Mn / 6 + (Cu + Ni) / 15 + (C
r + Mo + V) / 5 The present invention has been completed on the basis of such findings. Firstly, in% by weight, C: 0.02 to 0.08%, S
i: 0.05 to 0.50% or less, Mn: 1.0 to 1.8
%, P: 0.010% or less, S: 0.002% or less, N
b: 0.005 to 0.05%, Ti: 0.005 to 0.
10%, Al: 0.01 to 0.07%, Ca: 0.00
05-0.0040%, the carbon equivalent is 0.3
For steel plates obtained by heating and rolling steel slabs of 2% or more, or steel pipes using the steel plates, from 850 ° C or higher to 5-40
It is intended to provide a method for producing a high-strength line pipe steel having excellent HIC resistance, which is characterized by performing quenching at a cooling rate of ° C / sec.

【0015】第2に、重量%で、C:0.02〜0.0
8%、Si:0.05〜0.50%以下、Mn:1.0
〜1.8%、P:0.010%以下、S:0.002%
以下、Nb:0.005〜0.05%、Ti:0.00
5〜0.10%、Al:0.01〜0.07%、Ca:
0.0005〜0.0040%を含有し、さらに、C
u:0.50%以下、Ni:0.50%以下、Cr:
0.50%以下、Mo:0.50%以下、V:0.10
%以下のうち1種または2種以上を含有し、上記炭素当
量が0.32%以上である鋼スラブを加熱圧延した鋼板
あるいはその鋼板を用いた鋼管に対し、850℃以上か
ら5〜40℃/secの冷却速度で焼入れ処理を行うこ
とを特徴とする耐HIC性に優れた高強度ラインパイプ
用鋼の製造方法を提供するものである。
Secondly, in% by weight, C: 0.02 to 0.0
8%, Si: 0.05 to 0.50% or less, Mn: 1.0
~ 1.8%, P: 0.010% or less, S: 0.002%
Hereinafter, Nb: 0.005 to 0.05%, Ti: 0.00
5 to 0.10%, Al: 0.01 to 0.07%, Ca:
0.0005 to 0.0040%, and further C
u: 0.50% or less, Ni: 0.50% or less, Cr:
0.50% or less, Mo: 0.50% or less, V: 0.10.
% Or less, one or two or more, and the carbon equivalent of the steel slab having a carbon slab of 0.32% or more is heat-rolled to a steel plate or a steel pipe using the steel plate. The present invention provides a method for producing high-strength line pipe steel excellent in HIC resistance, characterized by performing quenching at a cooling rate of / sec.

【0016】[0016]

【発明の実施の形態】以下、本発明について詳細に説明
する。まず、本発明に係る鋼板の組成は、重量%で、
C:0.02〜0.08%、Si:0.05〜0.50
%以下、Mn:1.0〜1.8%、P:0.010%以
下、S:0.002%以下、Nb:0.005〜0.0
5%、Ti:0.005〜0.10%、Al:0.01
〜0.07%、Ca:0.0005〜0.0040%で
あり、C+Mn/6+(Cu+Ni)/15+(Cr+
Mo+V)/5で示される炭素当量が0.32%以上で
ある。また、選択成分としてCu:0.50%以下、N
i:0.50%以下、Cr:0.50%以下、Mo:
0.50%以下、V:0.10%以下のうち1種または
2種以上を含有してもよい。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. First, the composition of the steel sheet according to the present invention is, in weight%,
C: 0.02 to 0.08%, Si: 0.05 to 0.50
% Or less, Mn: 1.0 to 1.8%, P: 0.010% or less, S: 0.002% or less, Nb: 0.005 to 0.0
5%, Ti: 0.005 to 0.10%, Al: 0.01
~ 0.07%, Ca: 0.0005 to 0.0040%, C + Mn / 6 + (Cu + Ni) / 15 + (Cr +
The carbon equivalent represented by Mo + V) / 5 is 0.32% or more. Further, as a selective component, Cu: 0.50% or less, N
i: 0.50% or less, Cr: 0.50% or less, Mo:
One or two or more of 0.50% or less and V: 0.10% or less may be contained.

