[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH108222A - Composite magnetic member and its production - Google Patents

Composite magnetic member and its production

Info

Publication number
JPH108222A
JPH108222A JP8154669A JP15466996A JPH108222A JP H108222 A JPH108222 A JP H108222A JP 8154669 A JP8154669 A JP 8154669A JP 15466996 A JP15466996 A JP 15466996A JP H108222 A JPH108222 A JP H108222A
Authority
JP
Japan
Prior art keywords
less
magnetic
ferromagnetic
austenite
composite magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8154669A
Other languages
Japanese (ja)
Inventor
Atsushi Sunakawa
淳 砂川
Tsutomu Inui
勉 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP8154669A priority Critical patent/JPH108222A/en
Publication of JPH108222A publication Critical patent/JPH108222A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
    • H01F1/0306Metals or alloys, e.g. LAVES phase alloys of the MgCu2-type

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Heat Treatment Of Articles (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite magnetic member particularly improved in the magnetic properties in the ferromagnetic part of a composite magnetic member having ferromagnetic part and non-magnetic part in one member. SOLUTION: A material having ferromagnetism, having a composition consisting of 0.35-0.75% C, 10-16% Cr, <=7% Mn, <=4% Cu, <=0.05% N, <=2% of either or both of Si and Al, and the balance essentially Fe, is partially heated to a temp. not lower than the austenitic transformation temp. and cooled, by which austenite is allowed to remain, and ferromagnetic part and non-magnetic part are formed. The ferromagnetic part has >=200 maximum magnetic permeability μm and the non-magnetic part is composed essentially of austenitic structure, and further, magnetic permeability and Ms point are regulated to <=2 and <=-10 deg.C, respectively. As alloying element, Ni can be incorporated by <=4% within the range satisfying Cu+Ni=6%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は磁目盛等等に使用さ
れる一つの部材に強磁性部と非磁性部を設けた複合磁性
部材およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite magnetic member provided with a ferromagnetic portion and a non-magnetic portion on one member used for a magnetic scale or the like, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】例えば、非磁性部と強磁性部を検出して
物品の相対位置を検出する素材は、磁気目盛、あるいは
磁気スケールと呼ばれ一部実用化されている。この磁気
目盛を得る方法としては、特開昭62−83620号に
記載されるように、通常ではオーステナイト組織となる
が、加工によってマルテンサイト化する、いわゆる準安
定オーステナイト鋼に強加工を与え、強磁性を示す加工
誘起マルテンサイト組織に変態させ、次いで目盛となる
部分をレーザ等で加熱して、オーステナイト組織として
非磁性部を形成していた。
2. Description of the Related Art For example, a material for detecting a relative position of an article by detecting a non-magnetic portion and a ferromagnetic portion is called a magnetic scale or a magnetic scale and has been partially put into practical use. As a method for obtaining this magnetic scale, as described in JP-A-62-83620, an austenitic structure is usually formed, but a so-called metastable austenitic steel which is turned into martensite by working is subjected to strong working. Transformation into a work-induced martensite structure exhibiting magnetism was performed, and then a scale portion was heated with a laser or the like to form a non-magnetic portion as an austenitic structure.

【0003】また、本出願人等は、特開平7−1139
7号において、強加工を適用して強磁性化する準安定オ
ーステナイト鋼として、最適なニッケル当量、クロム当
量、平山当量を提示し、自動車の電磁弁にとって好まし
い磁気特性が得られる新しい複合磁性材料を提案した。
このような準安定オーステナイト鋼を使用した複合磁性
材料を利用すると、一つの部材に強磁性部と非磁性部が
形成できるため、気密性の確保、振動等による破損の防
止等の信頼性の確保という点で、強磁性体と非磁性体を
接合した部品よりも優れたものとなる。
[0003] The present applicant has disclosed in Japanese Patent Application Laid-Open No. 7-1139.
In No. 7, a new composite magnetic material that presents the optimum nickel equivalent, chromium equivalent, and Hirayama equivalent as a metastable austenitic steel that becomes ferromagnetic by applying strong machining and that can obtain favorable magnetic properties for solenoid valves of automobiles Proposed.
When a composite magnetic material using such a metastable austenitic steel is used, a ferromagnetic portion and a non-magnetic portion can be formed in one member, thereby ensuring airtightness, ensuring reliability such as preventing damage due to vibration, and the like. In this respect, it is superior to a component in which a ferromagnetic material and a non-magnetic material are joined.

