[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4223726B2 - Soft magnetic steel material excellent in cold forgeability and magnetic permeability characteristics, soft magnetic steel part excellent in magnetic permeability characteristics and manufacturing method thereof - Google Patents

Soft magnetic steel material excellent in cold forgeability and magnetic permeability characteristics, soft magnetic steel part excellent in magnetic permeability characteristics and manufacturing method thereof Download PDF

Info

Publication number
JP4223726B2
JP4223726B2 JP2002030079A JP2002030079A JP4223726B2 JP 4223726 B2 JP4223726 B2 JP 4223726B2 JP 2002030079 A JP2002030079 A JP 2002030079A JP 2002030079 A JP2002030079 A JP 2002030079A JP 4223726 B2 JP4223726 B2 JP 4223726B2
Authority
JP
Japan
Prior art keywords
less
soft magnetic
magnetic
magnetic steel
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002030079A
Other languages
Japanese (ja)
Other versions
JP2003226945A (en
JP2003226945A5 (en
Inventor
政道 千葉
正人 鹿礒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002030079A priority Critical patent/JP4223726B2/en
Publication of JP2003226945A publication Critical patent/JP2003226945A/en
Publication of JP2003226945A5 publication Critical patent/JP2003226945A5/ja
Application granted granted Critical
Publication of JP4223726B2 publication Critical patent/JP4223726B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Soft Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車や電車、船舶用などを対象とする各種電装部品に使用されるソレノイド、リレーまたは電磁弁等の鉄心材として有用な軟磁性鋼部品、およびその原材料である軟磁性鋼材、並びに軟磁性鋼部品の製造方法に関するものであり、特に成型加工時において高歩留まりで寸法精度に優れた部品を得ることができ(以下、この特性を単に「冷間鍛造性」ということがある)、かつJIS−SUYB−0種レベル以上の優れた磁気特性と優れた透磁率特性を確保することのできる軟磁性鋼材、および該鋼材を用いて得られる透磁率特性に優れた軟磁性鋼部品、並びに該軟磁性鋼部品の製造に有用な方法に関するものである。
【0002】
尚、前記「SUYB」とは、JIS C 2503で規定される磁気特性の標準規格であり、前記電装部品においてはJIS−SUYB−1種程度の磁気特性が必要とされている。「SUYB−2種」よりも「SUYB−1種」、「SUYB−1種」よりも「SUYB−0種」の方が磁気特性に優れており、コンパクト化(軽量化)、応答速度の向上および省電力化に有効であることから、同じ用途に適用する部品であっても「SUYB−0種」レベルまたはそれ以上の磁気特性を有していることが望まれる。
【0003】
【従来の技術】
自動車の電装部品等にて磁気回路を構成する鋼部材には、省電力化や応答性の向上を図るべく、磁気特性として、低い外部磁界で容易に磁化し得る特性が要求される。このため、鋼部材内部の磁束密度が外部磁界に応答し易い軟磁性鋼材が通常使用されている。
【0004】
この様な磁気特性を有する軟磁性鋼材として、例えばC量が0.01質量%程度以下の低炭素鋼などが用いられ、軟磁性鋼部品は、該鋼片に熱間圧延を施した後、潤滑処理、伸線加工を行って得た鋼線に、部品成型および磁気焼鈍等を順次施して得られるのが一般的である。
【0005】
近年、軟磁性鋼部品の製造では、製造コスト低減の一手段として、部品成型工程における切削加工にかわって冷間鍛造を行うことが進められており、用いる鋼材には、複雑形状に成形可能な優れた冷間鍛造性が要求されている。一方、自動車等の省エネルギー化に対応して、前記電装部品には磁気回路の制御のより精緻なものが求められ、これに付随して磁気応答速度の向上、即ち高い透磁率とヒステリシス損失の低減が鋼部材に与えられる重要な課題となっている。
【0006】
高透磁率を達成し得る材料として代表的なものに珪素鋼があるが、冷間鍛造性が低炭素鋼材に劣るといった短所がある。また前述の低炭素鋼材は、冷間鍛造性に優れているものの、透磁率特性は珪素鋼に及ばず、透磁率特性と冷間鍛造性を実用レベルで両立させた軟磁性材料の実現が要求されている。
【0007】
冷間鍛造性を高めるべく、低炭素鋼の変形抵抗を低減した技術が、例えば、特開2000−8139号や特許第2910288号等に示されている。前者には、合金成分や圧延条件を調整することによって鋼中の固溶Nを固定し、動的ひずみ時効に起因する変形抵抗の増加を抑えることが示されている。しかしながら、上記公報における技術は、材料強度と冷間鍛造性に主眼を置いてなされたものであって、結晶粒の大きさや析出物の存在に敏感に反応する磁気特性については必ずしも満足し得るものではない。また後者には、C, Siをはじめとする合金元素を極限まで低減し、ZrやCrを添加することで固溶するCやNを減少させ、冷間鍛造性を確保する技術が開示されているが、透磁率の向上まで図ったものではなく、磁気応答性の向上には更なる検討を要するものと考えられる。
【0008】
一方、磁気応答性の向上を図ったものに、特開平03−90544号などの技術が提案されている。しかしこの技術は、主に外部磁界を印加した際に生じる渦電流の抑制に関するもので、近年の軟磁性鋼部品で重要となってきている透磁率の向上とヒステリシス損失の低減を実現して磁気応答性を高めたものではなく、また、透磁率特性向上の阻害となるAlやCrの含有量が広範囲にわたるため、高透磁率を達成するには改善を要するものと考えられる。
【0009】
【発明が解決しようとする課題】
本発明は、このような事情に着目してなされたものであり、その目的は、磁気特性として特に優れた透磁率を確保することができ、かつ冷間鍛造において精度よく高歩留まりで加工することのできる軟磁性鋼材と、この様な軟磁性鋼材を用いて得られる透磁率特性に優れた軟磁性鋼部品、更にはその製造方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明にかかる冷間鍛造性と透磁率特性に優れた軟磁性鋼材とは、質量%で、C:0.05%以下(0%を含まない)、Si:0.05〜2%(0.1%以下を除く)、Mn:0.1〜0.5%、P:0.02%以下(0%を含む)、S:0.02%以下(0%を含む)、Al:0.1%以下(0%を含む)、N:0.005%以下(0%を含む)、O:0.02%以下(0%を含む)を満たし、金属組織がフェライト単相組織であるところに要旨を有するものであるが、該鋼材には、更に他の化学成分として、Bが0.0005〜0.005%含有されていてもよい。
【0011】
更に本発明は、この様な鋼材を用いて得られる透磁率特性に優れた軟磁性鋼部品も規定するものであって、C:0.05%以下(0%を含まない)、Si:0.05〜2%(0.1%以下を除く)、Mn:0.1〜0.5%、P:0.02%以下(0%を含む)、S:0.02%以下(0%を含む)、Al:0.1%以下(0%を含む)、N:0.005%以下(0%を含む)、O:0.02%以下(0%を含む)を満たし、金属組織が平均結晶粒径100μm以上のフェライト単相組織であるところに要旨を有するもので、更に他の成分として、Bが0.0005〜0.005%含有されていてもよい。