【0017】これら成分元素の限定理由は以下の通りで
ある。 C:0.02〜0.08% C量が0.02%未満ではX80の所定の強度を確保す
ることが難しくなり、一方0.08%を超えて過剰に添
加すると鋼の靱性と耐HIC性の劣化を招く。また溶接
性や耐硫化物応力腐食割れ性の観点からもC量の低減が
望ましい。したがって、C量を0.02〜0.08%の
範囲とする。
The reasons for limiting these constituent elements are as follows. C: 0.02 to 0.08% When the C content is less than 0.02%, it becomes difficult to secure the predetermined strength of X80, while when it is added in excess of 0.08%, the toughness and HIC resistance of steel are increased. Cause deterioration of sex. From the viewpoint of weldability and sulfide stress corrosion cracking resistance, it is desirable to reduce the C content. Therefore, the amount of C is set to the range of 0.02 to 0.08%.

【0018】Si:0.05〜0.50% Siは脱酸のために添加されるが、0.05%未満では
十分な脱酸効果が得られない。一方、0.50%を超え
ると靭性や溶接性の劣化を引き起こす。したがって、S
i量を0.05〜0.50%の範囲とする。
Si: 0.05 to 0.50% Si is added for deoxidation, but if it is less than 0.05%, a sufficient deoxidizing effect cannot be obtained. On the other hand, if it exceeds 0.50%, deterioration of toughness and weldability is caused. Therefore, S
The i amount is in the range of 0.05 to 0.50%.

【0019】Mn:1.0〜1.8% Mnは鋼の強度および靭性の向上に有効な鋼の基本成分
として添加されるが、1.0%未満ではその効果が小さ
い。一方、1.8%を超えると溶接性と耐HIC性が著
しく劣化する。したがって、Mn量を1.0〜1.8%
の範囲とする。
Mn: 1.0 to 1.8% Mn is added as a basic component of steel effective for improving the strength and toughness of steel, but if it is less than 1.0%, its effect is small. On the other hand, if it exceeds 1.8%, the weldability and HIC resistance are significantly deteriorated. Therefore, the Mn content is 1.0 to 1.8%.
Range.

【0020】P:0.010%以下 本発明の場合、Pは溶接性と耐HIC性とを劣化させる
不純物元素であり、極力低減することが望ましいが、過
度の脱Pはコスト上昇を招くため、P量の上限を0.0
10%とする。
P: 0.010% or less In the case of the present invention, P is an impurity element that deteriorates weldability and HIC resistance, and it is desirable to reduce it as much as possible, but excessive P removal causes cost increase. , P upper limit of 0.0
10%.

【0021】S:0.002%以下 Caを添加してMnSからCaS系の介在物に形態制御
をおこなったとしても、X80グレードの高強度材の場
合には微細に分散したCaS系介在物も割れの起点とな
り得るため、S量を0.002%以下に低減する必要が
ある。
S: 0.002% or less Even if Ca is added to control the morphology from MnS to CaS-based inclusions, finely dispersed CaS-based inclusions are also included in the case of the X80 grade high-strength material. Since it can be a starting point of cracking, it is necessary to reduce the S content to 0.002% or less.

【0022】Nb:0.005〜0.05% Nbは圧延時の粒成長を抑制することによりミクロ組織
を細粒化し、ラインパイプとして十分な靭性を付与する
ために必要な必須成分であり、0.005%以上でその
効果が有効に発揮される。しかし、0.05%を超える
とその効果がほぼ飽和し、溶接熱影響部の靭性を劣化さ
せる。したがって、Nb量を0.005〜0.05%の
範囲とする。
Nb: 0.005 to 0.05% Nb is an essential component necessary for imparting sufficient toughness as a line pipe by refining the microstructure by suppressing grain growth during rolling. The effect is effectively exhibited at 0.005% or more. However, if it exceeds 0.05%, the effect is almost saturated and the toughness of the weld heat affected zone is deteriorated. Therefore, the amount of Nb is set to 0.005 to 0.05%.

