[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5991175B2 - High-strength steel sheet for line pipes with excellent material uniformity in the steel sheet and its manufacturing method - Google Patents

High-strength steel sheet for line pipes with excellent material uniformity in the steel sheet and its manufacturing method Download PDF

Info

Publication number
JP5991175B2
JP5991175B2 JP2012265002A JP2012265002A JP5991175B2 JP 5991175 B2 JP5991175 B2 JP 5991175B2 JP 2012265002 A JP2012265002 A JP 2012265002A JP 2012265002 A JP2012265002 A JP 2012265002A JP 5991175 B2 JP5991175 B2 JP 5991175B2
Authority
JP
Japan
Prior art keywords
steel sheet
less
cooling
hardness
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012265002A
Other languages
Japanese (ja)
Other versions
JP2013139628A (en
Inventor
純二 嶋村
純二 嶋村
西村 公宏
公宏 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012265002A priority Critical patent/JP5991175B2/en
Publication of JP2013139628A publication Critical patent/JP2013139628A/en
Application granted granted Critical
Publication of JP5991175B2 publication Critical patent/JP5991175B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、建築、海洋構造物、造船、土木、建設産業用機械、ラインパイプ等の分野で使用される、鋼板内の材質均一性及び伸び特性に優れたラインパイプ用高強度鋼板とその製造方法に関するものである。   The present invention relates to a high-strength steel sheet for line pipes, which is excellent in material uniformity and elongation characteristics in steel sheets, used in the fields of architecture, offshore structures, shipbuilding, civil engineering, construction industry machines, line pipes, etc. It is about the method.

ラインパイプは、厚板ミルや熱延ミルにより製造された鋼板を、UOE成形、プレスベンド成形、ロール成形等で鋼管形状に成形して製造する。   The line pipe is manufactured by forming a steel plate manufactured by a thick plate mill or a hot rolling mill into a steel pipe shape by UOE forming, press bend forming, roll forming or the like.

特に、硫化水素を含む原油や天然ガスの輸送に用いられるラインパイプは、強度、靭性、溶接性の他に、耐水素誘起割れ性(耐HIC性)や耐応力腐食割れ性(耐SCC性)などのいわゆる耐サワー性を備えることが必要とされる。   In particular, line pipes used for transporting crude oil and natural gas containing hydrogen sulfide are resistant to hydrogen-induced cracking (HIC) and stress corrosion cracking (SCC) in addition to strength, toughness and weldability. It is necessary to provide so-called sour resistance.

鋼材の水素誘起割れ(HIC)は、腐食反応による水素イオンが鋼材表面に吸着し、原子状の水素として鋼内部に侵入し、鋼中のMnSなどの非金属介在物や硬い第2相組織のまわりに拡散・集積し、その内圧により割れを生ずるものとされている。   In hydrogen induced cracking (HIC) of steel, hydrogen ions from the corrosion reaction are adsorbed on the surface of the steel, penetrate into the steel as atomic hydrogen, and include non-metallic inclusions such as MnS in the steel and hard second phase structure. It is said that it diffuses and accumulates around, and cracks occur due to its internal pressure.

このような水素誘起割れを防ぐためにいくつかの方法が提案されている。例えば、特許文献1には、鋼中のS含有量を下げるとともに、CaやREMなどを適量添加することにより、長く伸展したMnSの生成を抑制し、微細に分散した球状のCaS介在物に形態を変え、硫化物系介在物による応力集中を小さくし、割れの発生・伝播を抑制することによって、耐HIC性を改善する技術が提案されている。   Several methods have been proposed to prevent such hydrogen-induced cracking. For example, in Patent Document 1, while lowering the S content in steel and adding an appropriate amount of Ca, REM, or the like, the formation of long extended MnS is suppressed, and a finely dispersed spherical CaS inclusion is formed. Has been proposed to improve the HIC resistance by reducing stress concentration due to sulfide inclusions and suppressing the occurrence and propagation of cracks.

特許文献2、特許文献3には、偏析傾向の高い元素(C、Mn、P等)の低減やスラブ加熱段階での均熱処理による偏析の低減、および圧延後の冷却時の変態途中での加速冷却を行う技術が提案されている。これにより、中心偏析部での割れの起点となる島状マルテンサイトの生成、および割れの伝播経路となるマルテンサイトなどの硬化組織の生成を抑制するというものである。   In Patent Documents 2 and 3, there is a reduction in elements that have a high segregation tendency (C, Mn, P, etc.), a reduction in segregation by soaking in the slab heating stage, and an acceleration during transformation after cooling after rolling. Techniques for cooling have been proposed. This suppresses the generation of island martensite that becomes the starting point of cracks in the center segregation part and the generation of hardened structures such as martensite that becomes the propagation path of cracks.

また、特許文献4、特許文献5には、高強度鋼板に対して、低SかつCa添加により硫化物系介在物の形態制御を行いつつ、低C−低Mn化により中心偏析を抑制し、それに伴う強度低下をCr、Mo、Ni等の添加と加速冷却により補う方法が提案されている。   In Patent Documents 4 and 5, for high-strength steel sheets, while controlling the form of sulfide inclusions with low S and Ca addition, the center segregation is suppressed by low C-low Mn, There has been proposed a method of compensating for the accompanying strength reduction by adding Cr, Mo, Ni or the like and accelerated cooling.

一方、鋼構造物の大型化やコスト削減の観点から、より高強度や高靭性を有する鋼板の需要が高まっている。鋼板の特性向上や合金元素削減、熱処理省略を目的として、通常、高強度鋼板は、制御圧延と制御冷却を組み合わせた、いわゆるTMCP技術が適用されて製造される。   On the other hand, from the viewpoint of increasing the size of steel structures and reducing costs, there is an increasing demand for steel sheets having higher strength and higher toughness. For the purpose of improving the properties of steel sheets, reducing alloy elements, and omitting heat treatment, high-strength steel sheets are usually manufactured by applying so-called TMCP technology, which combines controlled rolling and controlled cooling.

TMCP技術を用いて鋼材の高強度化を行うには、制御冷却時の冷却速度を大きくすることが有効である。しかしながら、高冷却速度で制御冷却した場合、鋼板表層部が急冷されるため、鋼板内部に比べて表層部の硬さが高くなり、板厚方向の硬さ分布にばらつきが生じる。したがって、鋼板内の材質均一性を確保する観点で問題となる。   In order to increase the strength of steel using the TMCP technology, it is effective to increase the cooling rate during controlled cooling. However, when controlled cooling is performed at a high cooling rate, the surface layer portion of the steel sheet is rapidly cooled, so that the hardness of the surface layer portion is higher than that inside the steel plate, and the hardness distribution in the thickness direction varies. Therefore, it becomes a problem from the viewpoint of ensuring the material uniformity in the steel plate.

特許文献6には、制御冷却に際して、冷却速度を3〜12℃/sという比較的低冷却速度に制御することにより、板厚中心部に対する表面の硬さ上昇を抑える方法が開示されている。   Patent Document 6 discloses a method of suppressing an increase in surface hardness with respect to the center portion of the plate thickness by controlling the cooling rate to a relatively low cooling rate of 3 to 12 ° C./s during controlled cooling.

特許文献7には、冷却過程で、フェライトが析出する温度域で待機を行うことにより、鋼板の組織をフェライトとベイナイトの2相組織とし、表層と板厚中心部の硬さの差を低減した、板厚方向に材質差の小さい鋼板の製造方法が開示されている。   In Patent Document 7, by waiting in a cooling process at a temperature range where ferrite precipitates, the steel sheet has a two-phase structure of ferrite and bainite, and the difference in hardness between the surface layer and the center of the plate thickness is reduced. A method of manufacturing a steel sheet having a small material difference in the thickness direction is disclosed.

また、特許文献8、特許文献9には、圧延後、表層部がベイナイト変態を完了する前に表面を復熱させる高冷却速度の制御冷却を行った、板厚方向に材質差の小さい鋼板の製造方法が開示されている。   Patent Document 8 and Patent Document 9 include a steel plate having a small material difference in the plate thickness direction, which has been subjected to controlled cooling at a high cooling rate for reheating the surface after the rolling before the surface layer portion completes the bainite transformation. A manufacturing method is disclosed.

特許文献10、特許文献11には、高周波誘導加熱装置を用いて、加速冷却後の鋼板表面を内部より高温に加熱して表層部の硬さを低減した、ラインパイプ用鋼板の製造方法が開示されている。   Patent Document 10 and Patent Document 11 disclose a method for manufacturing a steel plate for a line pipe in which the surface of the steel plate after accelerated cooling is heated to a higher temperature from the inside by using a high-frequency induction heating device to reduce the hardness of the surface layer portion. Has been.

また、特許文献12には、制御冷却を、鋼板表面温度が500℃以下となるまで鋼板中央部の平均冷却速度5〜15℃/sで冷却した後、後期冷却で鋼板中央部の平均冷却速度20〜50℃/sで板厚方向平均温度600℃以下まで冷却することにより、表層の硬化組織を抑制する方法が開示されている。   Patent Document 12 discloses that control cooling is performed at an average cooling rate of 5 to 15 ° C./s at the central part of the steel sheet until the steel sheet surface temperature becomes 500 ° C. or lower, and then at the latter stage cooling. A method for suppressing the hardened structure of the surface layer by cooling to a plate thickness direction average temperature of 600 ° C. or lower at 20 to 50 ° C./s is disclosed.

一方、鋼板表面のスケール性状にむらがあると、冷却時にスケール厚さに応じてその下部の鋼板の冷却速度に違いを生じて、すなわち鋼板内で部分的に冷却停止温度のばらつきが生じて、スケール性状に対応して板幅方向に鋼板材質のばらつきが生じる。   On the other hand, if there is unevenness in the scale properties of the steel sheet surface, the cooling rate of the lower steel sheet varies depending on the scale thickness during cooling, that is, the cooling stop temperature varies partially within the steel sheet, Corresponding to the scale properties, the steel plate material varies in the plate width direction.