【0012】
また本発明の軟磁性鋼部品を製造するにあたっては、前記本発明で規定する軟磁性鋼材を使用し、所定の部品形状に成形したのち焼鈍するのがよい。
【0013】
尚、前記「0%を含む」とは、0%の場合を排除しないことを示し、前記「フェライトの平均結晶粒径」とは、フェライト結晶粒の短径と長径の平均値をいうものとする。
【0014】
【発明の実施の形態】
本発明者らは、前述した様な状況の下で、成型加工時には優れた冷間鍛造性を発揮し、かつ磁気特性のうち特に優れた透磁率特性を確保することのできる軟磁性鋼材、およびこの様な鋼材を用いて得られる透磁率特性に優れた軟磁性鋼部品の実現を目指し、化学成分組成や金属組織の影響など様々な角度から検討を行った。その結果、得られる鋼部品が本発明で規定する成分組成を満たし、かつ鋼部品の金属組織が本発明で規定するフェライト単相組織となるようにすれば、磁気特性として特に透磁率を高めることができ、かつ成型加工時には寸法精度の良好な冷間鍛造を行うことができることを見出し、上記本発明に想到した。以下、本発明で金属組織および化学成分組成を規定した理由について詳述する。
【0015】
軟磁性材料の磁気特性は、材料内部を移動する磁束を固定するエネルギー量に関係しており、フェライト結晶粒の大きさや、析出物の磁気的性質および分布形態の影響を受ける。
【0016】
本発明者らは、磁気特性を向上すべく粒界を減少させるにあたっては、得られる鋼部品の金属組織を、平均結晶粒径が100μm以上のフェライト単相組織とする必要があることを見出した。平均結晶粒径が100μm未満の場合には、常磁性である結晶粒界の影響が大きく、高い透磁率を達成することができないからである。前記フェライトの平均結晶粒径は、好ましくは130μm以上である。一方、熱処理時間(製造コスト)を費やして前記フェライトの平均結晶粒径を大きくしすぎても、電気伝導性向上効果は飽和するだけであるので、約250μm以下に留めるようにする。
【0017】
尚、フェライト単相とするにあたっては、パーライトの生成を抑制するため、後述する如く鋼材中の炭素量を極めて少なくするのが有効である。
【0018】
次に化学成分組成が透磁率特性および機械的特性に及ぼす影響について調べた。その結果、磁気特性を劣化させるC、P、S等を必要最小限に抑制するとともに、適量のSi、Mn、Bを添加することによって、冷間鍛造性に優れ且つ透磁率特性にも優れた軟磁性鋼部品を実現できることを見出した。
【0019】
図1は、鋼中Si含有量が最大透磁率(透磁率特性)および割れ発生限界圧縮率(冷間鍛造性)に及ぼす影響を調べたグラフであり、実験は、Si量を変化させた7個の鋼試料を用いて、外径13mm×内径10mmのリング状試料を作製し、真空雰囲気で磁気焼鈍を行なった後、これに磁界印加用コイル(1次コイル)と磁束検出用コイル(2次コイル)を巻線し、自動磁化測定装置を用いてH−B曲線を測定し最大透磁率を求めた。また、割れ発生限界圧縮率は、圧延材から直径13.0mm×高さ19.5mmの試料を作成し、常温で端面拘束圧縮を行って求めた。
【0020】
Siは溶製時に脱酸剤として作用し、酸素による磁気特性の低下を抑制し、且つ磁気異方性を低減することで磁気特性(特に透磁率特性)を向上させる効果を有し、図1に示す通り、0.05%以上、好ましくは0.10%以上添加することによって透磁率が高くなるのである。しかしながらSi含有量が多過ぎると、図1にて割れ発生限界圧縮率が低下している通り、冷間鍛造性が阻害されることとなる。また磁気焼鈍時における結晶粒成長が抑制され、保磁力の増加を招く原因にもなる。従って本発明では、Si含有量を2%以下、好ましくは1%以下に抑えることとした。
【0021】
以下、本発明に係るその他の化学成分量を規定した理由について詳述する。
【0022】
C:0.05%以下(0%を含まない)
C(炭素)は鋼材の強度と延性のバランスを支配する基本元素であり、添加量を低減するほど強度は低下し、延性は向上する。またCは、鋼中に固溶してひずみ時効硬化を生じるのでその含有量は極力少ないほうが望ましく、磁気特性の面からも極低であることが好ましい。こうしたことを考慮すると、JIS−SUYB−0種レベル以上の磁気特性を満足させるには、C含有量を0.05%以下に抑える必要がある。好ましくは0.01%以下である。
【0023】
Mn:0.1〜0.5%
Mnは脱酸剤として有効に作用するとともに、鋼中のSと結合してMnSを形成することにより、Sによる脆化を抑制する。しかしMn量が多過ぎると、析出するMnSの粒径が大きくなって磁気特性を劣化させるため、0.5%を上限とする。好ましくは0.4%以下である。
【0024】
P:0.02%以下(0%を含む)
P(リン)は、鋼中で粒界偏析を起こして冷間鍛造性や磁気特性に悪影響を及ぼす有害元素である。従って本発明では、Pの含有量を0.02%以下、好ましくは0.01%以下とする必要があり、この様にP量を制限することで、優れた冷間鍛造性や磁気特性を保証することができる。
【0025】
S:0.02%以下(0%を含む)
S(硫黄)は、上記の様に鋼中でMnSを形成し、S量が多くなり過ぎると多量にMnSが析出して冷間鍛造性と磁気特性を著しく劣化させるので、0.02%以下、好ましくは0.01%以下に抑える。
【0026】
Al:0.1%以下(0%を含む)
Alは、固溶Nを捕捉しAlNとなって結晶粒の微細化を促進させる。その結果、結晶粒界を増加させることとなり磁気特性の低下を招く。従って、本発明ではAl量を0.1%以下に抑える必要がある。優れた磁気特性を確保するにはAl量を0.005%以下に抑えることが好ましい。
【0027】
N:0.005%以下(0%を含む)
上記の様にN(窒素)は、Alと結合しAlNを形成して磁気特性を害するが、それに加え、Alなどにより固定されなかったNは固溶Nとして鋼中に残存し、これも磁気特性を劣化させる。また固溶Nは、ひずみ時効による変形抵抗の増大を引き起こす原因にもなる。よって、何れにしてもN量は極力少なく抑えるべきであるが、鋼材製造の実操業面も考慮し、且つ前記弊害を実質的に無視し得る程度に抑えることのできる0.005%を上限値として定めた。
【0028】
O:0.02%以下(0%を含む)
O(酸素)は常温では鋼に殆ど固溶せず、AlやSiなどの元素と結合して硬質の酸化物系介在物となり、磁気特性を大幅に低下させる。ゆえにO含有量は極力低減すべきものであり、0.02%以下に抑える必要がある。O含有量は0.01%以下に低減するのが好ましく、より好ましくは0.005%以下にするのがよい。
【0029】
B:0.0005〜0.005%
Bは磁気特性に悪影響を及ぼす前記固溶NをBNの形で固定する作用を有する。更にBのNに対する親和力はAlよりも大きく、結晶粒を微細化する前記AlNを低減する作用も有しており、こうした作用を有効に発揮させるには、0.0005%以上、好ましくは0.001%以上含有させる。しかし、BNが多量に存在しすぎると却って磁気特性を劣化させることとなるので、B含有量の上限を0.005%とする。好ましくは0.003%以下である。
【0030】
また、Cu、 Ni、 Crについては、鋼中にこれらの元素の析出物が生じると磁気特性の低下を招くため、それぞれCuを0.02%以下、Niを0.02以下、Crを0.05%以下とすることが望ましい。
【0031】
本発明で規定する元素は上記の通りであり、残部成分は実質的にFeであるが、該鋼材中に、上記説明したものの他、原料、資材、製造設備等の状況によって持ち込まれる不可避的不純物、更には、本発明の課題達成に悪影響を与えないAs等の許容元素が含まれる場合も、本発明で用いる鋼材または鋼部品に包含される。
【0032】
本発明に係る軟磁性鋼部品を製造するにあたっては、規定の軟磁性鋼材を使用し、所定の部品形状に成形したのち焼鈍するが、該焼鈍は以下の条件で行なうことが望ましい。
【0033】
即ち、前記焼鈍温度が低すぎると、実用的な熱処理時間で所望のフェライト結晶粒径を確保することができないことから、800℃以上で焼鈍を行うことが好ましく、より好ましくは850℃以上である。一方、過度に焼鈍温度を高めても、所望のフェライト結晶粒径とする効果はほとんど変わらないので、その上限は950℃とするのがよい。
【0034】
また焼鈍時間が短すぎると、磁気焼鈍温度を高めに設定したとしても焼鈍時間不足でフェライト結晶粒を十分に粗大化させることができないので、少なくとも2時間、好ましくは3時間以上焼鈍するのがよく、長すぎても所望のフェライト結晶粒径を確保する効果は変わらないので、6時間以下に抑えるのがよい。