【0004】しかし、前述したような準安定オーステナ
イト鋼は、強磁性部の特性を高めるためには、高い加工
率を適用する必要がある。このような強加工を行うこと
は、製造工程の負荷を増大するとともに、強加工による
割れの発生等の問題が生じる可能性がある。また、上述
した強加工を行っても、最大透磁率μm160程度の磁
気特性しか得られないという問題があり、最大透磁率μ
mが200以上のような強磁性部の磁気特性を特に重視
する場合問題となる。
[0004] However, in the metastable austenitic steel as described above, it is necessary to apply a high working rate in order to enhance the characteristics of the ferromagnetic portion. Performing such strong working increases the load on the manufacturing process and may cause problems such as cracking due to strong working. Further, there is a problem that even if the above-mentioned strong working is performed, only magnetic properties with a maximum magnetic permeability of about μm 160 can be obtained.
This is a problem when the magnetic characteristics of the ferromagnetic portion where m is 200 or more are particularly important.

【0005】本発明の目的は、一つの部材において、強
磁性部と非磁性部を有する複合磁性部材における強磁性
部の磁気特性を特に改善した複合磁性部材およびその製
造方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a composite magnetic member in which the magnetic properties of a ferromagnetic portion in a composite magnetic member having a ferromagnetic portion and a non-magnetic portion are particularly improved, and a method of manufacturing the same. And

【0006】[0006]

【課題を解決するための手段】本発明者は、上述したよ
うな準安定オーステナイト鋼では、強磁性部の特性に限
界があることを見出し、新しい複合磁性部材を検討し
た。そして、通常マルテンサイトとなる合金において
も、オーステナイト変態温度以上からの冷却処理によ
り、非磁性組織であるオーステナイト組織を残留させる
ことができるという知見から、新しい複合磁性材料を検
討した。
The present inventors have found that the metastable austenitic steel as described above has a limit in the properties of the ferromagnetic portion, and have studied a new composite magnetic member. Then, a new composite magnetic material was studied from the knowledge that even in an alloy that normally becomes martensite, the austenite structure, which is a nonmagnetic structure, can be left by cooling treatment from the austenite transformation temperature or higher.

【0007】その結果、通常はマルテンサイトとなり強
磁性が得られるC−Cr−Fe系合金に対して、オース
テナイトを安定化するのに有効な元素としてCuを選択
し、Cuを4%以下添加することによって、部分的に加
熱冷却して得られる残留オーステナイトを安定化するこ
とができ、これによって部分的な非磁性部を得ることが
できることを見出し本発明に到達した。
As a result, Cu is selected as an effective element for stabilizing austenite with respect to a C-Cr-Fe alloy which usually becomes martensite and ferromagnetic is obtained, and Cu is added in an amount of 4% or less. As a result, it has been found that the retained austenite obtained by partially heating and cooling can be stabilized, and thereby a non-magnetic portion can be partially obtained.