【0023】Ti:0.005〜0.10% TiはTiNを形成してスラブ加熱時の粒成長を抑制
し、結果としてミクロ組織の微細化をもたらして靭性を
改善する効果があり、その効果は0.005%以上で現
れる。しかし、0.10%を超えると逆に靭性の劣化を
引き起こす。したがって、Ti量を0.005〜0.1
0%の範囲とする。
Ti: 0.005 to 0.10% Ti forms TiN and suppresses grain growth during heating of the slab. As a result, the microstructure is refined and toughness is improved. Appears at 0.005% or more. However, if it exceeds 0.10%, the toughness is deteriorated. Therefore, the Ti content is 0.005 to 0.1.
The range is 0%.

【0024】Al:0.01〜0.07% Alは脱酸剤として添加され、0.01%以上でその効
果が有効に発揮される。しかし、0.07%を超えると
清浄度が低下して耐HIC性の劣化を引き起こす。した
がって、Al量を0.01〜0.07%の範囲とする。
Al: 0.01 to 0.07% Al is added as a deoxidizing agent, and the effect is effectively exhibited at 0.01% or more. However, if it exceeds 0.07%, the cleanliness is lowered and the HIC resistance is deteriorated. Therefore, the amount of Al is set to the range of 0.01 to 0.07%.

【0025】Ca:0.0005〜0.0040% Caは硫化物系介在物の形態制御に不可欠な元素であ
り、0.0005%以上でその効果が有効に発揮され
る。しかし、0.0040%を超えるとその効果が飽和
し、逆に清浄度を低下させて耐HIC性を劣化させる。
したがって、Ca量を0.0005〜0.0040%の
範囲とする。
Ca: 0.0005 to 0.0040% Ca is an element indispensable for controlling the morphology of sulfide inclusions, and its effect is effectively exhibited at 0.0005% or more. However, if it exceeds 0.0040%, the effect is saturated, and conversely, the cleanliness is lowered and the HIC resistance is deteriorated.
Therefore, the amount of Ca is set to the range of 0.0005 to 0.0040%.

【0026】炭素当量:0.32%以下 炭素当量はX80として十分な強度を得るために0.3
2%以上であることが必要であるため、0.32%以上
とする。その上限はとくに規定する必要はない。
Carbon equivalent: 0.32% or less Carbon equivalent is 0.3 in order to obtain sufficient strength as X80.
Since it is necessary to be 2% or more, it is set to 0.32% or more. The upper limit need not be specified.

【0027】次に、任意添加成分の限定について説明す
る。 Cu:0.05%以下 Cuは靱性の改善と強度の上昇に有効な元素の一つであ
るが、0.05%を超えると、溶接性を阻害するため、
添加する場合にはその量を0.05%以下に規制する必
要がある。
Next, the limitation of the optional additive components will be described. Cu: 0.05% or less Cu is one of the elements effective in improving the toughness and increasing the strength, but if it exceeds 0.05%, the weldability is impaired.
When adding, it is necessary to regulate the amount to 0.05% or less.

【0028】Ni:0.50% Niは靱性の改善と強度の上昇に有効な元素の一つであ
るが、0.50%を超えるとその効果が飽和し、応力腐
食割れが発生しやすくなる。したがって、添加する場合
にはその量を0.50%の範囲とする。
Ni: 0.50% Ni is one of the elements effective in improving the toughness and increasing the strength, but if it exceeds 0.50%, the effect is saturated and stress corrosion cracking easily occurs. . Therefore, when it is added, its amount is set to 0.50%.