【0035】
本発明に係る軟磁性鋼部品を得る方法として、上記規定する化学成分を含有する鋼材を、常法により溶解、鋳造して得た後、熱間圧延して棒材または線材とし、その後冷間または温間鍛造して成型後、前述の条件で磁気焼鈍に付して磁性部品とすることが挙げられ、例えば自動車用のソレノイドやアクチュエータを製造する方法として、上記線材を所定の寸法で切断し、冷間加工で成形した後に、該成形品の内側または外側に巻線して磁化することが挙げられる。
【0036】
【実施例】
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
【0037】
表1に示す化学成分の供試鋼材を溶製し、鋳造した後、1100℃に加熱してから熱間圧延を行い、直径14mmの線材を得た。なお、熱間圧延は、仕上圧延を875℃で行い、その後の800〜500℃の温度域の冷却を平均冷却速度:1.8℃/secで行った。得られた線材から採取した試料に850℃で3時間の焼鈍を施した後、該試料の金属組織を観察した。また前記線材を10%伸線加工して得られた鋼線(直径13.3mm)について、冷間鍛造性と焼鈍後の磁気特性を調べた。
【0038】
金属組織の観察は、次の方法で行った。即ち、線材の横断面を露出させた状態で支持基材内に埋め込み、研磨後、5%のピクリン酸アルコール液に15〜30秒間浸漬して腐食させた後、光学顕微鏡によりD/4(D:線材の直径)部位の組織を100〜400倍で10視野を写真撮影し、該写真からフェライト平均結晶粒径を求めた。
【0039】
一方、冷間鍛造後の部品の寸法精度(本発明における冷間鍛造性に相当)は、変形抵抗と相関が強いことから、変形抵抗値をもって評価した。変形抵抗の測定には、直径13.3mm×高さ20mmの前記鋼線試料を用い、常温での端面拘束圧縮における80%圧縮時(ひずみ速度10/s)の荷重から求めた。本発明ではこの変形抵抗が500N/mm2以下の場合を○、500N/mm2を超える場合を×とした。
【0040】
各試料の磁気特性は次の方法で調べた。即ち、上記各鋼線を用いて外径13mm×内径10mmのリング状試料を作製し、850℃で3時間保持して磁気焼鈍を行なった後、これに磁界印加用コイル(1次コイル)と磁束検出用コイル(2次コイル)を巻線し、自動磁化測定装置を用いてH−B曲線を測定したときの最大透磁率を、透磁率特性の評価に用いた。磁気特性の評価は、この最大透磁率が8000以上で、かつJIS−SUYB−0種で規定される、磁界の強さが2Oe(エルステッド)で1.1T(テスラ)以上の磁束密度が得られる場合、および、最大透磁率が8000以上で、かつ磁界の強さが3Oeで1.25T以上の磁束密度が得られる場合を○とし、これらを満たさない場合を×とした。
【0041】
表2に各試料の金属組織、変形抵抗および磁気特性の測定結果を併せて示す。
【0042】
【表1】

Figure 0004223726
【0043】
【表2】
Figure 0004223726
【0044】
表2から次のように考察することができる。尚、以下のNo.は表2における実験No.を示す。
【0045】
No.1〜3は、本発明で規定する化学成分および金属組織を満足するものであり、いずれも高透磁率でかつJIS−SUYB−0種レベル以上の磁気特性を有し、且つ優れた冷間鍛造性も兼備していることがわかる。
【0046】
これに対し、No.4〜13は、本発明で規定する成分組成を満たさないものであり、所望の磁気特性が得られなかったり、圧縮加工時に割れが発生したり変形抵抗の低減効果が十分でないなど冷間鍛造性に優れないものとなった。詳細には、No.4はC量が規定の上限値を超えており、冷間鍛造性と磁気特性のどちらもが著しく劣化していることがわかる。No.5およびNo.6はSi量が規定要件を外れるものであり、No.5はSi添加量が下限値を下回っているので、十分な脱酸が行えず、酸素による磁気モーメントの低下を抑制することができず、高い透磁率を得ることができなかったものと考えられる。No.6はSi添加量が規定の上限値を上回っているので冷間鍛造性が好ましくなく、割れを発生させることなく部品成形を行うことが困難な結果となった。
【0047】
No.7は、Mn量が規定の上限値を上回っているので、多量に生成したMnSがフェライト結晶粒の成長を抑制し、磁壁移動の抵抗となる粒界面積が増加するため磁気特性の好ましくないものとなった。
【0048】
No.8は、P量が規定の上限値を上回っているので、粒界にPが偏析して結晶粒の成長を抑制し、磁気特性が低下する結果となった。No.9は、S量が規定の上限値を上回っているので、Mnを過剰に含有させた場合と同様、MnSの粗大化と析出密度の増加により磁気特性が劣化する結果となった。
【0049】
No.10は、本発明の規定量を超えてAlを添加したものであり、AlNが生成して結晶粒の成長が抑制されたため、磁気特性が著しく低下する結果となった。
【0050】
No.11は、N量が本発明で規定する上限値を超えて含有するものであるため、ひずみ時効による変形抵抗の増大に加え、磁気特性が低下することとなった。No.12は、酸素の含有量が上限値を超えているため、硬質の酸化物系介在物が析出して磁気特性に悪影響を及ぼしたものと思われる。
【0051】
またNo.13より、良好な磁気特性を確保するには、BN析出量が増加しない範囲内でBを添加するのが望ましいことがわかる。
【0052】
【発明の効果】
本発明は上記のように構成されており、寸法精度の良好な冷間鍛造が行えるとともに、磁気特性として、特に優れた透磁率特性を確保することのできる軟磁性鋼材、およびこの様な軟磁性鋼材を用いて高透磁率を発揮する軟磁性鋼部品が得られることとなり、自動車や電車、船舶用などを対象とする各種電装部品、特に主として直流モードで動作する磁気応答性の良好な電装部品を提供できることとなった。
【図面の簡単な説明】
【図1】鋼中Si含有量が最大透磁率および割れ発生限界圧縮率に及ぼす影響を調べたグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a soft magnetic steel component useful as an iron core material such as a solenoid, a relay or a solenoid valve used in various electrical components for automobiles, trains, ships, etc., and a soft magnetic steel material as a raw material thereof, and The present invention relates to a method for producing a soft magnetic steel part, and in particular, a part with high yield and excellent dimensional accuracy can be obtained during molding (hereinafter, this characteristic may be simply referred to as “cold forgeability”). And JIS-SUYB-0 class level or higher excellent magnetic properties and excellent magnetic permeability properties, a soft magnetic steel material having excellent permeability properties obtained by using the steel material, and The present invention relates to a method useful for producing the soft magnetic steel part.
[0002]
The “SUYB” is a standard for magnetic properties defined by JIS C 2503, and the electrical component requires about JIS-SUYB-1 type magnetic properties. "SUYB-1" and "SUYB-1" than "SUYB-2" have better magnetic properties, more compact (lighter), and improved response speed In addition, since it is effective for power saving, it is desirable that parts applied to the same application have “SUYB-0 type” level or higher magnetic characteristics.