特許文献13、特許文献14には、冷却直前にデスケーリングを行うことにより、スケール性状による冷却むらを低減し、鋼板形状を改善する方法が開示されている。   Patent Document 13 and Patent Document 14 disclose a method of reducing the uneven cooling due to the scale properties and improving the steel plate shape by performing descaling immediately before cooling.

特開昭54−110119号公報Japanese Patent Laid-Open No. 54-110119 特開昭61−60866号公報JP 61-60866 A 特開昭61−165207号公報JP-A-61-165207 特開平5−271766号公報JP-A-5-271766 特開平7−173536号公報JP 7-173536 A 特公平7−116504号Japanese Patent Publication No.7-116504 特許第3911834号Japanese Patent No. 3911834 特許第3951428号Japanese Patent No. 3951428 特許第3951429号Japanese Patent No. 3951429 特開2002−327212号JP 2002-327212 A 特許第3711896号Japanese Patent No. 3711896 特許第3546726号Japanese Patent No. 3546726 特開平9−57327号JP-A-9-57327 特許第3796133号Patent No. 3796133

しかしながら、特許文献1〜5に記載の技術は、いずれも中心偏析部が対象で、中心偏析部以外の部分については考慮されていない。   However, all of the techniques described in Patent Documents 1 to 5 are directed to the center segregation part, and no part other than the center segregation part is considered.

制御冷却又は直接焼入れによって製造されるAPI規格X65グレード以上の強度を有する高強度鋼板においては、冷却速度の高い鋼板表面部が内部に比べて硬化するため、表面近傍から水素誘起割れが発生するという問題がある。   In high-strength steel sheets with API standard X65 grade strength or higher manufactured by controlled cooling or direct quenching, the steel sheet surface portion with a high cooling rate is hardened compared to the inside, so that hydrogen-induced cracking occurs from the vicinity of the surface. There's a problem.

特許文献6記載の技術は、冷却速度の制限により、高冷却速度による高強度化や合金元素の削減、制御圧延の簡略化等といった制御冷却の効果を十分に活用することができない。特許文献7の製造方法は、Ar変態点以下での冷却待機でフェライトを析出させるため強度が低下するとともに、冷却待機時間が必要なため製造効率が悪化する。 The technology described in Patent Document 6 cannot fully utilize the effect of controlled cooling such as high strength by high cooling rate, reduction of alloy elements, simplification of controlled rolling, etc. due to limitation of cooling rate. In the manufacturing method of Patent Document 7, the ferrite is precipitated in the cooling standby at the Ar 3 transformation point or lower, so that the strength is lowered and the cooling standby time is required, so that the manufacturing efficiency is deteriorated.

特許文献8、特許文献9記載の製造方法は、鋼板の成分により変態挙動が異なると、復熱による十分な材質均質化の効果が得られない場合がある。また、高精度な冷却制御が必要なため、適用範囲が限られるとともに製造効率が悪化する。特許文献10、特許文献11記載の製造方法は、加速冷却での表層部の冷却速度が大きいと、鋼板表面の加熱だけでは表層部の硬さを十分に低減できない場合がある。
特許文献12記載の製造方法は、鋼板の成分により変態挙動が異なると、表層の硬化組織を抑制できない場合があり、十分な材質均質化の効果が得られない場合がある。
In the production methods described in Patent Document 8 and Patent Document 9, if the transformation behavior differs depending on the components of the steel sheet, a sufficient material homogenization effect due to recuperation may not be obtained. Moreover, since highly accurate cooling control is required, the application range is limited and the manufacturing efficiency is deteriorated. In the manufacturing methods described in Patent Document 10 and Patent Document 11, if the cooling rate of the surface layer portion in accelerated cooling is large, the hardness of the surface layer portion may not be sufficiently reduced only by heating the steel sheet surface.
In the production method described in Patent Document 12, if the transformation behavior varies depending on the components of the steel sheet, the hardened structure of the surface layer may not be suppressed, and a sufficient material homogenizing effect may not be obtained.

また、特許文献13、特許文献14記載の方法は、デスケーリングにより、熱間矯正時のスケールの押し込み疵による表面性状不良の低減や、鋼板の冷却停止温度のばらつきを低減して鋼板形状を改善しているが、均一な材質を得るための冷却条件に関しての記載はない。   In addition, the methods described in Patent Document 13 and Patent Document 14 improve the steel plate shape by reducing the surface property failure due to the indentation of the scale during hot correction and the variation in the cooling stop temperature of the steel plate by descaling. However, there is no description about cooling conditions for obtaining a uniform material.

鋼板の冷却状態は、表面性状だけでなく冷却の強弱によっても影響を受けるため、鋼板表面の冷却速度がばらつくと硬さのばらつきが生じる危険性がある。冷却速度によっては、鋼板表面の冷却状態において、鋼板表面と冷却水の間に気泡の膜が発生する“膜沸騰”と気泡が膜を形成する前に冷却水によって表面から分離される“核沸騰”とが混在し、表面の冷却速度にばらつきを生じる虞がある。それによって鋼板表面の硬さにばらつきを生じることになる。   Since the cooling state of the steel sheet is affected not only by the surface properties but also by the strength of the cooling, there is a risk that the hardness may vary if the cooling rate of the steel sheet surface varies. Depending on the cooling rate, in the cooling state of the steel sheet surface, a film of bubbles is generated between the steel sheet surface and the cooling water, and “nucleate boiling” where the bubbles are separated from the surface by the cooling water before forming the film. "May be mixed, and the surface cooling rate may vary. As a result, the hardness of the steel sheet surface varies.

従って、本発明は、従来、低廉な成分と高冷却速度冷却を組み合わせた場合、鋼板内の材質均一性と耐HIC特性を備えた高強度鋼板を製造するこができなかったことを解決し、中央偏析部のHICとともに表面近傍から発生するHICに対して優れた耐HIC特性を有し、鋼板の板厚方向および板幅方向の硬さのばらつきを低減した、鋼板内の材質均一性及び伸び特性に優れたラインパイプ用高強度鋼板とその製造方法を提供することを目的とする。   Therefore, the present invention solves the problem that, conventionally, when a low-cost component and high cooling rate cooling are combined, a high-strength steel sheet with material uniformity and HIC resistance in the steel sheet could not be produced, Uniformity and elongation in steel sheet with excellent HIC resistance against HIC generated from the vicinity of the surface together with HIC in the central segregation part, and reduced variation in hardness in the sheet thickness direction and sheet width direction. It aims at providing the high strength steel plate for line pipes which was excellent in the characteristic, and its manufacturing method.