【0008】すなわち本発明は、質量%でC:0.35
〜0.75%、Cr:10〜16%、Mn:7%以下、
Cu:4%以下、N:0.05%以下、SiおよびAl
の1種もしくは2種を2%以下含有し、残部実質的にF
eからなる組成を有し、かつ最大透磁率μm200以上
の強磁性部と、オーステナイト組織を主体とする透磁率
2以下、Ms点(オーステナイト組織が、マルテンサイ
ト化する温度であり、この温度が高いほどオーステナイ
トが不安定であることになる。)が−10℃以下の非磁
性部が形成された複合磁性部材である。また、本発明に
おいてはNiを4%を上限として、Cu+Niで6%以
下添加することができる。
That is, in the present invention, C: 0.35 by mass% is used.
~ 0.75%, Cr: 10 ~ 16%, Mn: 7% or less,
Cu: 4% or less, N: 0.05% or less, Si and Al
1% or 2% or less, and the balance is substantially F
e, a ferromagnetic portion having a maximum magnetic permeability of 200 μm or more, a magnetic permeability of 2 or less mainly composed of an austenite structure, and an Ms point (the temperature at which the austenite structure turns into martensite. The more austenite becomes unstable, the more the composite magnetic member has a non-magnetic portion at -10 ° C or lower. Further, in the present invention, up to 4% of Ni, 6% or less of Cu + Ni can be added.

【0009】上述した本発明の複合磁性部材は、上述し
た組成の素材を焼鈍し、最大透磁率μmが200以上の
強磁性組織を得た後、該強磁性組織の一部をオーステナ
イト変態開始温度以上に加熱した後、冷却してオーステ
ナイト組織を残留させ非磁性部を得ることにより製造す
ることができる。なお、オーステナイト変態開始温度以
上に加熱した後、冷却してオーステナイト組織を残留さ
せる方法としては、部分的に溶融凝固させる手段をとっ
ても良い。
In the above-described composite magnetic member of the present invention, after a material having the above-described composition is annealed to obtain a ferromagnetic structure having a maximum magnetic permeability μm of 200 or more, a part of the ferromagnetic structure is reduced to an austenite transformation start temperature. After heating as described above, it can be manufactured by cooling to leave an austenite structure to obtain a non-magnetic portion. In addition, as a method of heating to a temperature equal to or higher than the austenite transformation start temperature and then cooling to leave the austenite structure, a means of partially melting and solidifying may be used.

【0010】[0010]

【発明の実施の形態】上述したように、本発明は複合磁
性材料として特に優れた強磁性特性を有する強磁性部を
得ようとするものである。そのために、本発明において
は、通常は強磁性を示すC−Cr−Fe系合金を選択
し、かつCuをオーステナイト安定化元素として添加し
たものである。以下、本発明で規定する元素の規定理由
を述べる。Cuはオーステナイト組織を安定化するもの
であり、本発明において重要な元素である。Cuの範囲
を4%以下としたのは、4%をこえたCuは、オーステ
ナイト変態点以上からの冷却処理において析出するた
め、非磁性化に対し有効な効果を示さないからである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, the present invention aims to obtain a ferromagnetic portion having particularly excellent ferromagnetic properties as a composite magnetic material. Therefore, in the present invention, a C-Cr-Fe-based alloy that normally exhibits ferromagnetism is selected, and Cu is added as an austenite stabilizing element. Hereinafter, the reasons for defining the elements specified in the present invention will be described. Cu stabilizes the austenite structure and is an important element in the present invention. The reason why the range of Cu is set to 4% or less is that Cu exceeding 4% precipitates in the cooling treatment from the austenite transformation point or higher and does not show an effective effect on demagnetization.

【0011】なお、本発明は、オーステナイト組織を安
定化する元素としてNiを添加することも可能である。
Niはオーステナイト組織を安定化するのに有効な元素
であるが、Cuに比較して高価である。また、焼鈍後の
0.2%耐力を高め、冷間での加工をCuよりも難しく
する。また強磁性部の磁気特性を低下させる元素でもあ
るため、添加量を制限する必要がある。本発明において
は、上記を考慮し、添加する場合のNiの上限は4%と
し、冷間での加工性および強磁性部の磁気特性を劣化し
ないために、Niを添加する場合にはNi+Cuで6%
以下とした。
In the present invention, Ni can be added as an element for stabilizing the austenite structure.
Ni is an element effective for stabilizing the austenite structure, but is more expensive than Cu. Further, it increases the 0.2% proof stress after annealing and makes working in the cold more difficult than in Cu. In addition, since it is an element that lowers the magnetic properties of the ferromagnetic portion, it is necessary to limit the amount of addition. In the present invention, in consideration of the above, the upper limit of Ni when added is 4%, and in order not to deteriorate workability in cold and the magnetic characteristics of the ferromagnetic portion, Ni + Cu is used when Ni is added. 6%
It was as follows.