[0003]
[Prior art]
Steel members constituting a magnetic circuit using automobile electrical parts and the like are required to have a characteristic that can be easily magnetized with a low external magnetic field as a magnetic characteristic in order to save power and improve responsiveness. For this reason, a soft magnetic steel material in which the magnetic flux density inside the steel member easily responds to an external magnetic field is usually used.
[0004]
As a soft magnetic steel material having such magnetic properties, for example, a low carbon steel having a C content of about 0.01% by mass or less is used, and the soft magnetic steel part is subjected to hot rolling on the steel piece, Generally, the steel wire obtained by performing the lubrication treatment and the wire drawing is sequentially subjected to component molding, magnetic annealing, and the like.
[0005]
In recent years, in the manufacture of soft magnetic steel parts, as one means of reducing manufacturing costs, cold forging has been promoted instead of cutting in the part molding process, and the steel used can be formed into a complex shape. Excellent cold forgeability is required. On the other hand, in order to save energy in automobiles and the like, the electrical parts are required to have more precise control of the magnetic circuit, and this is accompanied by an improvement in magnetic response speed, that is, a reduction in high magnetic permeability and hysteresis loss. This is an important issue given to steel members.
[0006]
Silicon steel is a representative material that can achieve high magnetic permeability, but has a disadvantage that cold forgeability is inferior to low-carbon steel. In addition, although the above-mentioned low carbon steel material is excellent in cold forgeability, its permeability characteristics are not as good as that of silicon steel, and it is necessary to realize a soft magnetic material that has both permeability characteristics and cold forgeability at a practical level. Has been.
[0007]
Techniques in which the deformation resistance of low carbon steel is reduced to improve cold forgeability are disclosed in, for example, Japanese Patent Application Laid-Open No. 2000-8139 and Japanese Patent No. 2910288. The former shows that by adjusting the alloy components and rolling conditions, solid solution N in steel is fixed, and an increase in deformation resistance due to dynamic strain aging is suppressed. However, the technique in the above publication is made with a focus on material strength and cold forgeability, and it can always satisfy the magnetic properties sensitive to the size of crystal grains and the presence of precipitates. is not. The latter also discloses a technique for ensuring cold forgeability by reducing alloy elements including C and Si to the utmost limit, reducing C and N dissolved by adding Zr and Cr, and the like. However, it is not intended to improve the magnetic permeability, and it is considered that further study is required to improve the magnetic response.
[0008]
On the other hand, a technique such as Japanese Patent Laid-Open No. 03-90544 has been proposed to improve the magnetic response. However, this technology is mainly related to the suppression of eddy currents generated when an external magnetic field is applied, and it has improved magnetic permeability and reduced hysteresis loss, which have become important in recent soft magnetic steel parts. The response is not enhanced, and the content of Al and Cr which hinders the improvement of the magnetic permeability characteristics is wide. Therefore, it is considered that improvement is required to achieve high magnetic permeability.
