JPH0542493B2 - - Google Patents
Info
- Publication number
- JPH0542493B2 JPH0542493B2 JP60079968A JP7996885A JPH0542493B2 JP H0542493 B2 JPH0542493 B2 JP H0542493B2 JP 60079968 A JP60079968 A JP 60079968A JP 7996885 A JP7996885 A JP 7996885A JP H0542493 B2 JPH0542493 B2 JP H0542493B2
- Authority
- JP
- Japan
- Prior art keywords
- rust resistance
- content
- steel
- inclusions
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 42
- 229910000831 Steel Inorganic materials 0.000 claims description 40
- 239000010959 steel Substances 0.000 claims description 40
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 16
- 229910052717 sulfur Inorganic materials 0.000 claims description 12
- 229910052760 oxygen Inorganic materials 0.000 claims description 11
- 239000012535 impurity Substances 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 8
- 229910052748 manganese Inorganic materials 0.000 claims description 8
- 229910052758 niobium Inorganic materials 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 229910052721 tungsten Inorganic materials 0.000 claims description 7
- 229910052720 vanadium Inorganic materials 0.000 claims description 7
- 229910052726 zirconium Inorganic materials 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 12
- 230000007797 corrosion Effects 0.000 description 8
- 238000005260 corrosion Methods 0.000 description 8
- 230000005389 magnetism Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 230000005684 electric field Effects 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000519 Ferrosilicon Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- OSMSIOKMMFKNIL-UHFFFAOYSA-N calcium;silicon Chemical compound [Ca]=[Si] OSMSIOKMMFKNIL-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000003631 expected effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Landscapes
- Hard Magnetic Materials (AREA)
Description
[産業上の利用分野]
本発明は耐銹性の優れた高強度非磁性鋼に関
し、さらに詳しくは、高Mn鋼の特性を保有し、
かつ、耐銹性に優れた高強度の非磁性鋼に関す
る。
[従来技術]
近年、磁気利用技術の発達に伴なつて非磁性鋼
の応用範囲が大いに広がつてきている。
特に、最近発達の著しい弱電の技術分野におい
てはVTR、オーデイオ機器、事務機器、電子機
器等の磁気を回避する必要のある精密機器部品と
して、マイクロモーターシヤフトや磁気テープの
ガイドピンおよびシヤフト等に使用され、その使
用量が増大している。
そして、これらに使用される鋼には、耐摩耗性
と同時に優れた耐銹性が要求されており、非磁性
鋼としてはオーステナイト系ステンレス鋼、高