上記課題を解決するため、本発明者らは、API規格X70グレードの強度を有する高強度鋼板において、中央偏析部とともに表面近傍からのHIC発生を防止し、板厚方向および板幅方向の硬さのばらつきを低減し、鋼板内の材質均一性を向上させるために、鋼材の化学成分、ミクロ組織、製造方法を鋭意検討し、表層部の冷却速度や復熱を含む冷却パターンと鋼板内の平均冷却速度を制御することが重要であるとの知見を得て、本発明を完成した。本発明の課題は以下の手段により達成可能である。
(1)質量%で、C:0.02〜0.08%、Si:0.01〜0.5%、Mn:0.5〜1.8%、P:0.01%以下、S:0.001%以下、Al:0.01〜0.08%、Ca:0.0005〜0.005%を含有し、下記(1)式で示されるCP値(質量%)が1.1以下であり、下記(2)式で示されるCeq値(質量%)が0.35以上0.45以下、残部がFeおよび不可避的不純物からなり、金属組織が表層下3mm内の領域でベイナイト組織と平均粒径20μm以下で体積率80%以下(0%を含む)のフェライト組織であり、その他の内部領域でベイナイト組織であり、板厚方向の硬さのばらつきがΔHV1030以下であり、板幅方向の硬さのばらつきがΔHV1030以下であり、鋼板表層部の最高硬さがHV10230以下であることを特徴とする、鋼板内の材質均一性に優れたラインパイプ用高強度鋼板。
CP=4.46C(%)+2.37Mn(%)/6+{1.74Cu(%)+1.7Ni(%)}/15+{1.18Cr(%)+1.95Mo(%)+1.74V(%)}/5+22.36P(%) ・・・(1)
Ceq=C(%)+Mn(%)/6+(Cu(%)+Ni(%))/15+(Cr(%)+Mo(%)+V(%))/5 ・・・(2)
但し、各式において各元素記号は含有量(質量%)。
2.さらに、質量%で、Cu:0.50%以下、Ni:0.50%以下、Cr:0.50%以下、Mo:0.50%以下の1種又は2種以上を含有することを特徴とする、1に記載の鋼板内の材質均一性に優れたラインパイプ用高強度鋼板。
3.さらに、質量%で、Nb:0.005〜0.1%、V:0.005〜0.1%、Ti:0.005〜0.1%の1種又は2種以上を含有することを特徴とする、1または2に記載の鋼板内の材質均一性に優れたラインパイプ用高強度鋼板。
4.1乃至3の何れか一つに記載の化学成分を有する鋼を、1000℃以上1300℃以下の温度に加熱し、圧延終了温度が鋼板表面温度でAr温度以上で熱間圧延した後、制御冷却の直前に鋼板表面での噴射流の衝突圧が1MPa以上でデスケーリングを行い、冷却開始時の鋼板表面温度が(Ar−80)℃以上から鋼板表面の冷却速度が20℃/s以上100℃/s以下で鋼板表面温度が300℃以上600℃以下まで(3)式を満たす条件で1段目の冷却を行い、その後鋼板の平均冷却速度が15℃/s以上で鋼板の平均温度が200℃以上600℃以下まで2段目の冷却を行うことを特徴とする、鋼板内の材質均一性に優れたラインパイプ用高強度鋼板の製造方法。
3≦(700−T)/V ・・・(3)
但し、T:1段目冷却の鋼板表面冷却終了温度(℃)、V:1段目冷却の鋼板表面冷却速度(℃/s)
5.4に記載の製造方法で製造された鋼板を用い、管厚方向の硬さのばらつきが△Hv1030以下であり、管周方向の硬さのばらつきが△Hv1030以下であり、鋼管表層部の最高硬さがHv10248以下であることを特徴とする材質均一性に優れたラインパイプ用高強度鋼管。
In order to solve the above-mentioned problems, the present inventors have prevented the occurrence of HIC from the vicinity of the surface together with the central segregation part in the high strength steel plate having the strength of API standard X70 grade, and the hardness in the plate thickness direction and the plate width direction. In order to reduce the variation of the material and improve the material uniformity in the steel sheet, we intensively studied the chemical composition, microstructure and manufacturing method of the steel material, the cooling pattern including the cooling rate of the surface layer and the average in the steel sheet The present invention was completed with the knowledge that it is important to control the cooling rate. The object of the present invention can be achieved by the following means.
(1) By mass%, C: 0.02 to 0.08%, Si: 0.01 to 0.5%, Mn: 0.5 to 1.8%, P: 0.01% or less, S: 0.001% or less, Al: 0.01 to 0.08%, Ca: 0.0005 to 0.005%, CP value (mass%) represented by the following formula (1) is 1.1 or less The Ceq value (mass%) represented by the following formula (2) is 0.35 or more and 0.45 or less, the balance is made of Fe and unavoidable impurities, and the metal structure is a region within 3 mm below the surface layer, A ferrite structure having an average particle size of 20 μm or less and a volume ratio of 80% or less (including 0%), a bainite structure in other internal regions, and a hardness variation in the thickness direction of ΔH V10 30 or less, variations in the width direction stiffness is at [Delta] H V10 30 below, maximum hardness of the steel sheet surface layer portion H V 0, characterized in that it is 230 or less, high-strength steel sheet for line pipe superior in material homogeneity within the steel sheet.
CP = 4.46C (%) + 2.37Mn (%) / 6+ {1.74Cu (%) + 1.7Ni (%)} / 15+ {1.18Cr (%) + 1.95Mo (%) + 1.74V ( %)} / 5 + 22.36P (%) (1)
Ceq = C (%) + Mn (%) / 6+ (Cu (%) + Ni (%)) / 15+ (Cr (%) + Mo (%) + V (%)) / 5 (2)
However, each element symbol in each formula is the content (% by mass).
2. Furthermore, it is characterized by containing one or more of Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.50% or less, Mo: 0.50% or less in mass%. The high-strength steel sheet for line pipes having excellent material uniformity in the steel sheet according to 1.
3. Furthermore, it contains one or more of Nb: 0.005 to 0.1%, V: 0.005 to 0.1%, and Ti: 0.005 to 0.1% in mass%. A high-strength steel sheet for line pipes, which is characterized by excellent material uniformity in the steel sheet according to 1 or 2.
After the steel having the chemical composition according to any one of 4.1 to 3 is heated to a temperature of 1000 ° C. or higher and 1300 ° C. or lower and the rolling finish temperature is hot rolling at a steel sheet surface temperature of Ar 3 or higher. , impact pressure of the injection flow on the steel sheet surface just before the controlled cooling is carried out descaling at 1MPa or higher, the steel sheet surface temperature of the cooling start is (Ar 3 -80) the cooling rate of the steel sheet surface from ° C. over 20 ° C. / s to 100 ° C./s or less, and the steel sheet surface temperature is 300 ° C. to 600 ° C. to satisfy the formula (3), and then the steel sheet is cooled at an average cooling rate of 15 ° C./s or more. A method for producing a high-strength steel sheet for line pipes having excellent material uniformity in the steel sheet, wherein the second stage cooling is performed to an average temperature of 200 ° C. to 600 ° C.
3 ≦ (700−T) / V (3)
However, T: Finishing temperature of steel sheet surface cooling at 1st stage cooling (° C.), V: Steel sheet surface cooling rate at 1st stage cooling (° C./s)
Using the steel plate manufactured by the manufacturing method described in 5.4, the hardness variation in the pipe thickness direction is ΔH v10 30 or less, and the hardness variation in the pipe circumferential direction is ΔH v10 30 or less, A high-strength steel pipe for line pipes having excellent material uniformity, characterized in that the maximum hardness of the steel pipe surface layer portion is Hv10 248 or less.

本発明によれば、低廉な化学成分でも鋼板内の材質均一性に優れ、且つ耐HIC特性や伸び特性に優れる、ラインパイプ用鋼板およびその製造方法が得られ、産業上極めて有用である。   According to the present invention, it is possible to obtain a steel plate for a line pipe and a method for producing the same, which are excellent in material uniformity in the steel plate even with low-cost chemical components, and excellent in HIC resistance and elongation properties, and are extremely useful industrially.

本発明の製造方法を実施するための製造ラインの一例を示す概略図。Schematic which shows an example of the manufacturing line for enforcing the manufacturing method of this invention.

本発明に係る高強度鋼板の化学成分について説明する。以下の説明において%で示す単位は全て質量%である。   The chemical components of the high-strength steel sheet according to the present invention will be described. In the following description, all units represented by% are mass%.

C:0.02〜0.08%
Cは0.02%未満では十分な強度が確保できず、0.08%超えでは加速冷却時に表層部の硬さが上昇するとともに、耐HIC特性と靭性を劣化させるため、含有量を0.02〜0.08%に規定する。
C: 0.02 to 0.08%
If C is less than 0.02%, sufficient strength cannot be ensured, and if it exceeds 0.08%, the hardness of the surface layer portion increases during accelerated cooling, and the HIC resistance and toughness are deteriorated. It is specified at 02 to 0.08%.

Si:0.01〜0.5%
Siは脱酸のため添加するが、0.01%未満では脱酸効果が十分でなく、0.5%を超えると靭性や溶接性を劣化させるため、含有量を0.01〜0.5%に規定する。
Si: 0.01 to 0.5%
Si is added for deoxidation, but if it is less than 0.01%, the deoxidation effect is not sufficient, and if it exceeds 0.5%, the toughness and weldability are deteriorated. %.

Mn:0.5〜1.8%
Mnは強度、靭性のため添加するが、0.5%未満ではその効果が十分でなく、1.8%を超えると溶接性と耐HIC特性が劣化するため、含有量を0.5〜1.8%に規定する。
Mn: 0.5 to 1.8%
Mn is added for strength and toughness, but if it is less than 0.5%, its effect is not sufficient, and if it exceeds 1.8%, the weldability and HIC resistance deteriorate, so the content is 0.5 to 1 .8% is specified.

P:0.01%以下
Pは不可避的不純物元素であり、溶接性を劣化させるとともに、中心偏析部の硬さを上昇させることで耐HIC性を劣化させる。0.01%を超えるとその傾向が顕著となるため、含有量の上限を0.01%に規定する。好ましくは0.008%以下である。
P: 0.01% or less P is an unavoidable impurity element, which deteriorates weldability and HIC resistance by increasing the hardness of the central segregation part. Since the tendency will become remarkable when it exceeds 0.01%, the upper limit of content is prescribed | regulated to 0.01%. Preferably it is 0.008% or less.

S:0.001%以下
Sは一般的には鋼中においてはMnS介在物となり耐HIC特性を劣化させるため少ないほどよい。しかし、0.001%以下であれば問題ないため、含有量の上限を0.001%に規定する。
S: 0.001% or less Generally, S is preferably as small as possible because it becomes MnS inclusions in steel and deteriorates the HIC resistance. However, since there is no problem if it is 0.001% or less, the upper limit of the content is specified to 0.001%.

Al:0.01〜0.08%
Alは脱酸剤として添加されるが、0.01%未満では効果がなく、0.08%を超えると鋼の清浄度が低下し、靱性が劣化するため、含有量を0.01〜0.08%に規定する。
Al: 0.01 to 0.08%
Al is added as a deoxidizer, but if it is less than 0.01%, there is no effect, and if it exceeds 0.08%, the cleanliness of the steel decreases and the toughness deteriorates, so the content is 0.01-0. .08% is specified.

Ca:0.0005〜0.005%
Caは硫化物系介在物の形態制御による耐HIC特性向上に有効な元素であるが、0.0005%未満ではその効果が十分でなく、0.005%を超えて添加しても効果が飽和し、むしろ、鋼の清浄度の低下により耐HIC特性を劣化させるので、含有量を0.0005〜0.005%に規定する。上記以外の残部はFeおよび不可避的不純物とする。
Ca: 0.0005 to 0.005%
Ca is an element effective for improving the HIC resistance by controlling the form of sulfide inclusions, but the effect is not sufficient if it is less than 0.0005%, and the effect is saturated even if added over 0.005%. However, since the HIC resistance is deteriorated due to a decrease in the cleanliness of the steel, the content is specified to be 0.0005 to 0.005%. The balance other than the above is Fe and inevitable impurities.

CP=4.46C(%)+2.37Mn(%)/6+{1.74Cu(%)+1.7Ni(%)}/15+{1.18Cr(%)+1.95Mo(%)+1.74V(%)}/5+22.36P(%) ・・・(1)
但し、C(%)、Mn(%)、Cu(%)、Ni(%)、Cr(%)、Mo(%)、V(%)、P(%)は各元素の含有量(質量%)であり、添加しない元素は0とする。
CP = 4.46C (%) + 2.37Mn (%) / 6+ {1.74Cu (%) + 1.7Ni (%)} / 15+ {1.18Cr (%) + 1.95Mo (%) + 1.74V ( %)} / 5 + 22.36P (%) (1)
However, C (%), Mn (%), Cu (%), Ni (%), Cr (%), Mo (%), V (%), P (%) are the contents of each element (mass% The element not added is 0.