[0009]
[Problems to be solved by the invention]
The present invention has been made paying attention to such circumstances, and its purpose is to ensure a particularly excellent magnetic permeability as a magnetic property, and to accurately process at a high yield in cold forging. An object of the present invention is to provide a soft magnetic steel material that can be manufactured, a soft magnetic steel part that is obtained by using such a soft magnetic steel material and has excellent permeability characteristics, and a method for producing the same.
[0010]
[Means for Solving the Problems]
The excellent soft magnetic steel cold forgeability and magnetic permeability properties of the present invention, in mass%, C: 0.05% or less (not including 0%), Si: 0.05~2% (0 0.1 % or less) , Mn: 0.1 to 0.5%, P: 0.02% or less (including 0%), S: 0.02% or less (including 0%), Al: 0 0.1% or less (including 0%), N: 0.005% or less (including 0%), O: 0.02% or less (including 0%), and the metal structure is a ferrite single-phase structure However, although it has a summary, the steel material may further contain 0.0005 to 0.005% of B as another chemical component.
[0011]
Furthermore, the present invention also defines a soft magnetic steel part having excellent permeability characteristics obtained by using such a steel material, and C: 0.05% or less (not including 0%), Si: 0 0.05-2% (excluding 0.1% or less) , Mn: 0.1-0.5%, P: 0.02% or less (including 0%), S: 0.02% or less (0% Al: 0.1% or less (including 0%), N: 0.005% or less (including 0%), O: 0.02% or less (including 0%), and metal structure Is a ferrite single-phase structure having an average crystal grain size of 100 μm or more , and B may be contained in an amount of 0.0005 to 0.005% as another component.
[0012]
Further, in producing the soft magnetic steel part of the present invention, it is preferable to use the soft magnetic steel material defined in the present invention, and after forming into a predetermined part shape, annealing is preferably performed.
[0013]
The term “including 0%” means that the case of 0% is not excluded, and the term “average ferrite grain size” means the average value of the minor axis and major axis of the ferrite crystal grains. To do.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Under the circumstances as described above, the inventors of the present invention have exhibited soft cold forgeability at the time of molding processing, and a soft magnetic steel material that can ensure particularly excellent permeability characteristics among magnetic characteristics, and Aiming at realization of soft magnetic steel parts with excellent permeability characteristics obtained by using such steel materials, we examined from various angles such as chemical composition and influence of metal structure. As a result, if the obtained steel part satisfies the component composition specified in the present invention and the metal structure of the steel part is a ferrite single phase structure specified in the present invention, the magnetic property is particularly increased. The inventors have found that cold forging with good dimensional accuracy can be performed at the time of molding, and have arrived at the present invention. Hereinafter, the reason why the metal structure and the chemical component composition are defined in the present invention will be described in detail.
[0015]
The magnetic characteristics of the soft magnetic material are related to the amount of energy for fixing the magnetic flux moving inside the material, and are affected by the size of the ferrite crystal grains, the magnetic properties of the precipitates, and the distribution form.
[0016]
The present inventors have found that in order to reduce the grain boundary in order to improve the magnetic properties, the metal structure of the obtained steel part needs to be a ferrite single phase structure having an average crystal grain size of 100 μm or more. . This is because when the average crystal grain size is less than 100 μm, the influence of the crystal grain boundary which is paramagnetic is large, and high magnetic permeability cannot be achieved. The average crystal grain size of the ferrite is preferably 130 μm or more. On the other hand, even if the heat treatment time (manufacturing cost) is spent and the average crystal grain size of the ferrite is increased too much, the effect of improving the electrical conductivity is only saturated, so it is limited to about 250 μm or less.
[0017]
In addition, in making a ferrite single phase, in order to suppress the formation of pearlite, it is effective to extremely reduce the amount of carbon in the steel as will be described later.
[0018]
Next, the effect of chemical composition on the magnetic permeability and mechanical properties was investigated. As a result, C, P, S, etc. that deteriorate the magnetic properties are suppressed to the minimum necessary, and by adding an appropriate amount of Si, Mn, B, the cold forgeability is excellent and the magnetic permeability properties are also excellent. It has been found that soft magnetic steel parts can be realized.
[0019]
FIG. 1 is a graph in which the influence of the Si content in steel on the maximum magnetic permeability (permeability characteristics) and the crack initiation limit compressibility (cold forgeability) was examined. In the experiment, the amount of Si was changed. A ring-shaped sample having an outer diameter of 13 mm and an inner diameter of 10 mm was prepared using a single steel sample and subjected to magnetic annealing in a vacuum atmosphere. Then, a magnetic field application coil (primary coil) and a magnetic flux detection coil (2 Next coil) was wound, and the HB curve was measured using an automatic magnetization measuring device to obtain the maximum magnetic permeability. The crack initiation limit compression rate was determined by preparing a sample having a diameter of 13.0 mm and a height of 19.5 mm from the rolled material, and performing end face constrained compression at room temperature.
[0020]
Si acts as a deoxidizer at the time of melting, has the effect of suppressing the decrease in magnetic properties due to oxygen, and improving the magnetic properties (particularly the magnetic permeability properties) by reducing the magnetic anisotropy. As shown in the figure, the magnetic permeability is increased by adding 0.05% or more, preferably 0.10% or more. However, when there is too much Si content, cold forgeability will be inhibited as the crack generation limit compression rate is falling in FIG. In addition, crystal grain growth during magnetic annealing is suppressed, which causes an increase in coercive force. Therefore, in the present invention, the Si content is suppressed to 2% or less, preferably 1% or less.
[0021]
Hereinafter, the reason why the amount of other chemical components according to the present invention is specified will be described in detail.
[0022]
C: 0.05% or less (excluding 0%)
C (carbon) is a basic element that governs the balance between the strength and ductility of the steel material, and the strength decreases as the amount added decreases, and the ductility improves. Further, since C dissolves in steel and causes strain age hardening, its content is preferably as small as possible, and is preferably extremely low in terms of magnetic properties. Considering these, in order to satisfy the magnetic properties of the JIS-SUYB-0 type level or higher, it is necessary to suppress the C content to 0.05% or lower. Preferably it is 0.01% or less.
[0023]
Mn: 0.1 to 0.5%
Mn effectively acts as a deoxidizing agent and combines with S in steel to form MnS, thereby suppressing embrittlement due to S. However, if the amount of Mn is too large, the particle size of precipitated MnS becomes large and the magnetic properties are deteriorated, so 0.5% is made the upper limit. Preferably it is 0.4% or less.
[0024]
P: 0.02% or less (including 0%)
P (phosphorus) is a harmful element that causes grain boundary segregation in steel and adversely affects cold forgeability and magnetic properties. Therefore, in the present invention, the P content must be 0.02% or less, preferably 0.01% or less. By limiting the P content in this way, excellent cold forgeability and magnetic properties can be obtained. Can be guaranteed.