Mn低Cr鋼が一般に用いられているが、高Mn低
Cr鋼はオーステナイト系ステンレス鋼に比して
強度が高く、強い冷間加工を行なつても非磁性が
安定しており、さらに、安価であるという優れた
特色を有している。
しかし、この高Mn低Cr鋼は湿潤環境下におい
ては錆が発生し易いという問題があり、上記した
弱電の技術分野において使用する場合、この錆は
非磁性を劣化させるようになり、また、摩擦抵抗
の増大等により精密部品としての機能が低下する
ので、耐銹性の優れた高Mn系非磁性鋼が強く望
まれている。
また、このような、耐銹性の優れた高Mn系鋼
は、弱電の分野以外に重電分野、運輸分野および
建築分野等においても要望されている。
[発明が解決しようとする問題点]
本発明は上記に説明したように、従来における
非磁性鋼の種々の問題点を解消すべく本発明者が
高Mn系鋼の耐銹性におよぼす鋼の含有成分、成
分割合の影響について膨大な実験研究を行なつて
詳細に検討した結果、発銹は鋼中のCr,Cu,Mo
等の含有量を増加させることにより改善されるこ
と、また、これらの元素を多量に含有するもので
も不完全で鋼中のMnSやAl2C3、SiO2等の非金属
介在物が大きい場合或いは多い場合にはこの介在
物を起点として孔蝕または〓間腐蝕により発銹す
ることを知見して、耐銹性の優れた高強度非磁性
鋼を開発したのである。
[問題点を解決するための手段]
本発明に係る耐銹性の優れた高強度非磁性鋼
は、
(1) C0.01〜0.15wt%、Si0.05〜0.60wt%、
Mn16wt%を越え25wt%以下、
S≦0.010wt%、Cr14〜20wt%、
N0.3〜0.6wt%、O≦0.01wt%、
Al0.001〜0.20wt%
を含有し、さらに、面積率で
非金属介在物≦0.01wt%
であり、残部が鉄および不可避不純物からなる
ことを特徴とする耐銹性の優れた高強度非磁性
鋼を第1の発明とし、
(2) C0.01〜0.15wt%、Si0.05〜0.60wt%、
Mn16wt%を越え25wt%以下、
S≦0.010wt%、Cr14〜20wt%、
O≦0.01wt%、Al0.001〜0.20wt%、
Ni≦4.0wt%およびN0.3〜0.6wt%
の1種または2種
を含有し、かつ、
Cu0.1〜4.0wt%、Mo0.1〜3.0wt%
のうちから選んだ1種または2種
を含有し、さらに、面積率で
非金属介在物≦0.10wt%
であり、残部が鉄および不可避不純物からなるこ
とを特徴とする耐銹性の優れた高強度非磁性鋼を
第2の発明とし、
(3) C0.01〜0.15wt%、Si0.05〜0.60wt%、
Mn16wt%を越え25wt%以下、
S≦0.010wt%、Cr14〜20wt%、
O≦0.01wt%、Al0.001〜0.20wt%、
Ni≦4.0wt%およびN0.3〜0.6wt%
の1種または2種
を含有し、かつ、
V、Ti、Nb、W、Zrのうちから選んだ1種ま
たは2種以上0.005〜1.0wt%
を含有し、さらに、面積率で
非金属介在物≦0.10wt%、
であり、残部が鉄および不可避不純物からなるこ
とを特徴とする耐銹性の優れた高強度非磁性鋼を
第3の発明とし、
(4) C0.01〜0.15wt%、Si0.05〜0.60wt%、
Mn16wt%を越え25wt%以下、
S≦0.010wt%、Cr14〜20wt%
O≦0.01wt%、Al0.001〜0.20wt%
Ni≦4.0wt%およびN0.3〜0.6wt%
の1種または2種
を含有し、かつ、
Cu0.1〜4.0wt%、Mo0.1〜3.0wt%
のうちから選んだ1種または2種
を含有し、また、
V、Ti、Nb、W、Zrのうちから選んだ1種ま
たは2種以上0.005〜1.0wt%
を含有し、さらに、面積率で
非金属介在物≦0.10wt%
であり、残部が鉄および不可避不純物からなるこ
とを特徴とする耐銹性の優れた高強度非磁性鋼を
第4の発明とする4つの発明よりなるもである。
本発明に係る耐銹性の優れた高強度非磁性鋼に
ついて以下詳細に説明する。
先ず、本発明に係る耐銹性の優れた高強度非磁
性鋼の含有成分および成分割合について説明す
る。
Cは極めて優れたオーステナイト形成元素であ
り、かつ、強度を付与する元素であり、含有量が
0.01wt%未満では非磁性が安定せず、また、
0.15wt%を越えて含有されると耐銹性が劣化する
ようになる。よつて、C含有量は0.10〜0.15wt%
とする。
Siは後述する介在物の原因となる酸素の脱酸剤
として必要であり、含有量が0.05wt%未満では脱
酸効果が不足し、また、0.60wt%を越えて含有さ
れるとSiの酸化物がB系介在物として析出し、耐
銹性を劣化させる。よつて、Si含有量は0.05〜
0.60wt%とする。
MnはNiと同様にオーステナイト形成元素であ
り、16wt%以下ではこの効果は不充分であり、
さらに、MnはNの固溶量を増加させる効果を有
しており、従つて、相乗効果によつて非磁性を安
定化させると共に鋼を高強度化させるので、多く
含まれることが望ましいが、25wt%を越えて含