【0012】Cは炭化物を形成し、本発明の基本となる
C−Cr−Fe系合金の基本的な強度を確保する元素と
して重要である。また、Cはオーステナイトの安定化に
も寄与する元素である。Cが0.35%未満では、オー
ステナイト変態開始温度以上に加熱後冷却した際、透磁
率2以下、Ms点が−10℃以下の安定な非磁性組織を
得ることが困難である。一方、0.75%を超えると冷
間での加工が難しくなる。そのため、本発明において
は、Cの範囲を0.35〜0.75%に規定した。Cのよ
り望ましい範囲は、0.45〜0.65%である。
C forms a carbide and is important as an element for securing the basic strength of the C—Cr—Fe alloy based on which the present invention is based. Further, C is an element that also contributes to stabilization of austenite. If C is less than 0.35%, it is difficult to obtain a stable nonmagnetic structure having a magnetic permeability of 2 or less and an Ms point of -10 ° C or less when heated and cooled to a temperature higher than the austenite transformation start temperature. On the other hand, when it exceeds 0.75%, it is difficult to perform cold working. Therefore, in the present invention, the range of C is set to 0.35 to 0.75%. A more desirable range for C is 0.45 to 0.65%.

【0013】Mnは、脱酸元素として精錬のために添加
される他、オーステナイト組織を安定化する元素として
も作用する。Mnの範囲を7%以下としたのは、7%を
超えると強磁性部の磁気特性が急激に低下し、また熱間
加工性が劣化するからである。
Mn is added as a deoxidizing element for refining and also acts as an element for stabilizing the austenite structure. The reason why the range of Mn is set to 7% or less is that if it exceeds 7%, the magnetic properties of the ferromagnetic portion rapidly decrease and the hot workability deteriorates.

【0014】Nを0.05%以下としたのは、0.05%
を超えると加工硬化の度合が大きくなり、成形性が劣化
してくるためである。Nはオーステナイト安定化元素で
あり、好ましくは0.01%以上添加することによっ
て、非磁性部を一層安定化させることができる。
The reason why N is set to 0.05% or less is that 0.05% or less is used.
If the ratio exceeds the above, the degree of work hardening increases, and the moldability deteriorates. N is an austenite stabilizing element, and preferably by adding 0.01% or more, the nonmagnetic portion can be further stabilized.

【0015】Crはマトリックスに固溶すると共に、一
部は炭化物となり、本発明の機械的強度と耐食性を確保
する元素である。本発明においてCrの範囲を10〜1
6%としたのは、10%未満では耐食性が劣り、16%
以上ではフェライト組織が安定化するため、非磁性部を
形成することが困難になるためである。なお、本発明に
おいては、SiおよびAlの1種もしくは2種以上を合
計で2%以下含んでもよい。これらの元素は、脱酸元素
として精錬のために添加することができるものである。
なお、これらの元素は精錬過程で除去されるが、一部は
残留する。本発明においては、特に磁気特性を劣化しな
い範囲として、2%以下に制限する。
Cr is an element that forms a solid solution with the matrix and partially becomes a carbide, thereby ensuring the mechanical strength and corrosion resistance of the present invention. In the present invention, the range of Cr is 10-1.
The reason why 6% is set is that if it is less than 10%, the corrosion resistance is inferior and 16%.
In the above, the ferrite structure is stabilized, so that it is difficult to form a non-magnetic portion. In the present invention, one or more of Si and Al may be contained in a total of 2% or less. These elements can be added for refining as deoxidizing elements.
Note that these elements are removed during the refining process, but some remain. In the present invention, the range is particularly limited to 2% or less as long as the magnetic characteristics are not deteriorated.