[0025]
S: 0.02% or less (including 0%)
S (sulfur) forms MnS in steel as described above, and if the amount of S becomes too large, MnS precipitates in a large amount and significantly deteriorates the cold forgeability and magnetic properties, so 0.02% or less Preferably, it is suppressed to 0.01% or less.
[0026]
Al: 0.1% or less (including 0%)
Al captures solute N and becomes AlN to promote refinement of crystal grains. As a result, the crystal grain boundary is increased and the magnetic characteristics are deteriorated. Therefore, in the present invention, the Al amount needs to be suppressed to 0.1% or less. In order to ensure excellent magnetic properties, the Al content is preferably suppressed to 0.005% or less.
[0027]
N: 0.005% or less (including 0%)
As described above, N (nitrogen) binds to Al to form AlN and harms the magnetic properties. In addition, N that is not fixed by Al or the like remains in the steel as solute N, which is also magnetic. Degrading properties. Solid solution N also causes an increase in deformation resistance due to strain aging. Therefore, in any case, the N amount should be suppressed as much as possible, but the upper limit is set to 0.005% which can be suppressed to such an extent that the above-mentioned adverse effects can be substantially ignored in consideration of the actual operation of steel production. As determined.
[0028]
O: 0.02% or less (including 0%)
O (oxygen) hardly dissolves in steel at room temperature, and combines with elements such as Al and Si to form hard oxide inclusions, which greatly deteriorates magnetic properties. Therefore, the O content should be reduced as much as possible, and should be suppressed to 0.02% or less. The O content is preferably reduced to 0.01% or less, and more preferably 0.005% or less.
[0029]
B: 0.0005 to 0.005%
B has the effect of fixing the solid solution N which adversely affects the magnetic properties in the form of BN. Further, the affinity of B for N is larger than that of Al, and has an effect of reducing the AlN for making crystal grains finer. To effectively exhibit such an effect, it is 0.0005% or more, preferably 0.8. 001% or more is contained. However, if too much BN is present, the magnetic properties are deteriorated. Therefore, the upper limit of the B content is set to 0.005%. Preferably it is 0.003% or less.
[0030]
Further, regarding Cu, Ni, and Cr, if precipitates of these elements are generated in the steel, the magnetic properties are deteriorated. Therefore, Cu is 0.02% or less, Ni is 0.02 or less, and Cr is 0.00. It is desirable to set it to 05% or less.
[0031]
The elements defined in the present invention are as described above, and the remaining component is substantially Fe, but inevitable impurities brought into the steel material depending on the situation of raw materials, materials, manufacturing equipment, etc. in addition to those described above Furthermore, the case where an allowable element such as As that does not adversely affect the achievement of the object of the present invention is also included in the steel material or steel part used in the present invention.
[0032]
In producing a soft magnetic steel part according to the present invention, a specified soft magnetic steel material is used and formed into a predetermined part shape and then annealed. The annealing is preferably performed under the following conditions.
[0033]
That is, if the annealing temperature is too low, a desired ferrite crystal grain size cannot be ensured in a practical heat treatment time. Therefore, annealing is preferably performed at 800 ° C. or more, more preferably 850 ° C. or more. . On the other hand, even if the annealing temperature is excessively increased, the effect of obtaining the desired ferrite crystal grain size is hardly changed, so the upper limit is preferably 950 ° C.
[0034]
Also, if the annealing time is too short, even if the magnetic annealing temperature is set high, the ferrite crystal grains cannot be sufficiently coarsened due to insufficient annealing time, so it is preferable to anneal at least 2 hours, preferably 3 hours or more. Even if it is too long, the effect of securing the desired ferrite crystal grain size does not change, so it is better to keep it to 6 hours or less.
[0035]
As a method for obtaining a soft magnetic steel part according to the present invention, a steel material containing the chemical components specified above is obtained by melting and casting by a conventional method, and then hot-rolled into a bar or wire, and then cold. Or after warm forging and forming, magnetic annealing is performed under the above-mentioned conditions to form a magnetic part. For example, as a method of manufacturing a solenoid or actuator for an automobile, the wire is cut to a predetermined size. In addition, after being formed by cold working, it may be wound and magnetized inside or outside the molded product.
[0036]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.
[0037]
Sample steels having chemical components shown in Table 1 were melted and cast, and then heated to 1100 ° C. and then hot-rolled to obtain a wire having a diameter of 14 mm. In the hot rolling, finish rolling was performed at 875 ° C., and the subsequent cooling in the temperature range of 800 to 500 ° C. was performed at an average cooling rate of 1.8 ° C./sec. The sample taken from the obtained wire was annealed at 850 ° C. for 3 hours, and then the metal structure of the sample was observed. The steel wire (diameter: 13.3 mm) obtained by 10% wire drawing of the wire was examined for cold forgeability and magnetic properties after annealing.
[0038]
The metal structure was observed by the following method. That is, it was embedded in a supporting substrate in a state where the cross section of the wire was exposed, polished, immersed in a 5% picric acid alcohol solution for 15 to 30 seconds to be corroded, and then subjected to D / 4 (D : Diameter of wire) 10 fields of view were photographed at 100 to 400 times the structure of the region, and the average ferrite grain size was determined from the photograph.
[0039]
On the other hand, since the dimensional accuracy (corresponding to the cold forgeability in the present invention) of the parts after cold forging has a strong correlation with the deformation resistance, it was evaluated with the deformation resistance value. The deformation resistance was measured by using the steel wire sample having a diameter of 13.3 mm and a height of 20 mm from the load at 80% compression (strain rate of 10 / s) in end face constrained compression at room temperature. In the present invention this deformation resistance ○ the case of 500 N / mm 2 or less, and as × when it exceeds 500 N / mm 2.
[0040]
The magnetic properties of each sample were examined by the following method. That is, a ring-shaped sample having an outer diameter of 13 mm and an inner diameter of 10 mm was prepared using each of the above steel wires, held at 850 ° C. for 3 hours and subjected to magnetic annealing, and then a magnetic field application coil (primary coil) The maximum magnetic permeability when a magnetic flux detection coil (secondary coil) was wound and the H-B curve was measured using an automatic magnetization measuring device was used for evaluation of the magnetic permeability characteristics. Magnetic properties are evaluated by obtaining a magnetic flux density of 1.1 T (Tesla) or higher with a maximum magnetic permeability of 8000 or higher and a magnetic field strength of 2 Oe (Oersted) specified by JIS-SUYB-0. The case where the maximum magnetic permeability was 8000 or more and the magnetic field strength was 3 Oe and a magnetic flux density of 1.25 T or more was obtained was evaluated as ◯, and the case where these were not satisfied was evaluated as x.