CP値は、各合金元素の含有量から中心偏析部の材質を推定するために考案された式であり、(1)式で表されるCP値(質量%)を1.0以下とする。CP値が高いほど中心偏析部の濃度が高くなり、中心偏析部の硬さが上昇する。このCP値を1.0以下とすることでHICを抑制することが可能となる。また、CP値が低いほど中心偏析部の硬さが低くなるため、さらに高い耐HIC特性が必要な場合はその上限を0.95とすることが望ましい。   The CP value is an expression devised for estimating the material of the central segregation part from the content of each alloy element, and the CP value (mass%) represented by the expression (1) is 1.0 or less. The higher the CP value, the higher the concentration of the center segregation part and the higher the hardness of the center segregation part. By setting the CP value to 1.0 or less, HIC can be suppressed. Further, the lower the CP value, the lower the hardness of the center segregation part. Therefore, when higher HIC resistance is required, the upper limit is desirably set to 0.95.

Ceq=C(%)+Mn(%)/6+(Cu(%)+Ni(%))/15+(Cr(%)+Mo(%)+V(%))/5 ・・・(2)
但し、C(%)、Mn(%)、Cu(%)、Ni(%)、Cr(%)、Mo(%)、V(%)は各元素の含有量(質量%)であり、添加しない元素は0とする。
Ceq = C (%) + Mn (%) / 6+ (Cu (%) + Ni (%)) / 15+ (Cr (%) + Mo (%) + V (%)) / 5 (2)
However, C (%), Mn (%), Cu (%), Ni (%), Cr (%), Mo (%), and V (%) are the contents (mass%) of each element and added The element not to be used is 0.

Ceq値は表層の硬さおよび、鋼板全体(全厚)の引張強度特性と相関がある。(2)式で表されるCeq値を0.35以上0.45以下とする。   The Ceq value correlates with the hardness of the surface layer and the tensile strength characteristics of the entire steel sheet (total thickness). The Ceq value represented by the formula (2) is 0.35 or more and 0.45 or less.

Ceq値が0.35未満では本発明で狙いとしているAPI規格X70グレードの引張強度570MPa以上を得ることができず、Ceq値が0.45を超えると表層硬さHV≦230に抑制することができないため、Ceq値は0.35以上0.45以下の範囲とする。   If the Ceq value is less than 0.35, the tensile strength of 570 MPa or more of the API standard X70 targeted in the present invention cannot be obtained, and if the Ceq value exceeds 0.45, the surface hardness HV ≦ 230 is suppressed. Therefore, the Ceq value is in the range of 0.35 to 0.45.

以上が本発明の基本化学成分であるが、鋼板の強度靱性をさらに改善する場合、Cu、Ni、Cr、Mo、Nb、V、Tiの1種又は2種以上を含有してもよい。   The above is the basic chemical component of the present invention, but when further improving the strength toughness of the steel sheet, it may contain one or more of Cu, Ni, Cr, Mo, Nb, V, and Ti.

Cu:0.50%以下
Cuは靭性の改善と強度の上昇に有効な元素であるが、多く添加すると溶接性が劣化するため、添加する場合は0.50%を上限とする。
Cu: 0.50% or less Cu is an element effective for improving toughness and increasing strength, but if added in a large amount, weldability deteriorates. Therefore, when added, the upper limit is 0.50%.

Ni:0.50%以下
Niは靭性の改善と強度の上昇に有効な元素であるが、多く添加するとコスト的に不利になり、また、溶接熱影響部靱性が劣化するため、添加する場合は0.50%を上限とする。
Ni: 0.50% or less Ni is an element effective for improving toughness and increasing strength. However, if added in a large amount, it is disadvantageous in cost, and the weld heat affected zone toughness deteriorates. The upper limit is 0.50%.

Cr:0.50%以下
CrはMnと同様に低Cでも十分な強度を得るために有効な元素であるが、多く添加すると溶接性を劣化するため、添加する場合は0.50%を上限とする。
Cr: 0.50% or less Cr is an element effective for obtaining sufficient strength even at low C like Mn, but if added in a large amount, the weldability deteriorates, so when added, the upper limit is 0.50% And

Mo:0.50%以下
Moは靭性の改善と強度の上昇に有効な元素であるが、多く添加すると溶接性が劣化するため、添加する場合は0.50%を上限とする。
Mo: 0.50% or less Mo is an element effective for improving toughness and increasing strength, but if added in a large amount, weldability deteriorates, so when added, the upper limit is 0.50%.

Nb、V、Tiの1種又は2種以上
Nb、VおよびTiは、鋼板の強度および靭性を高めるために添加する選択元素であり、要求強度に応じて、1種または2種以上を添加することができる。各元素とも、0.005%未満では効果が無く、0.1%を超えると溶接部の靭性が劣化するので、添加する場合は0.005〜0.1%の範囲とするのが好ましい。
[金属組織]
金属組織は、引張強度570MPa以上の高強度化を達成するために、ベイナイト組織とする。但し、表層下3mm内の領域で、ベイナイト組織と平均粒径20μm以下で体積率80%以下(0%を含む)のフェライト組織とする。
One or more of Nb, V, and Ti Nb, V, and Ti are selective elements that are added to increase the strength and toughness of the steel sheet, and one or more of Nb, V, and Ti are added depending on the required strength. be able to. If each element is less than 0.005%, there is no effect, and if it exceeds 0.1%, the toughness of the welded portion deteriorates. Therefore, when added, the content is preferably in the range of 0.005 to 0.1%.
[Metal structure]
The metal structure is a bainite structure in order to achieve an increase in tensile strength of 570 MPa or more. However, in a region within 3 mm below the surface layer, a ferrite structure having a bainite structure and an average particle size of 20 μm or less and a volume ratio of 80% or less (including 0%) is used.

少なくとも表層下3mm内の領域が平均粒径20μm以下で体積率80%以下(0%を含む)のフェライト組織と体積率20%以上のベイナイト組織の混合したベイナイト主体組織の場合、表層硬さが低く、耐HIC特性が向上する。表層部にマルテンサイトや島状マルテンサイト(MA)等の硬質相が生成すると、表層硬さが上昇し、耐HIC特性が劣化するとともに、鋼板内の硬さのばらつきが増大して材質均一性が低下する。表層部とは鋼板表面から板厚方向に5mmまでとする。   When the area within 3 mm below the surface layer is a bainite main structure in which a ferrite structure having an average particle diameter of 20 μm or less and a volume ratio of 80% or less (including 0%) and a bainite structure having a volume ratio of 20% or more are mixed, the surface layer hardness is Low and improved HIC resistance. When a hard phase such as martensite or island martensite (MA) is formed in the surface layer, the surface layer hardness is increased, the HIC resistance is deteriorated, and the hardness variation in the steel sheet is increased, resulting in material uniformity. Decreases. The surface layer portion is defined as 5 mm in the plate thickness direction from the steel plate surface.

ベイナイト組織以外に、マルテンサイト、パーライト、島状マルテンサイト、残留オーステナイトなどの金属組織が1種または2種以上混在すると、靭性劣化が生じ、表層硬さが上昇するため、これらの組織は少ない程良いが、体積分率で5%未満の場合には、それらの影響が無視できるため、本発明範囲内とする。   In addition to the bainite structure, when one or more metal structures such as martensite, pearlite, island martensite, and retained austenite are mixed, the toughness deteriorates and the surface hardness increases. Although it is good, when the volume fraction is less than 5%, the influence thereof can be ignored, so it is within the scope of the present invention.

[硬さのばらつき]
板厚方向の硬さのばらつきは荷重10kgでのビッカース硬さ(以下、HV10)でΔHV1030以下、板幅方向の硬さのばらつきはΔHV1030以下とする。ΔHV10は最高硬さと最低硬さの差とする。
[Hardness variation]
The variation in hardness in the plate thickness direction is ΔH V10 30 or less in terms of Vickers hardness (hereinafter referred to as H V10 ) at a load of 10 kg, and the variation in hardness in the plate width direction is set to be ΔH V10 30 or less. ΔH V10 is the difference between the highest hardness and the lowest hardness.

特に、ラインパイプ用高強度鋼板の場合、鋼板の強度や伸び、成形性、耐HIC性、耐SCC性などを満足させる観点から、鋼板内の硬さのばらつき抑制が要求される。   In particular, in the case of a high-strength steel sheet for line pipes, it is required to suppress hardness variation in the steel sheet from the viewpoint of satisfying the strength and elongation of the steel sheet, formability, HIC resistance, SCC resistance, and the like.

板厚方向の硬さのばらつきがΔHV1030を超えた場合や、板幅方向の硬さのばらつきがΔHV1030を超えた場合は、上記特性に悪影響を及ぼす。例えば、鋼板表層部の硬さが鋼板内部に比べてΔHV1030を超えて硬くなった場合は、成形後にスプリングバックが起こりやすくなったり、硫化水素に対する割れ感受性が高まったりする。 When the variation in hardness in the sheet thickness direction exceeds ΔH V10 30 or when the variation in hardness in the sheet width direction exceeds ΔH V10 30, the above characteristics are adversely affected. For example, when the hardness of the steel sheet surface layer portion exceeds ΔH V10 30 as compared with the inside of the steel sheet, springback is likely to occur after forming, and cracking susceptibility to hydrogen sulfide is increased.

また、板幅方向の硬さのばらつきがΔHV1030を超えた場合は、成形時に硬い部分と軟らかい部分での変形量の差が所望の形状が得られない程度となり、小板に切断した場合に小板毎の強度や伸びが異なったりする。 Also, if the variation in hardness in the plate width direction exceeds ΔH V10 30, the difference in deformation amount between the hard part and the soft part during molding is such that the desired shape cannot be obtained and cut into small plates In addition, the strength and elongation of each platelet differ.

鋼板内の材質均一性と耐HIC特性の観点からは、板厚方向の硬さのばらつきはΔHV1025以下、板幅方向の硬さのばらつきはΔHV1025以下であることがより好ましい。 From the viewpoint of material uniformity in the steel plate and HIC resistance, it is more preferable that the variation in hardness in the thickness direction is ΔH V10 25 or less, and the variation in hardness in the plate width direction is ΔH V10 25 or less.