【0016】上述した本発明の複合磁性部材の製造方法
の特徴は、上述した組成の素材を焼鈍し、最大透磁率μ
m200以上の強磁性組織を得た後、該強磁性組織の一
部をオーステナイト変態開始温度以上に加熱した後、冷
却してオーステナイト組織を残留させ非磁性部を得るこ
とである。この方法により、従来の準安定オーステナイ
ト鋼を使用する場合に得られなかった最大透磁率μm2
00以上の強磁性部と、オーステナイト組織を主体とす
る透磁率2以下、Ms点が−10℃以下の非磁性部を併
せ持つ複合磁性部材を得ることができる。
A feature of the method for manufacturing a composite magnetic member of the present invention described above is that a material having the above-described composition is annealed to obtain a maximum magnetic permeability μ.
After obtaining a ferromagnetic structure of m200 or more, a part of the ferromagnetic structure is heated to an austenite transformation start temperature or higher, and then cooled to leave an austenite structure to obtain a nonmagnetic portion. According to this method, the maximum permeability μm2 which cannot be obtained when using the conventional metastable austenitic steel is used.
It is possible to obtain a composite magnetic member having both a ferromagnetic portion of at least 00 and a non-magnetic portion mainly composed of an austenite structure having a magnetic permeability of 2 or less and an Ms point of −10 ° C. or less.

【0017】上述した強磁性部を得る際に行う素材の焼
鈍は、強磁性部の製造工程において残留する歪みの開放
を行うものであり、強磁性特性を高めるには、非磁性部
を得る前に予め行っておく必要がある。本発明における
強磁性部の最大透磁率μm200以上は、強加工によっ
て強磁性を得る必要がある準安定オーステナイト鋼では
得ることのできないものである。本発明は、加熱冷却に
より残留するオーステナイトにより非磁性部の特性を確
保するものである。このオーステナイトは、冷却速度を
速めることでより多く残留させることが可能であり、オ
ーステナイトが安定して存在する温度域から急冷するこ
とが望ましい。実際には、空冷以上の冷却速度を確保で
きる冷却方法の適用が望ましく、水冷法あるいは油冷法
を適用することが望ましい。
The above-described annealing of the material for obtaining the ferromagnetic portion releases the residual strain in the process of manufacturing the ferromagnetic portion. Must be performed in advance. The maximum magnetic permeability of 200 μm or more of the ferromagnetic portion in the present invention cannot be obtained with a metastable austenitic steel which needs to obtain ferromagnetism by strong working. The present invention secures the characteristics of the non-magnetic portion by austenite remaining after heating and cooling. This austenite can be retained more by increasing the cooling rate, and it is desirable to rapidly cool from a temperature range where austenite is stably present. In practice, it is desirable to apply a cooling method capable of securing a cooling rate higher than air cooling, and it is desirable to apply a water cooling method or an oil cooling method.

【0018】また、オーステナイトを残留させる方法と
しては、レーザービームやプラズマ加熱により部分的に
溶解させ凝固させる方法をとることも可能である。溶解
凝固する方法では、オーステナイトは極めて安定にな
り、非磁性部の磁気特性を確保する手法としては有効で
ある。このように、本発明においては、本来強磁性のマ
ルテンサイト組織となる鋼を利用するため、非磁性部の
特性の確保が重要である。非磁性部の特性は、上述した
合金組成とオーステナイトを残留するための加熱冷却処
理によって大きく変化する。複合磁性部材として有効な
非磁性部の磁気特性および安定性の指標として、本発明
においては、最大透磁率2以下、Ms点を−10℃以下
と規定した。
Further, as a method of leaving austenite, a method of partially dissolving and solidifying by a laser beam or plasma heating can be adopted. In the method of melting and solidifying, austenite becomes extremely stable and is effective as a method for securing the magnetic properties of the non-magnetic portion. As described above, in the present invention, since the steel which originally has a ferromagnetic martensite structure is used, it is important to secure the characteristics of the non-magnetic portion. The characteristics of the non-magnetic portion greatly change due to the above-described alloy composition and heating / cooling treatment for retaining austenite. In the present invention, the maximum magnetic permeability is set to 2 or less, and the Ms point is set to -10 ° C. or less as an index of the magnetic properties and stability of the nonmagnetic portion effective as a composite magnetic member.