[0041]
Table 2 also shows the measurement results of the metal structure, deformation resistance, and magnetic properties of each sample.
[0042]
[Table 1]
Figure 0004223726
[0043]
[Table 2]
Figure 0004223726
[0044]
From Table 2, it can be considered as follows. The following No. Is the experiment No. in Table 2. Indicates.
[0045]
No. 1 to 3 satisfy the chemical components and the metal structure defined in the present invention, all of which have high magnetic permeability and have magnetic properties of JIS-SUYB-0 type or higher, and excellent cold forging. It turns out that it also has sex.
[0046]
In contrast, no. Nos. 4 to 13 do not satisfy the component composition stipulated in the present invention, and the desired magnetic properties cannot be obtained, cracking occurs during compression processing, and the effect of reducing deformation resistance is not sufficient. It was not good. Specifically, no. No. 4 shows that the amount of C exceeds the specified upper limit, and both cold forgeability and magnetic properties are remarkably deteriorated. No. 5 and no. No. 6 is that the amount of Si deviates from the requirement. In No. 5, since the amount of Si added was below the lower limit, it was considered that sufficient deoxidation could not be performed, a decrease in magnetic moment due to oxygen could not be suppressed, and high magnetic permeability could not be obtained. . No. In No. 6, the amount of Si added exceeded the specified upper limit, so that cold forgeability was not preferable, and it was difficult to perform component molding without causing cracks.
[0047]
No. No. 7 has an unfavorable magnetic property because the amount of Mn exceeds the specified upper limit, so a large amount of MnS is formed, which suppresses the growth of ferrite crystal grains and increases the grain interfacial area that provides resistance to domain wall movement. It became.
[0048]
No. In No. 8, since the amount of P exceeded the specified upper limit value, P segregated at the grain boundary to suppress the growth of crystal grains, resulting in a decrease in magnetic properties. No. In No. 9, since the amount of S exceeded the specified upper limit, the magnetic properties deteriorated due to the coarsening of MnS and the increase in the precipitation density, as in the case where Mn was excessively contained.
[0049]
No. No. 10 was obtained by adding Al in excess of the prescribed amount of the present invention, and since AlN was generated and the growth of crystal grains was suppressed, the magnetic properties were remarkably deteriorated.
[0050]
No. No. 11 contains N in excess of the upper limit specified in the present invention, so that in addition to an increase in deformation resistance due to strain aging, the magnetic properties are reduced. No. In No. 12, since the oxygen content exceeds the upper limit, hard oxide inclusions appear to have adversely affected the magnetic properties.
[0051]
No. From FIG. 13, it can be seen that in order to ensure good magnetic properties, it is desirable to add B within a range in which the amount of BN precipitation does not increase.
[0052]
【The invention's effect】
The present invention is configured as described above, and can perform cold forging with good dimensional accuracy, and can ensure a particularly excellent magnetic permeability as a magnetic property, and such a soft magnetic material. Soft magnetic steel parts exhibiting high permeability using steel materials will be obtained, and various electrical parts for automobiles, trains, ships, etc., especially those with good magnetic response that operate mainly in DC mode Can be provided.
[Brief description of the drawings]
FIG. 1 is a graph showing the effect of the Si content in steel on the maximum magnetic permeability and crack initiation limit compressibility.

Claims (5)

質量%で(以下同じ)、
C :0.05%以下(0%を含まない)、
Si:0.05〜2%(0.1%以下を除く)、
Mn:0.1〜0.5%、
P :0.02%以下(0%を含む)、
S :0.02%以下(0%を含む)、
Al:0.1%以下(0%を含む)、
N :0.005%以下(0%を含む)、
O :0.02%以下(0%を含む)
を満たし、残部はFe及び不可避的不純物であり、
かつ金属組織がフェライト単相組織であり、
直径13.3mm×高さ20mmの鋼試料を用い、常温で端面拘束圧縮における80%圧縮時(ひずみ速度10/s)の変形抵抗が500N/mm 2 以下であり、
外径13mm×内径10mmのリング状試料を用い、850℃で3時間保持して焼鈍を行った後、これに磁界印加コイルと磁束検出コイルを巻線し、自動磁化測定装置を用いてH−B曲線を測定したときの最大透磁率が8000以上であることを特徴とする冷間鍛造性と透磁率特性に優れた冷間鍛造用の軟磁性鋼材。
% By mass (the same applies below)
C: 0.05% or less (excluding 0%),
Si: 0.05-2% (excluding 0.1% or less),
Mn: 0.1 to 0.5%
P: 0.02% or less (including 0%),
S: 0.02% or less (including 0%),
Al: 0.1% or less (including 0%),
N: 0.005% or less (including 0%),
O: 0.02% or less (including 0%)
And the balance is Fe and inevitable impurities,
And metal structure Ri ferrite single-phase structure der,
Using a steel sample having a diameter of 13.3 mm and a height of 20 mm, the deformation resistance at the time of 80% compression (strain rate 10 / s) in the end face restraint compression at room temperature is 500 N / mm 2 or less,
Using a ring-shaped sample having an outer diameter of 13 mm and an inner diameter of 10 mm, annealing was performed by holding at 850 ° C. for 3 hours, and then a magnetic field application coil and a magnetic flux detection coil were wound around the sample. cold forgeability and the soft magnetic steel excellent cold forging to the permeability characteristics maximum permeability when measured B curve, characterized in der Rukoto 8000 or more.
更に他の成分として、Bを0.0005〜0.005%含有する請求項1に記載の軟磁性鋼材。  The soft magnetic steel material according to claim 1, further comprising 0.0005 to 0.005% of B as another component. 請求項1に記載の軟磁性鋼材を冷間鍛造することによって得られる軟磁性部品であって、金属組織が平均結晶粒径(フェライト結晶粒の短径と長径の平均値の意味)100μm以上のフェライト単相組織であることを特徴とする透磁率特性に優れた軟磁性鋼部品。 A soft magnetic part obtained by cold forging the soft magnetic steel material according to claim 1, wherein the metal structure has an average crystal grain size (meaning the average value of the minor axis and the major axis of the ferrite crystal grains) of 100 μm or more. Soft magnetic steel parts with excellent permeability characteristics, characterized by a ferrite single phase structure. 更に他の成分として、Bを0.0005〜0.005%含有する請求項3に記載の軟磁性鋼部品。  The soft magnetic steel part according to claim 3, further comprising 0.0005 to 0.005% of B as another component. 請求項1または2に記載の軟磁性鋼材を使用し、冷間鍛造して所定の部品形状に成形したのち800℃以上で2時間以上焼鈍することを特徴とする請求項3または請求項4に記載の軟磁性鋼部品の製造方法。The soft magnetic steel material according to claim 1 or 2 is used, cold forged and formed into a predetermined part shape, and then annealed at 800 ° C or higher for 2 hours or longer. The manufacturing method of the soft-magnetic steel part of description.