[硬さの最大値]
API規格X70グレードの強度を有する高強度鋼板において、鋼板表層部の硬さが上昇すると、水素誘起割れ(HIC)を発生する危険性が高まる。鋼板表層部からの水素誘起割れ(HIC)を抑制するために、鋼板表層部の硬さ(表面下1mmでの硬さ)をHV10230以下とする。
[Maximum hardness]
In the high-strength steel sheet having the strength of API standard X70 grade, when the hardness of the steel sheet surface layer portion increases, the risk of generating hydrogen-induced cracking (HIC) increases. In order to suppress hydrogen-induced cracking (HIC) from the steel plate surface layer portion, the hardness of the steel plate surface layer portion (hardness at 1 mm below the surface) is set to H V10 230 or less.

なお、冷間成形によりパイプとした後の鋼管表層部(表面下1mm)の硬さはHV10248以下であることが望ましい。これは冷間成形時の加工硬化量を考慮している。 It is desirable hardness of the steel tube surface portion after the pipe by cold forming (subsurface 1mm) is H V10 248 or less. This takes into account the work hardening amount during cold forming.

本発明に係る高強度鋼板は、熱間圧延し、その後二段冷却する制御冷却を施して製造することができ、各工程における条件は以下の様である。
[スラブ加熱温度]
スラブ加熱温度は、1000〜1300℃とする。加熱温度が1000℃未満では炭化物の固溶が不十分で必要な強度が得られず、1300℃を超えると靭性が劣化するため、1000〜1300℃とする。なお、ここでの温度は加熱炉の炉内温度であり、スラブはこの温度に中心部まで十分に加熱されるものとする。
The high-strength steel sheet according to the present invention can be manufactured by performing hot-rolling and then controlled cooling in which two-stage cooling is performed, and the conditions in each step are as follows.
[Slab heating temperature]
Slab heating temperature shall be 1000-1300 degreeC. If the heating temperature is less than 1000 ° C., the solid solution of the carbide is insufficient and the required strength cannot be obtained, and if it exceeds 1300 ° C., the toughness deteriorates, so the temperature is set to 1000 to 1300 ° C. Here, the temperature is the furnace temperature of the heating furnace, and the slab is sufficiently heated to this temperature to the center.

[熱間圧延]
熱間圧延は、強度および耐HIC性能の観点から、圧延終了温度を鋼板表面温度でAr温度以上とする。Ar温度は、以下の式で求めることができる。
[Hot rolling]
In the hot rolling, from the viewpoint of strength and HIC resistance, the rolling end temperature is set to the Ar 3 temperature or higher at the steel sheet surface temperature. The Ar 3 temperature can be obtained by the following equation.

Ar(℃)=910−310C−80Mn−20Cu−15Cr−55Ni−80Mo、但し、各元素記号は含有量(質量%)とする。 Ar 3 (° C.) = 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo, where each element symbol is the content (% by mass).

また、高い母材靱性を得るためにはオーステナイト未再結晶温度域に相当する950℃以下の温度域での圧下率を60%以上とすることが望ましい。なお、鋼板の表面温度は放射温度計等で測定することができる。   In order to obtain high base metal toughness, it is desirable that the rolling reduction in a temperature range of 950 ° C. or lower corresponding to the austenite non-recrystallization temperature range be 60% or more. In addition, the surface temperature of a steel plate can be measured with a radiation thermometer or the like.

[デスケーリング]
熱間圧延後、制御冷却の直前に鋼板表面での噴射流の衝突圧を1MPa以上とする高衝突圧のデスケーリングを行う。鋼板表面での噴射流の衝突圧が1MPa未満では、デスケーリングが不十分でスケールむらが生じる場合があり、表層硬さのばらつきが生じるため、1MPa以上とする。
[Descaling]
After hot rolling, just before controlled cooling, high impact pressure descaling is performed so that the impact pressure of the jet flow on the steel sheet surface is 1 MPa or more. If the impinging pressure of the jet flow on the steel sheet surface is less than 1 MPa, descaling may be insufficient and unevenness in scale may occur, resulting in variations in surface hardness.

制御冷却直前に鋼板表面での噴射流の衝突圧を種々に変化させた予備試験を行い、デスケーリング冷却後の鋼板のスケール厚みが15μm以下となる噴射流の衝突圧として1MPa以上を求めた。制御冷却後の鋼板のスケール厚さで15μm以下とした場合、板厚方向の硬さのばらつきをΔHV1030以下、且つ板幅方向の硬さのばらつきをΔHV1030以下とすることが可能である。 Immediately before the controlled cooling, a preliminary test was performed in which the collision pressure of the jet flow on the surface of the steel sheet was changed in various ways, and the collision pressure of the jet flow at which the scale thickness of the steel sheet after descaling cooling was 15 μm or less was determined to be 1 MPa or more. When the scale thickness of the steel sheet after controlled cooling is 15 μm or less, it is possible to make the hardness variation in the plate thickness direction ΔH V10 30 or less and the hardness variation in the plate width direction be ΔH V10 30 or less. is there.

デスケーリングは高圧水を用いて行うが、鋼板表面での噴射流の衝突圧が1MPa以上であれば、他の噴射流を用いても構わない。
[制御冷却]
本発明は2段冷却を行い、1段目の冷却は鋼板表面温度で冷却開始温度、冷却停止温度、冷却速度を規定し、2段目の冷却はこれらを鋼板の平均温度(板厚方向の平均温度を指す)で規定する。
[1段目の冷却]
1段目の冷却は、鋼板表面温度で(Ar−80℃)以上から、300℃以上600℃以下まで、鋼板表面の冷却速度を20℃/s以上100℃/s以下として(3)式を満たして行う。
Descaling is performed using high-pressure water, but other jet streams may be used as long as the collision pressure of the jet stream on the steel sheet surface is 1 MPa or more.
[Controlled cooling]
The present invention performs two-stage cooling, and the first-stage cooling defines the cooling start temperature, cooling stop temperature, and cooling rate at the steel sheet surface temperature, and the second-stage cooling determines the average temperature of the steel sheet (in the thickness direction). It indicates the average temperature).
[First stage cooling]
In the first stage cooling, the steel sheet surface temperature is (Ar 3 −80 ° C.) or higher to 300 ° C. or higher and 600 ° C. or lower, and the cooling rate of the steel plate surface is 20 ° C./s or higher and 100 ° C./s or lower. To meet.

冷却開始時の鋼板表面温度は(Ar−80℃)以上とする。冷却開始時の鋼板表面温度が(Ar−80℃)未満の場合、制御冷却前のフェライト生成量が多くなり、強度が低下するとともに耐HIC特性が劣化するため、(Ar−80℃)以上とする。 The steel sheet surface temperature at the start of cooling is set to (Ar 3 -80 ° C.) or higher. When the steel sheet surface temperature at the start of cooling is less than (Ar 3 -80 ° C.), the amount of ferrite generated before controlled cooling increases, the strength decreases and the HIC resistance deteriorates (Ar 3 -80 ° C.). That's it.

また、デスケーリング後、5秒以内に冷却を開始することが望ましい。デスケーリング後、5秒を超えて制御冷却を行うと、スケールが成長して表層部の冷却速度が上昇し、また、制御冷却後の鋼板のスケール厚さが15μmを超え、表層硬さの上昇および鋼板内の硬さのばらつきが増大して材質均一性と耐HIC特性の劣化が顕著となる。   It is desirable to start cooling within 5 seconds after descaling. When controlled cooling is performed for more than 5 seconds after descaling, the scale grows and the cooling rate of the surface layer increases, and the scale thickness of the steel sheet after controlled cooling exceeds 15 μm, increasing the surface hardness. In addition, the hardness variation in the steel sheet increases, and the material uniformity and the deterioration of the HIC resistance become remarkable.

冷却速度は、100℃/sを超えると、マルテンサイトや島状マルテンサイト(MA)等の硬質相が生成して、表層硬さが上昇するとともに耐HIC特性が劣化するため、100℃/s以下とする。好ましくは、80℃/s以下である。   When the cooling rate exceeds 100 ° C./s, a hard phase such as martensite and island martensite (MA) is generated, and the surface hardness increases and the HIC resistance deteriorates. The following. Preferably, it is 80 degrees C / s or less.

一方、20℃/s未満では、鋼板の平均冷却速度が低下し、所望の引張強度特性が得られないため、20℃/s以上とする。   On the other hand, if it is less than 20 ° C./s, the average cooling rate of the steel sheet decreases and the desired tensile strength characteristics cannot be obtained.

更に、1段目冷却では、鋼板表面の硬化組織の発生を抑制するため、鋼板表面冷却終了温度(℃)と鋼板表面冷却速度を(3)式を満足するように制御する。
3≦(700−T)/V ・・・(3)
T:1段目冷却の鋼板表面冷却終了温度(℃)、V:1段目冷却の鋼板表面冷却速度(℃/s)
[2段目の冷却]
1段目冷却後、鋼板の平均冷却速度で15℃/s以上で鋼板の平均温度が200℃以上600℃以下まで2段目の冷却を行う。鋼板の平均冷却速度が15℃/s未満では、ベイナイト組織が得られずに強度低下や耐HIC特性が劣化したり、硬さのばらつきが大きくなるため、15℃/s以上とする。より好ましくは、20℃/s以上である。
Furthermore, in the first stage cooling, in order to suppress the occurrence of a hardened structure on the steel sheet surface, the steel sheet surface cooling end temperature (° C.) and the steel sheet surface cooling rate are controlled so as to satisfy the expression (3).
3 ≦ (700−T) / V (3)
T: Finishing temperature of steel sheet surface cooling in 1st stage cooling (° C.), V: Cooling speed of steel sheet surface in 1st stage cooling (° C./s)
[Second stage cooling]
After the first stage cooling, the second stage cooling is performed at an average cooling rate of the steel sheet of 15 ° C./s or more until the average temperature of the steel sheet is 200 ° C. or more and 600 ° C. or less. If the average cooling rate of the steel sheet is less than 15 ° C./s, the bainite structure cannot be obtained, the strength is lowered, the HIC resistance is deteriorated, and the variation in hardness is increased. More preferably, it is 20 ° C./s or more.