【0019】[0019]

【実施例】表1に示す組成の素材を、真空溶解にて10
kgの鋼塊を得た後、鍛造、熱間圧延を行い、板厚4.
0mmとした。この材料をA3変態点以下で焼鈍した
後、酸化スケールを除去し、冷間圧延により板厚1.5
mmとすることにより得た。
EXAMPLE A material having the composition shown in Table 1 was melted in a vacuum for 10 minutes.
After obtaining a steel ingot of kg, forging and hot rolling are performed to obtain a plate thickness of 4.
0 mm. After annealing this material below the A3 transformation point, the oxide scale is removed and the sheet thickness is reduced to 1.5 by cold rolling.
mm.

【0020】[0020]

【表1】 [Table 1]

【0021】この素材の一部を高周波加熱によってA3
変態点以上の1150℃で1分間保持後、水冷し、強磁性を
有する素材にオーステナイト組織を主体とする非磁性部
を形成した。得られた複合磁性材料の磁気特性およびM
s点の測定を行った。その結果を表2に示す。ここで、
強磁性部に対しては、B−Hループから最大透磁率μm
と磁束密度B4000(磁化の強さ4000(A/m)における磁束
密度)とを評価し、非磁性部に対しては、透磁率計によ
って測定した透磁率μと微量走査型熱量によって測定し
たMs点とを評価した。また、加工性を評価するため
に、上述した素材を得る工程の途中の熱間圧延後の材料
から試料を採取して、引っ張り試験を行い0.2%耐力
を測定した。この結果を表2に併せて示す。
A part of this material is A3
After holding at 1150 ° C. for 1 minute above the transformation point, the mixture was cooled with water to form a nonmagnetic portion mainly composed of an austenite structure on a ferromagnetic material. Magnetic properties and M of the obtained composite magnetic material
The measurement at the s point was performed. Table 2 shows the results. here,
For the ferromagnetic portion, the maximum permeability μm
And the magnetic flux density B4000 (magnetic flux density at a magnetization intensity of 4000 (A / m)) were evaluated. For the non-magnetic portion, the magnetic permeability μ measured by a magnetic permeability meter and Ms measured by a minute scanning calorie The point was evaluated. Further, in order to evaluate the workability, a sample was taken from the material after hot rolling in the process of obtaining the above-mentioned material, and a tensile test was performed to measure a 0.2% proof stress. The results are shown in Table 2.

【0022】[0022]

【表2】 [Table 2]