JP2002030079A 2002-02-06 2002-02-06 Soft magnetic steel material excellent in cold forgeability and magnetic permeability characteristics, soft magnetic steel part excellent in magnetic permeability characteristics and manufacturing method thereof Expired - Lifetime JP4223726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002030079A JP4223726B2 (en) 2002-02-06 2002-02-06 Soft magnetic steel material excellent in cold forgeability and magnetic permeability characteristics, soft magnetic steel part excellent in magnetic permeability characteristics and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002030079A JP4223726B2 (en) 2002-02-06 2002-02-06 Soft magnetic steel material excellent in cold forgeability and magnetic permeability characteristics, soft magnetic steel part excellent in magnetic permeability characteristics and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2003226945A JP2003226945A (en) 2003-08-15
JP2003226945A5 JP2003226945A5 (en) 2005-06-09
JP4223726B2 true JP4223726B2 (en) 2009-02-12

Family

ID=27750308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002030079A Expired - Lifetime JP4223726B2 (en) 2002-02-06 2002-02-06 Soft magnetic steel material excellent in cold forgeability and magnetic permeability characteristics, soft magnetic steel part excellent in magnetic permeability characteristics and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4223726B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4502889B2 (en) * 2005-06-28 2010-07-14 株式会社神戸製鋼所 Soft magnetic steel material excellent in cold forgeability, cutting workability and AC magnetic characteristics, soft magnetic steel parts excellent in AC magnetic characteristics, and method for producing the same
JP4772703B2 (en) * 2007-01-15 2011-09-14 新日本製鐵株式会社 Electromagnetic soft iron parts having excellent magnetic properties, bar wires for electromagnetic soft iron parts, and manufacturing method thereof
JP6262599B2 (en) * 2013-11-29 2018-01-17 株式会社神戸製鋼所 SOFT MAGNETIC STEEL MATERIAL, ITS MANUFACTURING METHOD, AND SOFT MAGNETIC PARTS OBTAINED FROM SOFT MAGNETIC STEEL
JP6477346B2 (en) * 2015-08-07 2019-03-06 住友電気工業株式会社 Coil wire
KR101657815B1 (en) * 2014-12-23 2016-09-20 주식회사 포스코 Soft magnetic steel and soft magnetic part having excellent electromagnetic properties, and method for manufacturing the same
KR101657849B1 (en) * 2014-12-26 2016-09-20 주식회사 포스코 Soft magnetic steel having excellent free cutting characteristics and method of manufacturing therof
KR101657848B1 (en) * 2014-12-26 2016-09-20 주식회사 포스코 Soft magnetic steel having excellent forging characteristic, soft magnetic part and method of manufacturing the same

Also Published As

Publication number Publication date
JP2003226945A (en) 2003-08-15

Similar Documents

Publication Publication Date Title
JP4464889B2 (en) Soft magnetic steel materials with excellent cold forgeability, machinability and magnetic properties, and soft magnetic steel parts with excellent magnetic properties
EP3075871B1 (en) Soft magnetic steel and method for manufacturing same, and soft magnetic component obtained from soft magnetic steel
JP4646834B2 (en) Soft magnetic steel materials with excellent magnetic properties and stability and cold forgeability, soft magnetic steel parts with excellent magnetic properties and stability, and methods for producing the same
JP5139021B2 (en) Soft magnetic steel material, soft magnetic steel component and manufacturing method thereof
JP2014198874A (en) Steel material excellent in corrosion resistance and magnetic properties and method of producing the same
JP4223726B2 (en) Soft magnetic steel material excellent in cold forgeability and magnetic permeability characteristics, soft magnetic steel part excellent in magnetic permeability characteristics and manufacturing method thereof
JP5416452B2 (en) Soft magnetic steel materials, soft magnetic steel parts, and manufacturing methods thereof
JP4223701B2 (en) Soft magnetic low carbon steel material excellent in machinability and magnetic properties and method for producing the same, and method for producing soft magnetic low carbon steel parts using the steel material
JP4515355B2 (en) Soft magnetic steel materials with excellent magnetic properties and machinability in high magnetic fields and soft magnetic steel components with excellent magnetic properties in high magnetic fields
JP6453683B2 (en) Soft magnetic wire, bar and soft magnetic steel parts
JP2017128784A (en) Manufacturing method of soft magnetic steel component
JP7475181B2 (en) Ferritic Stainless Steel
JP5374233B2 (en) Soft magnetic steel materials, soft magnetic steel parts, and methods for producing them
JP4646872B2 (en) Soft magnetic steel material, soft magnetic component and method for manufacturing the same
JP4223727B2 (en) Soft magnetic steel material excellent in cold forgeability and magnetic properties, soft magnetic steel parts excellent in magnetic properties, and manufacturing method thereof
JP6621504B2 (en) Steel material excellent in corrosion resistance and magnetic properties and method for producing the same
JP4266336B2 (en) Soft magnetic steel material excellent in hot forgeability, magnetic properties and machinability, soft magnetic steel parts excellent in magnetic properties and manufacturing method thereof
JP2022056669A (en) Ferritic stainless steel
JPH08134604A (en) Soft-magnetic material, excellent in magnetic flux density, coercive force, and corrosion resistance and having high electric resistance, and its production
JP4398639B2 (en) Soft magnetic steel materials with excellent machinability and magnetic properties, soft magnetic steel components with excellent magnetic properties, and methods for producing soft magnetic steel components
JP4925990B2 (en) Soft magnetic steel and high strength soft magnetic steel parts with excellent induction hardenability and cold forgeability
JP4502889B2 (en) Soft magnetic steel material excellent in cold forgeability, cutting workability and AC magnetic characteristics, soft magnetic steel parts excellent in AC magnetic characteristics, and method for producing the same
JPH0699766B2 (en) Ni-Fe system high permeability magnetic alloy
JP3561922B2 (en) Manufacturing method of soft magnetic stainless steel
TW202346617A (en) Soft-magnetic wire, soft-magnetic steel bar, and soft-magnetic component

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4223726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

EXPY Cancellation because of completion of term