冷却停止温度を鋼板の平均温度で200℃以上600℃以下とすると、加速冷却後に生じた鋼板表面温度と鋼板中心温度との差が熱伝導によって解消し、鋼板内でほぼ均一な温度分布となる。鋼板の平均冷却速度、平均温度はいずれも板厚方向の平均値を指す。   When the cooling stop temperature is 200 ° C. or more and 600 ° C. or less as the average temperature of the steel plate, the difference between the steel plate surface temperature and the steel plate center temperature generated after accelerated cooling is eliminated by heat conduction, resulting in a substantially uniform temperature distribution in the steel plate. . The average cooling rate and the average temperature of the steel sheet both indicate the average value in the thickness direction.

鋼板の表面の復熱により硬化組織が抑制され、鋼板内の硬さばらつきを抑制し、かつ硬さの最大値をHV10230以下に抑制し、耐HIC特性の劣化を抑制することができる。 The hardened structure is suppressed by the reheating of the surface of the steel sheet, the hardness variation in the steel sheet is suppressed, the maximum value of the hardness is suppressed to HV10 230 or less, and the deterioration of the HIC resistance can be suppressed.

冷却停止温度が200℃未満では、鋼板表層部の復熱効果が減少するため、硬さ上昇が著しくなり、硬さのばらつきが大きくなるとともに耐HIC特性が劣化する。さらに、鋼板に歪みを生じやすくなり、成形性が劣化する。   When the cooling stop temperature is less than 200 ° C., the reheating effect of the steel sheet surface layer portion is reduced, so that the increase in hardness becomes significant, the variation in hardness increases, and the HIC resistance deteriorates. Further, the steel sheet is easily distorted, and formability deteriorates.

図1に本発明に係る鋼板の製造に好適な設備の一例を示す。圧延ラインには上流から下流側に向かって熱間圧延機2、高衝突圧デスケリーグ装置3、制御冷却装置4を配置する。また、デスケーリング装置の前に熱間矯正機を設置することもできる。熱間矯正機で鋼板1の形状を改善することにより、噴射流の衝突圧を増大させることができるため、低コストでより効率的にデスケーリングを行うことができる。   FIG. 1 shows an example of equipment suitable for manufacturing a steel sheet according to the present invention. In the rolling line, a hot rolling mill 2, a high collision pressure deske league device 3, and a control cooling device 4 are arranged from upstream to downstream. A hot straightening machine can also be installed in front of the descaling device. By improving the shape of the steel sheet 1 with a hot straightening machine, it is possible to increase the collision pressure of the jet flow, and therefore it is possible to perform descaling more efficiently at a low cost.

本発明に係る高強度鋼板を、プレスベンド成形、ロール成形、UOE成形等で管状に成形した後、突き合わせ部を溶接することにより、鋼板内の材質均一性に優れ、高強度かつ耐HIC特性に優れた硫化水素を含む原油や天然ガスの輸送に好適なラインパイプ用高強度鋼管(UOE鋼管、電縫鋼管、スパイラル鋼管等)を製造することができる。   The high-strength steel sheet according to the present invention is formed into a tubular shape by press bend forming, roll forming, UOE forming, etc., and then the butt portion is welded to provide excellent material uniformity in the steel sheet, high strength, and HIC resistance. High strength steel pipes (UOE steel pipes, ERW steel pipes, spiral steel pipes, etc.) suitable for transportation of crude oil and natural gas containing excellent hydrogen sulfide can be manufactured.

例えば、UOE鋼管は、鋼板の端部を開先加工し、Cプレス、Uプレス、Oプレスで鋼管形状に成形した後、内面溶接および外面溶接で突き合わせ部をシーム溶接し、さらに必要に応じて拡管工程を経て製造される。また、溶接方法は十分な継手強度と継手靭性が得られる方法であれば、いずれの方法でも良いが、優れた溶接品質と製造能率の観点から、サブマージアーク溶接を用いることが好ましい。   For example, in UOE steel pipe, the end of a steel plate is grooved and formed into a steel pipe shape by C press, U press, and O press, and then the butt portion is seam welded by inner surface welding and outer surface welding. Manufactured through a tube expansion process. Any welding method may be used as long as sufficient joint strength and joint toughness can be obtained, but it is preferable to use submerged arc welding from the viewpoint of excellent welding quality and manufacturing efficiency.

表1に示す化学成分の鋼(鋼種A〜L)を連続鋳造法によりスラブとし、これを用いて板厚25mm〜38mmの厚鋼板(No.1〜25)を製造した。   Steel of chemical composition (steel types A to L) shown in Table 1 was made into a slab by a continuous casting method, and a thick steel plate (No. 1 to 25) having a plate thickness of 25 mm to 38 mm was produced using this.

スラブを加熱後、熱間圧延により所定の板厚とした後直ちに、あるいは制御冷却直前に高衝突圧のデスケーリングを行った後、水冷型の制御冷却装置を用いて冷却を行った。各鋼板(No.1〜25)の製造条件を表2に示す。   After the slab was heated, immediately after it was made to have a predetermined thickness by hot rolling, or after descaling the high collision pressure just before the controlled cooling, cooling was performed using a water-cooled control cooling device. Table 2 shows the production conditions of each steel plate (No. 1 to 25).

得られた鋼板のミクロ組織およびスケール性状を、光学顕微鏡および走査型電子顕微鏡により観察した。10視野の断面組織写真を得て、スケール厚さを測定し、10視野の平均値で評価した。   The microstructure and scale properties of the obtained steel sheet were observed with an optical microscope and a scanning electron microscope. A cross-sectional structure photograph of 10 fields of view was obtained, the scale thickness was measured, and the average value of 10 fields of view was evaluated.

また、各鋼板の引張特性、硬さ、耐HIC特性を測定した。引張特性は、圧延直角方向の全厚試験片(API規格)を引張試験片として引張試験を行い、降伏強度(0.5%耐力)、引張強度、および全伸びを測定した。   In addition, tensile properties, hardness, and HIC resistance of each steel plate were measured. For tensile properties, a tensile test was performed using a full thickness test piece (API standard) in the direction perpendicular to the rolling as a tensile test piece, and yield strength (0.5% yield strength), tensile strength, and total elongation were measured.

また、ビッカース硬度計で板厚方向の硬さと板幅方向の硬さを測定した。板厚方向の硬さは1mmピッチで全厚を測定し、板幅方向の硬さは20mmピッチで全幅を測定した。なお、板幅方向の硬さは、表層1mm位置(表層から板厚(t)方向へ1mm)、板厚(t)/4位置、板厚(t)/2位置(板厚中心部)で測定したが、いずれの鋼板も表層1mm位置において硬さのばらつきが最大を示したので、板幅方向の硬さのばらつきは表層1mm位置で評価した。硬さの測定はいずれも荷重10kgでおこなった。   Further, the hardness in the plate thickness direction and the hardness in the plate width direction were measured with a Vickers hardness tester. The thickness in the thickness direction was measured at a pitch of 1 mm, and the total thickness was measured at a pitch of 20 mm. In addition, the hardness in the plate width direction is the surface layer 1 mm position (1 mm from the surface layer to the plate thickness (t) direction), plate thickness (t) / 4 position, plate thickness (t) / 2 position (plate thickness center). Although measured, all the steel plates showed the largest variation in hardness at the surface layer position of 1 mm, so the variation in hardness in the plate width direction was evaluated at the surface layer position of 1 mm. The hardness was measured at a load of 10 kg.

耐HIC特性は、NACE Standard TM−02−84に準じた浸漬時間96時間のHIC試験を行い、割れが認められない場合を耐HIC特性良好と判断した。   As for the HIC resistance, an HIC test with an immersion time of 96 hours according to NACE Standard TM-02-84 was conducted, and when no crack was observed, it was judged that the HIC resistance was good.

また、母材靭性については、圧延垂直方向のフルサイズシャルピーVノッチ試験片を3本採取し、シャルピー試験を行い、−30℃での吸収エネルギーを測定し、その平均値を求めた。−30℃での吸収エネルギーが200J以上のものを良好とした。   As for the base material toughness, three full-size Charpy V-notch test pieces in the vertical direction of rolling were sampled, Charpy test was performed, the absorbed energy at −30 ° C. was measured, and the average value was obtained. The absorption energy at −30 ° C. was determined to be 200 J or more.

溶接熱影響部(HAZ)靭性については、再現熱サイクル装置によって入熱70kJ/cmに相当する熱履歴を加えた試験片を3本採取し、シャルピー試験を行った。試験温度−30℃での吸収エネルギーを測定し、その平均値を求めた。−30℃でのシャルピー吸収エネルギーが100J以上のものを良好とした。   For the weld heat affected zone (HAZ) toughness, three specimens with a heat history corresponding to a heat input of 70 kJ / cm were collected by a reproducible thermal cycle apparatus and subjected to a Charpy test. The absorbed energy at a test temperature of −30 ° C. was measured, and the average value was obtained. Those having Charpy absorbed energy at −30 ° C. of 100 J or more were considered good.

さらに、API−5Lに準拠したDWTT試験片を鋼板から採取し、0〜−80℃の試験温度で試験を行い、SA値(Shear Area:延性破面率)が85%となる遷移温度を求めた。   Further, a DWTT test piece conforming to API-5L is taken from the steel sheet, tested at a test temperature of 0 to -80 ° C., and a transition temperature at which the SA value (Shear Area: ductile fracture surface ratio) is 85% is obtained. It was.