【0029】Cr:0.50%以下 CrはMnとともに低CでもX80グレードとして十分
な強度を得るために有効な元素であるが、0.50%を
超えて添加すると溶接性に悪影響を与えるため、添加す
る場合には上限を0.50%とする。
Cr: 0.50% or less Cr, together with Mn, is an effective element for obtaining sufficient strength as an X80 grade even with low C, but if added in excess of 0.50%, the weldability is adversely affected. When added, the upper limit is 0.50%.

【0030】Mo:0.50%以下 Moは靱性の改善と強度の上昇に有効な元素の一つであ
るが、0.50%を超えるとその効果が飽和し、溶接性
や耐HIC性を阻害するため、添加する場合にはその量
を0.50%以下とする。
Mo: 0.50% or less Mo is one of the elements effective for improving the toughness and increasing the strength, but if it exceeds 0.50%, the effect is saturated and the weldability and HIC resistance are improved. If added, the amount is made 0.50% or less for inhibiting.

【0031】V:0.10%以下 適量のVの添加は、靭性、溶接性や耐サワー性を劣化さ
せずに強度を高めるため、Crとともに低CでもX80
グレードとして十分な強度を得るために有効な元素であ
るが、0.10%を超えると溶接性を著しく損なうた
め、添加する場合にはその上限を0.10%とする。
V: 0.10% or less Addition of an appropriate amount of V enhances strength without deteriorating toughness, weldability and sour resistance, so that even with low Cr, X80 can be obtained.
It is an element effective for obtaining sufficient strength as a grade, but if it exceeds 0.10%, the weldability is significantly impaired. Therefore, if it is added, its upper limit is made 0.10%.

【0032】次に、製造条件の限定理由について説明す
る。本発明においては圧延および加速冷却条件は特に限
定する必要はない。焼入れ時の加熱温度は十分な靱性と
耐HIC性とを得るために850℃以上とする。また、
その際の冷却速度は十分な強度を得るために5℃/秒以
上とする必要があり、また、靱性と耐HIC性を劣化さ
せない冷却速度の上限は40℃/秒であるので、冷却速
度は5〜40℃/秒とする。なお、このような焼入れ
は、鋼板の状態で行ってもよいし、鋼管に成形してから
行ってもよい。以上のような組成および製造条件によ
り、良好な耐HIC性に加えて、良好な靱性も有するX
80グレードの高強度鋼を製造することができる。
Next, the reasons for limiting the manufacturing conditions will be described. In the present invention, the rolling and accelerated cooling conditions need not be particularly limited. The heating temperature during quenching is set to 850 ° C. or higher in order to obtain sufficient toughness and HIC resistance. Also,
The cooling rate at that time must be 5 ° C./sec or more in order to obtain sufficient strength, and the upper limit of the cooling rate that does not deteriorate the toughness and HIC resistance is 40 ° C./sec. 5 to 40 ° C./sec. In addition, such quenching may be performed in the state of a steel plate, or may be performed after forming into a steel pipe. With the composition and manufacturing conditions as described above, X having good toughness in addition to good HIC resistance
80 grade high strength steel can be produced.

【0033】[0033]

【実施例】以下、本発明の具体的な実施例について説明
する。表1に示す化学組成を有する鋼を熱間圧延して鋼
板とし、表2に示す熱処理条件で熱処理を行った。これ
ら鋼板について引張試験、シャルピー衝撃試験、HIC
試験を行った。耐HIC試験はpHが約3の硫化水素を
飽和させた5%NaCl+0.5%CH3 COOH水溶
液(通称NACE溶液)中で行った。これらの結果を表
2に併記する。なお、ここでは強度がX80として十分
である場合、シャルピー試験でのvTrsが−70℃以
下の場合に良好な性能が得られているとした。また、H
IC試験では割れ長さ率が15%以下の場合に良好であ
るとした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described. Steel having the chemical composition shown in Table 1 was hot-rolled into a steel sheet and heat-treated under the heat-treatment conditions shown in Table 2. Tensile test, Charpy impact test, HIC
The test was performed. The HIC resistance test was performed in a 5% NaCl + 0.5% CH 3 COOH aqueous solution (commonly called NACE solution) saturated with hydrogen sulfide having a pH of about 3. Table 2 also shows these results. Here, it is assumed that good performance is obtained when the strength is sufficient as X80, and when vTrs in the Charpy test is −70 ° C. or less. Also, H
In the IC test, it was determined to be good when the crack length ratio was 15% or less.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】表2に示すように、本発明の範囲内の組成
を有し、本発明の範囲内の熱処理を行った本発明例のも
のはX80として十分な強度と良好な耐HIC性能が得
られた。
As shown in Table 2, the examples of the present invention having the composition within the range of the present invention and subjected to the heat treatment within the range of the present invention obtained sufficient strength as X80 and good HIC resistance performance. Was given.