【0023】表2に示すように、Cu4%以下またはC
u+Ni量を6%以下とした本発明の試料は、すべて強
磁性部において、最大透磁率が200を越え、4000
(A/m)における磁束密度も1(T)を越える優れた
強磁性が得られると共に、非磁性部においても透磁率が
2以下となり、Ms点も−10℃以下と安定したものと
なったことを確認できた。また、本発明の試料1と、C
uを添加せずCuのかわりにオーステナイト組織を安定
化するためにNiを多く添加した以外は試料1と同等の
組成を有する比較例11とを比較すると、強磁性化状態
および非磁性状態における磁気特性はほぼ同等である
が、比較例11は耐力値が本発明例よりも高くなってい
る。このことから、加工性を高めて同等の磁気特性を得
るという点において、オーステナイト安定化元素として
はNiよりもCuの方が好ましいことがわかる。
As shown in Table 2, Cu content of 4% or less or C
The samples of the present invention in which the u + Ni content was 6% or less all had a maximum magnetic permeability of more than 200 and 4000 in the ferromagnetic portion.
An excellent ferromagnetism having a magnetic flux density at (A / m) exceeding 1 (T) was obtained, the magnetic permeability was also 2 or less even in the non-magnetic portion, and the Ms point was stable at -10 ° C or less. I was able to confirm that. Further, Sample 1 of the present invention and C
Compared with Comparative Example 11 having the same composition as Sample 1 except that a large amount of Ni was added to stabilize the austenite structure instead of Cu without adding u, the magnetic properties in the ferromagnetic state and the non-magnetic state were compared. Although the characteristics are almost the same, Comparative Example 11 has a higher proof stress value than the present invention. From this, it can be seen that Cu is more preferable than Ni as the austenite stabilizing element in terms of enhancing workability and obtaining equivalent magnetic characteristics.

【0024】[0024]

【発明の効果】本発明によれば、準安定オーステナイト
鋼ではなく、Cuを適量添加したC−Cr−Fe合金を
使用することにより、強加工を行うことなく特に強磁性
部の特性に優れた複合磁性材料を得ることができる。従
って、従来のような極めて厳しい加工条件を適用するこ
とがなくなり、製造上の効率向上に極めて有効である。
また、本発明においては強磁性部の磁気特性に優れてい
るため、磁気回路におけるポールピースのような磁路形
成材料としても有効である。
According to the present invention, not the metastable austenitic steel but the C-Cr-Fe alloy to which Cu is added in an appropriate amount is used. A composite magnetic material can be obtained. Therefore, it is no longer necessary to apply extremely strict processing conditions as in the related art, which is extremely effective in improving the efficiency in manufacturing.
In the present invention, since the ferromagnetic portion has excellent magnetic properties, it is also effective as a magnetic path forming material such as a pole piece in a magnetic circuit.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 質量%でC:0.35〜0.75%、C
r:10〜16%、Mn:7%以下、Cu:4%以下、
N:0.05%以下、SiおよびAlの1種または2種
を合計で2%以下含有し、残部実質的にFeからなる組
成を有し、かつ最大透磁率μm200以上の強磁性部
と、オーステナイト組織を主体とする透磁率2以下、M
s点−10℃以下の非磁性部とが形成されていることを
特徴とする複合磁性部材。
1. A mass% of C: 0.35 to 0.75%, C
r: 10 to 16%, Mn: 7% or less, Cu: 4% or less,
N: a ferromagnetic portion containing 0.05% or less, a total of 2% or less of one or two types of Si and Al, a balance substantially consisting of Fe, and a maximum magnetic permeability of 200 μm or more; Permeability of 2 or less mainly composed of austenite structure, M
A composite magnetic member comprising a nonmagnetic portion having an s point of −10 ° C. or lower.
【請求項2】 質量%でNiを4%以下含み、かつCu
+Ni:6%以下である請求項1に記載の複合磁性部
材。
2. An alloy containing 4% or less of Ni by mass% and Cu
The composite magnetic member according to claim 1, wherein + Ni is 6% or less.
【請求項3】 質量%でC:0.35〜0.75%、C
r:10〜16%、Mn:7%以下、Cu:4%以下、
N:0.05%以下、SiおよびAlの1種または2種
を合計で2%以下含有し、残部実質的にFeからなる組
成を有する素材を焼鈍し、最大透磁率μm200以上の
強磁性部を得た後、該強磁性組織の一部をオーステナイ
ト変態点以上に加熱した後、冷却してオーステナイト組
織を残留させ非磁性部を得ることを特徴とする複合磁性
部材の製造方法。
3. A mass% of C: 0.35 to 0.75%, C
r: 10 to 16%, Mn: 7% or less, Cu: 4% or less,
N: 0.05% or less, a material containing one or two kinds of Si and Al in a total of 2% or less, and a material having a composition substantially composed of Fe and the balance is annealed, and a ferromagnetic part having a maximum magnetic permeability of 200 μm or more A method for producing a composite magnetic member, comprising: heating a part of the ferromagnetic structure to a temperature equal to or higher than the austenite transformation point after cooling, and then cooling to leave the austenitic structure to obtain a nonmagnetic portion.
【請求項4】 素材は質量%でNiを4%以下含み、か
つCu+Ni:6%以下であることを特徴とする請求項
3に記載の複合磁性部材の製造方法。
4. The method for producing a composite magnetic member according to claim 3, wherein the material contains 4% or less of Ni in mass% and Cu + Ni: 6% or less.
JP8154669A 1996-06-14 1996-06-14 Composite magnetic member and its production Pending JPH108222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8154669A JPH108222A (en) 1996-06-14 1996-06-14 Composite magnetic member and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8154669A JPH108222A (en) 1996-06-14 1996-06-14 Composite magnetic member and its production