本発明範囲は、高強度鋼板として降伏強度485MPa以上、引張強度570MPa以上、表層1mm位置のミクロ組織は平均粒径20μm以下で体積率80%以下(0%を含む)のフェライト組織とベイナイト組織、t/2位置(tは板厚(mm))のミクロ組織はベイナイト組織、板厚方向と板幅方向の硬さのばらつきはΔHV1030以下、硬さの最大値がHV10230以下、母材部のシャルピー試験でのvE−30を200J以上、DWTT試験での85%SATTを−50℃以下、再現HAZシャルピー試験でのvE−30を100J以上、HIC試験で割れが認められないこととした。 The scope of the present invention is a ferrite structure and a bainite structure having a yield strength of 485 MPa or more, a tensile strength of 570 MPa or more as a high-strength steel sheet, and an average grain size of 20 μm or less and a volume ratio of 80% or less (including 0%). The microstructure at the t / 2 position (t is the plate thickness (mm)) is the bainite structure, the hardness variation between the plate thickness direction and the plate width direction is ΔH V10 30 or less, the maximum hardness value is H V10 230 or less, the mother VE-30 in the Charpy test of the material part is 200 J or more, 85% SATT in the DWTT test is −50 ° C. or less, vE-30 in the reproduction HAZ Charpy test is 100 J or more, and no crack is observed in the HIC test. did.

測定結果を表3に示す。   Table 3 shows the measurement results.

No.1〜12は、化学成分および製造方法が本発明の範囲内の本発明例である。いずれも、降伏強度485MPa以上、引張強度570MPa以上、板厚方向と板幅方向の硬さのばらつきはΔHV1030以下、硬さの最大値がHV10230以下で、且つ鋼板のミクロ組織は、表層1mm位置は平均粒径20μm以下で体積率80%以下(0%を含む)のフェライト組織とベイナイト組織、t/2位置(tは板厚(mm))はベイナイト組織であり、母材靱性、HAZ靱性および耐HIC特性(割れが認められない場合を耐HIC特性良好と判断して○で、割れが発生した場合を×で表示)とも良好であった。 No. 1 to 12 are examples of the present invention in which the chemical components and the production method are within the scope of the present invention. In any case, the yield strength is 485 MPa or more, the tensile strength is 570 MPa or more, the variation in hardness in the sheet thickness direction and the sheet width direction is ΔH V10 30 or less, the maximum value of the hardness is H V10 230 or less, and the microstructure of the steel sheet is The surface layer 1 mm position is an average grain size of 20 μm or less and a volume ratio of 80% or less (including 0%) ferrite structure and bainite structure, t / 2 position (t is the plate thickness (mm)) is a bainite structure, and the base material toughness The HAZ toughness and the HIC resistance (when the crack was not observed was judged as good when the crack was generated, and when the crack occurred, the mark was shown as x).

一方、No.13〜20は、化学成分は本発明の範囲内であるが、製造方法が本発明の範囲外の実施例である。No.13は、スラブ加熱温度が低く、ミクロ組織の均質化と炭化物の固溶が不十分であり低強度であった。   On the other hand, no. Examples 13 to 20 are examples in which the chemical components are within the scope of the present invention but the production methods are outside the scope of the present invention. No. No. 13 had a low slab heating temperature, insufficient homogenization of the microstructure and solid solution of carbide, and low strength.

No.14は、冷却開始温度が低く、フェライトが析出しすぎたため、低強度であり、且つ耐HIC特性が劣っていた。No.15は、制御冷却条件が本発明範囲外で、ミクロ組織として板厚中心部でパーライトが析出しすぎたため、低強度であり、且つ耐HIC特性が劣っていた。   No. No. 14 had a low cooling start temperature and ferrite precipitated too much, so it was low in strength and inferior in HIC resistance. No. No. 15 had a controlled cooling condition outside the range of the present invention, and pearlite was excessively precipitated in the center of the plate thickness as a microstructure. Therefore, the strength was low and the HIC resistance was inferior.

No.16は、冷却停止温度が低く、マルテンサイトや島状マルテンサイト(MA)の硬質相が生成したため、硬さのばらつきがΔHV1030を超えており、鋼板内の材質均一性と耐HIC特性が劣っていた。No.17は、制御冷却直前のデスケーリングの衝突圧が低く、且つ冷制御却条件が本発明範囲外であるため、板厚方向と板幅方向の硬さのばらつきがΔHV1030を超えており、鋼板内の材質均一性に劣っていた。 No. No. 16 has a low cooling stop temperature, and a hard phase of martensite or island martensite (MA) was generated. Therefore, the hardness variation exceeded ΔH V10 30 and the material uniformity in the steel sheet and the HIC resistance were It was inferior. No. No. 17, since the impact pressure of descaling just before the control cooling is low and the cooling control rejection condition is outside the scope of the present invention, the hardness variation in the plate thickness direction and the plate width direction exceeds ΔH V10 30 The material uniformity in the steel plate was poor.

No.18〜No.20は、いずれも制御冷却直前のデスケーリングを行っていないか、衝突圧が低いため、表層部の冷却速度が増加してマルテンサイトが生成し、板厚方向と板幅方向の硬さのばらつきがΔHV1030を超えており、鋼板内の材質均一性と耐HIC特性が劣っていた。 No. 18-No. No. 20 has not been descaled immediately before control cooling, or because the collision pressure is low, the cooling rate of the surface layer portion is increased and martensite is generated, resulting in variations in hardness in the plate thickness direction and plate width direction. Was over ΔH V10 30 and the material uniformity in the steel sheet and the HIC resistance were inferior.

No.21〜No.25は、化学成分が本発明の範囲外であり、硬さのばらつきがΔHV1030を超えているか、耐HIC特性が劣っていた。 No. 21-No. In No. 25, the chemical component was outside the scope of the present invention, and the hardness variation exceeded ΔH V10 30 or the HIC resistance was inferior.

1 鋼板
2 熱間圧延機
3 高衝突圧デスケーリング装置
4 制御冷却装置
1 Steel plate 2 Hot rolling mill 3 High collision pressure descaling device 4 Control cooling device

Claims (5)