【0037】一方、本発明の範囲を満たす組成の鋼を用
いても本発明の熱処理を行わない鋼板A−1、A−5、
A−6では、十分な性能が得られなかった。また、本発
明の範囲を満たさない組成の鋼に本発明を満たす熱処理
を行った鋼板L−1、M−1、N−1、O−1、P−
1、Q−1、R−1、あるいは組成も熱処理条件も本発
明を満たさない鋼板R−2でもやはり十分な性能が得ら
れなかった。
On the other hand, even if a steel having a composition satisfying the range of the present invention is used, the steel sheets A-1, A-5 which are not subjected to the heat treatment of the present invention,
In A-6, sufficient performance was not obtained. Steel plates L-1, M-1, N-1, O-1, and P- which are heat-treated steels having compositions not satisfying the scope of the present invention satisfying the present invention.
No satisfactory performance was obtained even with 1, Q-1, R-1, or steel sheet R-2 whose composition and heat treatment conditions did not satisfy the present invention.

【0038】[0038]

【発明の効果】以上説明したように、本発明によれば、
耐HIC性に優れたAPI規格X80グレードのライン
パイプ用鋼を安価にかつ安定して製造することが可能と
なった。
As described above, according to the present invention,
It has become possible to inexpensively and stably manufacture steel for line pipes of API standard X80 grade having excellent HIC resistance.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/58 C22C 38/58 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C22C 38/58 C22C 38/58