Publications (1)

Publication Number Publication Date
JPH108222A true JPH108222A (en) 1998-01-13

Family

ID=15589318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8154669A Pending JPH108222A (en) 1996-06-14 1996-06-14 Composite magnetic member and its production

Country Status (1)

Country Link
JP (1) JPH108222A (en)

Similar Documents

Publication Publication Date Title
JP4399751B2 (en) Composite magnetic member, method for manufacturing ferromagnetic portion of composite magnetic member, and method for forming nonmagnetic portion of composite magnetic member
JP3868019B2 (en) Composite magnetic member and manufacturing method thereof
JP4464889B2 (en) Soft magnetic steel materials with excellent cold forgeability, machinability and magnetic properties, and soft magnetic steel parts with excellent magnetic properties
JP3550132B2 (en) Precipitation hardening type soft magnetic ferritic stainless steel
JPH0542493B2 (en)
JP4223726B2 (en) Soft magnetic steel material excellent in cold forgeability and magnetic permeability characteristics, soft magnetic steel part excellent in magnetic permeability characteristics and manufacturing method thereof
JPH0250931A (en) Manufacture of ferromagnetic ni-fe alloy and slab of the same alloy having excellent surface properties
JP3676477B2 (en) Composite magnetic member and manufacturing method thereof
JP7475181B2 (en) Ferritic Stainless Steel
JPH108222A (en) Composite magnetic member and its production
JP2002180215A (en) Composite magnetic member having excellent low temperature magnetic stability and its production method
JPH1070021A (en) Composite magnetic member and manufacture thereof
JP2002129294A (en) High saturation magnetic flux density composite magnetic member and motor using the same member
US5951788A (en) Superconducting high strength stainless steel magnetic component
JP4398639B2 (en) Soft magnetic steel materials with excellent machinability and magnetic properties, soft magnetic steel components with excellent magnetic properties, and methods for producing soft magnetic steel components
JPS61231138A (en) Low thermal expansion alloy having superior strength at high temperature
JPH04116141A (en) High-hardness and low-permeability nonmagnetic functional alloy and its production
JP3693577B2 (en) Torque sensor shaft and torque sensor using the shaft
JP2000036409A (en) Manufacture of actuator composite magnetic member and ferromagnetic part thereof, and forming method of non- magnetic part of actuator composite magnetic member
JP4266336B2 (en) Soft magnetic steel material excellent in hot forgeability, magnetic properties and machinability, soft magnetic steel parts excellent in magnetic properties and manufacturing method thereof
JP2004143585A (en) Stock for composite magnetic member, composite magnetic member obtained by using the stock, method for producing the member, and motor obtained by using the member
US4585707A (en) High expansion alloy for bimetal strip
JPS6123750A (en) Nonmagnetic steel
JP2008045182A (en) Soft magnetic steel material, and soft magnetic component and method for producing the same
JP4046257B2 (en) Composite magnetic member having excellent corrosion resistance and method for producing the same