質量%で、C:0.02〜0.08%、Si:0.01〜0.5%、Mn:0.5〜1.8%、P:0.01%以下、S:0.001%以下、Al:0.01〜0.08%、Ca:0.0005〜0.005%を含有し、下記(1)式で示されるCP値(質量%)が1.1以下であり、下記(2)式で示されるCeq値(質量%)が0.35以上0.45以下、残部がFeおよび不可避的不純物からなり、金属組織が表下1mmの領域でベイナイト組織と平均粒径20μm以下で体積率80%以下(0%を含む)のフェライト組織であり、t/2位置(tは板厚)でベイナイト組織であり、板厚方向の硬さのばらつきがΔHV1030以下であり、板幅方向の硬さのばらつきがΔHV1030以下であり、表面下1mmでの鋼板表層部の最高硬さがHV10230以下であり、引張強度が570MPa以上であることを特徴とする、鋼板内の材質均一性に優れたラインパイプ用高強度鋼板。
CP=4.46C(%)+2.37Mn(%)/6+{1.74Cu(%)+1.7Ni(%)}/15+{1.18Cr(%)+1.95Mo(%)+1.74V(%)}/5+22.36P(%) ・・・(1)
Ceq=C(%)+Mn(%)/6+(Cu(%)+Ni(%))/15+(Cr(%)+Mo(%)+V(%))/5 ・・・(2)
但し、各式において各元素記号は含有量(質量%)。
In mass%, C: 0.02 to 0.08%, Si: 0.01 to 0.5%, Mn: 0.5 to 1.8%, P: 0.01% or less, S: 0.001 % Or less, Al: 0.01 to 0.08%, Ca: 0.0005 to 0.005%, CP value (mass%) represented by the following formula (1) is 1.1 or less, following (2) Ceq value represented by the formula (wt%) 0.35 0.45, the balance being Fe and unavoidable impurities, metal structure mean particle bainite structure in the region of the front side under 1 m m A ferrite structure having a diameter of 20 μm or less and a volume ratio of 80% or less (including 0%), a bainite structure at a t / 2 position (t is a plate thickness), and a variation in hardness in the plate thickness direction is ΔH V10 30 or less , and the variation in hardness in the plate width direction is at [Delta] H V10 30 below, the steel sheet surface layer portion of the subsurface 1mm Height hardness is at H V10 230 or less, the tensile strength is equal to or is more than 570 MPa, high strength steel plate for line pipe superior in material homogeneity within the steel sheet.
CP = 4.46C (%) + 2.37Mn (%) / 6+ {1.74Cu (%) + 1.7Ni (%)} / 15+ {1.18Cr (%) + 1.95Mo (%) + 1.74V (% )} / 5 + 22.36P (%) (1)
Ceq = C (%) + Mn (%) / 6+ (Cu (%) + Ni (%)) / 15+ (Cr (%) + Mo (%) + V (%)) / 5 (2)
However, each element symbol in each formula is the content (% by mass).
さらに、質量%で、Cu:0.50%以下、Ni:0.50%以下、Cr:0.50%以下、Mo:0.50%以下の1種又は2種以上を含有することを特徴とする、請求項1に記載の鋼板内の材質均一性に優れたラインパイプ用高強度鋼板。   Furthermore, it is characterized by containing one or more of Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.50% or less, Mo: 0.50% or less in mass%. The high-strength steel sheet for line pipes excellent in material uniformity in the steel sheet according to claim 1. さらに、質量%で、Nb:0.005〜0.1%、V:0.005〜0.1%、Ti:0.005〜0.1%の1種又は2種以上を含有することを特徴とする、請求項1または請求項2に記載の鋼板内の材質均一性に優れたラインパイプ用高強度鋼板。   Furthermore, it contains one or more of Nb: 0.005 to 0.1%, V: 0.005 to 0.1%, and Ti: 0.005 to 0.1% in mass%. The high-strength steel sheet for line pipes, which is characterized by excellent material uniformity in the steel sheet according to claim 1 or 2. 請求項1乃至3の何れか一つに記載の化学成分を有する鋼を、1000℃以上1300℃以下の温度に加熱し、圧延終了温度が鋼板表面温度でAr温度以上で熱間圧延した後、制御冷却の直前に鋼板表面での噴射流の衝突圧が1MPa以上でデスケーリングを行い、冷却開始時の鋼板表面温度が(Ar−80)℃以上から鋼板表面の冷却速度が20℃/s以上100℃/s以下で鋼板表面温度が300℃以上600℃以下まで(3)式を満たす条件で1段目の冷却を行い、その後鋼板の平均冷却速度が15℃/s以上で鋼板の平均温度が200℃以上600℃以下まで2段目の冷却を行うことを特徴とする、金属組織が表下1mmの領域でベイナイト組織と平均粒径20μm以下で体積率80%以下(0%を含む)のフェライト組織であり、t/2位置(tは板厚)でベイナイト組織であり、板厚方向の硬さのばらつきがΔHV1030以下であり、板幅方向の硬さのばらつきがΔHV1030以下であり、表面下1mmでの鋼板表層部の最高硬さがHV10230以下であり、引張強度が570MPa以上である、鋼板内の材質均一性に優れたラインパイプ用高強度鋼板の製造方法。
3≦(700−T)/V ・・・(3)
但し、T:1段目冷却の鋼板表面冷却終了温度(℃)、V:1段目冷却の鋼板表面冷却速度(℃/s)
After heating the steel having the chemical component according to any one of claims 1 to 3 to a temperature of 1000 ° C or higher and 1300 ° C or lower and hot rolling at a rolling end temperature of Ar 3 or higher at a steel sheet surface temperature. , impact pressure of the injection flow on the steel sheet surface just before the controlled cooling is carried out descaling at 1MPa or higher, the steel sheet surface temperature of the cooling start is (Ar 3 -80) the cooling rate of the steel sheet surface from ° C. over 20 ° C. / s to 100 ° C./s or less, and the steel sheet surface temperature is 300 ° C. to 600 ° C. to satisfy the formula (3), and then the steel sheet is cooled at an average cooling rate of 15 ° C./s or more. wherein the average temperature is carried out in the second stage of cooling to 200 ° C. or higher 600 ° C. or less, the metal structure by volume of 80% or less in average particle size below 20μm and bainite structure in the region of the front side under 1 m m (0 % Ferrite structure) Yes, (the t plate thickness) t / 2 position a bainite structure, the variation in the sheet thickness direction stiffness is at [Delta] H V10 30 below, the variation of the hardness in the plate width direction is at [Delta] H V10 30 below, maximum hardness of the steel sheet surface layer portion of the subsurface 1mm is at H V10 230 or less, a tensile strength of not less than 570 MPa, method of manufacturing the material homogeneity in excellent line high strength steel sheet for pipes in steel.
3 ≦ (700−T) / V (3)
However, T: Finishing temperature of steel sheet surface cooling at 1st stage cooling (° C.), V: Steel sheet surface cooling rate at 1st stage cooling (° C./s)
請求項4に記載の製造方法で製造された鋼板を用い、管厚方向の硬さのばらつきが△HV1030以下であり、管周方向の硬さのばらつきが△HV1030以下であり、表面下1mmでの鋼管表層部の最高硬さがHV10248以下である鋼管を製造することを特徴とする材質均一性に優れたラインパイプ用高強度鋼管の製造方法。 Using the steel plate produced by the production method according to claim 4, the hardness variation in the tube thickness direction is ΔH V10 30 or less, and the hardness variation in the tube circumferential direction is ΔH V10 30 or less, A method for producing a high-strength steel pipe for a line pipe excellent in material uniformity, characterized in that a steel pipe having a maximum hardness of HV10 248 or less at a surface layer portion of 1 mm below the surface is produced.
JP2012265002A 2011-12-09 2012-12-04 High-strength steel sheet for line pipes with excellent material uniformity in the steel sheet and its manufacturing method Active JP5991175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012265002A JP5991175B2 (en) 2011-12-09 2012-12-04 High-strength steel sheet for line pipes with excellent material uniformity in the steel sheet and its manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011269597 2011-12-09
JP2011269597 2011-12-09
JP2012265002A JP5991175B2 (en) 2011-12-09 2012-12-04 High-strength steel sheet for line pipes with excellent material uniformity in the steel sheet and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2013139628A JP2013139628A (en) 2013-07-18
JP5991175B2 true JP5991175B2 (en) 2016-09-14

Family

ID=49037347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012265002A Active JP5991175B2 (en) 2011-12-09 2012-12-04 High-strength steel sheet for line pipes with excellent material uniformity in the steel sheet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP5991175B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3276026B1 (en) 2015-03-26 2019-08-28 JFE Steel Corporation Thick steel sheet for structural pipe, method for manufacturing thick steel sheet for structural pipe, and structural pipe
EP3279352B1 (en) * 2015-03-31 2022-12-07 JFE Steel Corporation Method for producing a high strength/high toughness steel sheet
JP6665822B2 (en) * 2017-03-30 2020-03-13 Jfeスチール株式会社 High strength steel sheet for sour resistant line pipe, method for producing the same, and high strength steel pipe using high strength steel sheet for sour resistant line pipe
WO2019064459A1 (en) * 2017-09-28 2019-04-04 Jfeスチール株式会社 High-strength steel plate for sour resistant line pipe, method for manufacturing same, and high-strength steel pipe using high-strength steel plate for sour resistant line pipe
CN109722611B (en) * 2017-10-27 2020-08-25 宝山钢铁股份有限公司 Steel for low-yield-ratio ultrahigh-strength continuous oil pipe and manufacturing method thereof
WO2020085888A1 (en) * 2018-10-26 2020-04-30 주식회사 포스코 High-strength steel having excellent resistance to sulfide stress cracking, and method for manufacturing same
JP7397318B2 (en) * 2020-04-23 2023-12-13 日本製鉄株式会社 Steel plate manufacturing method, steel pipe manufacturing method, steel plate manufacturing equipment and program
JP7448803B2 (en) * 2020-04-23 2024-03-13 日本製鉄株式会社 Steel plate manufacturing method, steel pipe manufacturing method, steel plate manufacturing equipment and program
JP7513046B2 (en) * 2021-06-16 2024-07-09 Jfeスチール株式会社 Surface layer hardness prediction model, method for predicting and controlling surface layer hardness of steel plate using the same, control command device, steel plate production line, and steel plate production method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3954411B2 (en) * 2002-02-28 2007-08-08 日新製鋼株式会社 Manufacturing method of high-strength hot-rolled steel sheet with excellent material uniformity and hole expandability
JP5098256B2 (en) * 2006-08-30 2012-12-12 Jfeスチール株式会社 Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect with excellent hydrogen-induced cracking resistance and method for producing the same
JP5223511B2 (en) * 2007-07-31 2013-06-26 Jfeスチール株式会社 Steel sheet for high strength sour line pipe, method for producing the same and steel pipe
JP5672916B2 (en) * 2010-09-30 2015-02-18 Jfeスチール株式会社 High-strength steel sheet for sour line pipes, method for producing the same, and high-strength steel pipe using high-strength steel sheets for sour line pipes

Also Published As

Publication number Publication date
JP2013139628A (en) 2013-07-18

Similar Documents

Publication Publication Date Title
JP5900303B2 (en) High-strength steel sheet for sour-resistant pipes with excellent material uniformity in the steel sheet and its manufacturing method
JP5991175B2 (en) High-strength steel sheet for line pipes with excellent material uniformity in the steel sheet and its manufacturing method
JP5672916B2 (en) High-strength steel sheet for sour line pipes, method for producing the same, and high-strength steel pipe using high-strength steel sheets for sour line pipes
JP4844687B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP5561120B2 (en) Welded steel pipe for high compressive strength and high toughness line pipe and manufacturing method thereof
US8765269B2 (en) High strength steel pipe for low-temperature usage having excellent buckling resistance and toughness of welded heat affected zone and method for producing the same
US9181609B2 (en) Welded steel pipe for linepipe having high compressive strength and excellent sour gas resistance and manufacturing method thereof
US9089919B2 (en) Welded steel pipe for linepipe with high compressive strength and manufacturing method thereof
EP3042976A1 (en) Steel sheet for thick-walled high-strength line pipe having exceptional souring resistance, crush resistance properties, and low-temperature ductility, and line pipe
JP5141073B2 (en) X70 grade or less low yield ratio high strength high toughness steel pipe and method for producing the same
JP5782827B2 (en) High compressive strength steel pipe for sour line pipe and manufacturing method thereof
JP5055774B2 (en) A steel plate for line pipe having high deformation performance and a method for producing the same.
JP5532800B2 (en) Low yield ratio high strength high uniform stretch steel plate with excellent strain aging resistance and method for producing the same
JP5903880B2 (en) High-strength steel sheet for line pipes with excellent sour resistance and weld heat-affected zone toughness and method for producing the same
JP5782828B2 (en) High compressive strength steel pipe and manufacturing method thereof
WO2011148754A1 (en) Process for production of thick steel sheet
JP4072009B2 (en) Manufacturing method of UOE steel pipe with high crushing strength
JP5991174B2 (en) High-strength steel sheet for sour-resistant pipes with excellent material uniformity in the steel sheet and its manufacturing method
JP4824143B2 (en) High strength steel pipe, steel plate for high strength steel pipe, and manufacturing method thereof
JP2015189984A (en) Low yield ratio high strength and high toughness steel plate, method for producing low yield ratio high strength and high toughness steel plate, and steel pipe
JP2017214618A (en) Production method of low yield ratio high strength hot rolled steel sheet excellent in low temperature toughness
JP5509654B2 (en) High-strength steel sheet excellent in PWHT resistance and uniform elongation characteristics and method for producing the same
JP6288288B2 (en) Steel plate for line pipe, manufacturing method thereof and steel pipe for line pipe
JP5211843B2 (en) Welded steel pipe with excellent crush resistance and method for producing the same
JP2006265722A (en) Production method of steel sheet for high-tension linepipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160801

R150 Certificate of patent or registration of utility model

Ref document number: 5991175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250