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.02〜0.08%、
Si:0.05〜0.50%以下、Mn:1.0〜1.
8%、P:0.010%以下、S:0.002%以下、
Nb:0.005〜0.05%、Ti:0.005〜
0.10%、Al:0.01〜0.07%、Ca:0.
0005〜0.0040%を含有し、以下に示す炭素当
量が0.32%以上である鋼スラブを加熱圧延した鋼板
あるいはその鋼板を用いた鋼管に対し、850℃以上か
ら5〜40℃/secの冷却速度で焼入れ処理を行うこ
とを特徴とする耐HIC性に優れた高強度ラインパイプ
用鋼の製造方法。 炭素当量=C+Mn/6+(Cu+Ni)/15+(C
r+Mo+V)/5
1. C: 0.02 to 0.08% by weight,
Si: 0.05 to 0.50% or less, Mn: 1.0 to 1.
8%, P: 0.010% or less, S: 0.002% or less,
Nb: 0.005-0.05%, Ti: 0.005-
0.10%, Al: 0.01 to 0.07%, Ca: 0.
For steel plates obtained by heating and rolling steel slabs containing 0005 to 0.0040% and having carbon equivalents of 0.32% or more, or steel pipes using the steel plates, from 850 ° C or higher to 5 to 40 ° C / sec. A method for producing high strength line pipe steel excellent in HIC resistance, characterized by performing quenching treatment at a cooling rate of 1. Carbon equivalent = C + Mn / 6 + (Cu + Ni) / 15 + (C
r + Mo + V) / 5
【請求項2】 重量%で、C:0.02〜0.08%、
Si:0.05〜0.50%以下、Mn:1.0〜1.
8%、P:0.010%以下、S:0.002%以下、
Nb:0.005〜0.05%、Ti:0.005〜
0.10%、Al:0.01〜0.07%、Ca:0.
0005〜0.0040%を含有し、さらに、Cu:
0.50%以下、Ni:0.50%以下、Cr:0.5
0%以下、Mo:0.50%以下、V:0.10%以下
のうち1種または2種以上を含有し、以下に示す炭素当
量が0.32%以上である鋼スラブを加熱圧延した鋼板
あるいはその鋼板を用いた鋼管に対し、850℃以上か
ら5〜40℃/secの冷却速度で焼入れ処理を行うこ
とを特徴とする耐HIC性に優れた高強度ラインパイプ
用鋼の製造方法。 炭素当量=C+Mn/6+(Cu+Ni)/15+(C
r+Mo+V)/5
2. C: 0.02 to 0.08% by weight,
Si: 0.05 to 0.50% or less, Mn: 1.0 to 1.
8%, P: 0.010% or less, S: 0.002% or less,
Nb: 0.005-0.05%, Ti: 0.005-
0.10%, Al: 0.01 to 0.07%, Ca: 0.
0005-0.0040%, and further Cu:
0.50% or less, Ni: 0.50% or less, Cr: 0.5
A steel slab containing one or more of 0% or less, Mo: 0.50% or less, and V: 0.10% or less and having a carbon equivalent of 0.32% or more shown below was heated and rolled. A method for producing a steel for high strength line pipe excellent in HIC resistance, which comprises subjecting a steel plate or a steel pipe using the steel plate to a quenching treatment at a cooling rate of 850 ° C or higher to 5 to 40 ° C / sec. Carbon equivalent = C + Mn / 6 + (Cu + Ni) / 15 + (C
r + Mo + V) / 5
JP14602696A 1996-06-07 1996-06-07 Manufacture of high strength steel or line pipe, excellent in hic resistance Pending JPH09324216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14602696A JPH09324216A (en) 1996-06-07 1996-06-07 Manufacture of high strength steel or line pipe, excellent in hic resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14602696A JPH09324216A (en) 1996-06-07 1996-06-07 Manufacture of high strength steel or line pipe, excellent in hic resistance

Publications (1)

Publication Number Publication Date
JPH09324216A true JPH09324216A (en) 1997-12-16

Family

ID=15398433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14602696A Pending JPH09324216A (en) 1996-06-07 1996-06-07 Manufacture of high strength steel or line pipe, excellent in hic resistance

Country Status (1)

Country Link
JP (1) JPH09324216A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005075694A1 (en) 2004-02-04 2005-08-18 Sumitomo Metal Industries,Ltd. Steel product for line pipe excellent in resistance to hic and line pipe produced by using the steel product
KR100518323B1 (en) * 2001-12-24 2005-10-04 주식회사 포스코 High Strength Linepipe Steel and Method for Manufacturing the Steel
EP1918398A1 (en) * 2005-08-22 2008-05-07 Sumitomo Metal Industries Limited Seamless steel pipe for line pipe and method for producing same
WO2013190750A1 (en) 2012-06-18 2013-12-27 Jfeスチール株式会社 Thick, high-strength, sour-resistant line pipe and method for producing same
WO2014010150A1 (en) 2012-07-09 2014-01-16 Jfeスチール株式会社 Thick-walled high-strength sour-resistant line pipe and method for producing same
JP2015190019A (en) * 2014-03-28 2015-11-02 Jfeスチール株式会社 High toughness high ductility high strength hot rolled steel sheet and production method therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100518323B1 (en) * 2001-12-24 2005-10-04 주식회사 포스코 High Strength Linepipe Steel and Method for Manufacturing the Steel
WO2005075694A1 (en) 2004-02-04 2005-08-18 Sumitomo Metal Industries,Ltd. Steel product for line pipe excellent in resistance to hic and line pipe produced by using the steel product
US7648587B2 (en) 2004-02-04 2010-01-19 Sumitomo Metal Industries, Ltd. Steel product for use as line pipe having high HIC resistance and line pipe produced using such steel product
EP1918398A1 (en) * 2005-08-22 2008-05-07 Sumitomo Metal Industries Limited Seamless steel pipe for line pipe and method for producing same
EP1918398A4 (en) * 2005-08-22 2009-08-19 Sumitomo Metal Ind Seamless steel pipe for line pipe and method for producing same
US7896984B2 (en) 2005-08-22 2011-03-01 Sumitomo Metal Industries, Ltd. Method for manufacturing seamless steel pipe for line pipe
WO2013190750A1 (en) 2012-06-18 2013-12-27 Jfeスチール株式会社 Thick, high-strength, sour-resistant line pipe and method for producing same
KR20150003322A (en) 2012-06-18 2015-01-08 제이에프이 스틸 가부시키가이샤 Thick, high-strength, sour-resistant line pipe and method for producing same
WO2014010150A1 (en) 2012-07-09 2014-01-16 Jfeスチール株式会社 Thick-walled high-strength sour-resistant line pipe and method for producing same
JP2015190019A (en) * 2014-03-28 2015-11-02 Jfeスチール株式会社 High toughness high ductility high strength hot rolled steel sheet and production method therefor

Similar Documents

Publication Publication Date Title
US8147626B2 (en) Method for manufacturing high strength steel plate
JP5098256B2 (en) Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect with excellent hydrogen-induced cracking resistance and method for producing the same
JP5900303B2 (en) High-strength steel sheet for sour-resistant pipes with excellent material uniformity in the steel sheet and its manufacturing method
JP5928405B2 (en) Tempered steel sheet excellent in resistance to hydrogen-induced cracking and method for producing the same
JP6048436B2 (en) Tempered high tensile steel plate and method for producing the same
JP3546726B2 (en) Method for producing high-strength steel plate with excellent HIC resistance
JP3941211B2 (en) Manufacturing method of steel plate for high-strength line pipe with excellent HIC resistance
JP3906779B2 (en) Manufacturing method of low temperature steel with excellent stress corrosion cracking resistance
JP2001240936A (en) Steel having coarse-grained ferritic layer on surface layer and its production method
JP4419744B2 (en) High strength steel plate for line pipes with excellent HIC resistance and weld heat affected zone toughness and method for producing the same
JPH09209037A (en) Production of high strength steel plate for line pipe excellent in hic resistance
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
JP2004003015A (en) High-strength steel sheet for line pipe superior in hic resistance, and manufacturing method therefor
JPH09324216A (en) Manufacture of high strength steel or line pipe, excellent in hic resistance
JPH09324217A (en) Manufacture of high strength steel for line pipe, excellent in hic resistance
JPH1180833A (en) Production of steel sheet for high strength line pipe excellent in hic resistance
JP2004003014A (en) High-strength steel sheet for line pipe superior in hic resistance, and manufacturing method therefor
JP3009569B2 (en) Method for producing CO2 corrosion resistant sour resistant steel sheet with excellent low temperature toughness
JPH03211230A (en) Production of low alloy steel for line pipe with high corrosion resistance
WO2019064459A1 (en) High-strength steel plate for sour resistant line pipe, method for manufacturing same, and high-strength steel pipe using high-strength steel plate for sour resistant line pipe
JP3218447B2 (en) Method of producing sour resistant thin high strength steel sheet with excellent low temperature toughness
JP2618785B2 (en) Method for producing high Ni alloy clad steel sheet with excellent sour resistance and low temperature toughness
JPH06293914A (en) Production of low alloy steel plate for line pipe excellent in co2 corrosion resistance and haz toughness
JP2003226922A (en) Manufacturing method for high strength steel sheet having excellent hic resistance
JPH09209038A (en) Production of high strength steel plate for line pipe excellent in hic resistance