有させると熱間加工性を著しく劣化させる。よつ
て、Mn含有量は16wt%を越え、25wt%以下とす
る。
Sは介在物を形成するため、本発明に係る耐銹
性の優れた高強度非磁性鋼に重大な影響を与える
元素であり、抑制すべきである。即ち、多量の
Mnを含有する鋼の場合合には規制されている介
在物であるMnSを析出し易く、このMnSは水溶
液中に溶出して耐銹性を劣化させるのにつながる
孔触の起点となる。よつて、S含有量はその上限
を0.010wt%とする。なお、Sの低減は常法によ
り精錬時カルシウムシリコンやフエロシリコンを
投入すればよい。
NiはC、Mn、後述するNと同様にオーステナ
イト形成元素であり、Nに代えて添加すると溶製
に際して問題となるN含有量を減少させることが
できるが、多量の含有は価格が高くなつて不経済
である。よつて、Ni含有量はその上限を4.0wt%
とする。
Crは非磁性を安定化させ、かつ、耐銹性を付
与する顕著な効果があり、そして、耐銹性を満足
させるためにはCr含有量は10wt%以上で充分で
あるが、含有量が14wt%未満ではマルテンサイ
ト相の生成により非磁性が不完全となり、また、
20wt%を越えて含有されるとフエライト相の生
成により非磁性が不安定となる。よつて、Cr含
有量は14〜20wt%とする。
NはCと同様に極めて有効なオーステナイト形
成元素であり、かつ、鋼の強度を付与するのに有
効な元素であり含有量が0.3wt%未満ではこのよ
うな効果は不充分であり、また、大気中で溶製す
る場合は0.6wt%を越えて含有されると鋳塊に気
泡が生じ易く、かつ、熱間加工性を著しく劣化さ
せる。よつて、N含有量は0.3〜0.6wt%とする。
OもS同様に介在物を形成するため、本発明に
係る耐銹性の優れた高強度非磁性鋼に重大な影響
を与える元素であり、抑制すべきである。即ち、
含有量が0.01wt%を越えて含有されると、規制し
ているAl2O3やSiO2のB系の非金属介在物が多く
なり、かつ、巨大な介在物が生成し易くなり、そ
して、B系介在物は冷関加工を行なつた場合、B
系介在物体に割れが発生したり、或いは、マトリ
ツクスとの間にボイドを生成し易く、これが〓間
腐蝕の起点となつて耐銹性を劣化させる。Alは
重要な元素であり、Slを同様介在物の原因となる
酸素の脱酸剤として必要であり、Al2OやSiO2の
B系介在物の析出量を抑制して耐銹性を向上させ
るのに有効な元素である。また、さらに、オース
テナイト粒を微細化して強度を高める元素であ
り、含有量が0.001wt%未満では脱酸効果が不足
し、また、0.20wt%を越えて含有されると靭性を
低下させる。よつて、Al含有量は0.001〜0.20wt
%とする。
Cuはオーステナイト形成元素であり、また、
耐銹性を高くする効果があり、含有量が0.1wt%
未満では期待する効果は得られず、また、4.0wt
%を越えて含有されると熱間加工性を劣化させ
る。よつて、Cu含有量は0.1〜40wt%とする。
Moは耐蝕性および強度を改善するのに有効な
元素であり、含有量が0.1wt%未満では顕著な効
果が期待できず、また、3.0wt%を越えて含有さ
れるとフエライトを生成して非磁性が不安定とな
り、Moは高価なため経済的に不利である。よつ
て、Mo含有量は0.1〜3.0wt%とする。
V、Ti、Nb、W、Zrは結晶粒度を微細化し、
強度の向上に有効で、かつ、結晶粒界のCr欠乏
層生成原因となるCr炭化物の析出を抑制し、耐
銹性の改善に有効な元素であり、これらの元素の
うちから選んだ1種または2種以上の含有量が
0.005wt%未満では充分に強度を向上させること
ができず、また、1.0wt%を越えて含有されると
靭性が低下する。よつて、V、Ti、Nb、W、Zr
はこのうちから選んだ1種または2種以上の含有
量を0.005〜1.0wt%とする。
非金属介在物はCr等を含有させることにより
不動態化を図ると全面腐蝕は抑制されるが、孔蝕
が〓間腐蝕等の局部腐蝕が生じ易くなり、かつ、
非金属介在物は局部腐蝕の起点となるので、先に
述べたSやOの含有量を少なくして生成を少なく
することが必要である。上記Sの低減やAl、S
によるOの低減により、非金属介在物が低下し、
含有量が面積率で0.10wt%未満では発銹すること
がない。よつて、非金属介在物の含有量は面積率
で≦0.10wt%とする。
なお、非金属介在物の面積率の測定は、
JISG0555の「鋼の非金属介在物の顕微鏡試験方
法」に準拠して行えばよい。
[実施例]
次に、本発明に係る耐銹性の優れた高強度非磁
性鋼の実施例について説明する。
実施例
第1表に示す含有成分および成形割合となるよ
うに、高周波炉により常法に従つて溶解後鋳造し
て150Kgの鋳塊とし、次いで、熱間圧延により6
mmφとして、1100℃の温度で1時間加熱してから
空冷し、その後、加工率30%の冷間抽伸を行なつ
たものを試験片とした。
第2表に耐銹性、0.2%耐力および透磁率の試
験結果を示す。
耐銹性は試験片(φ4.0×170mm)をJISZ2371
(1976)の塩水噴霧試験方法によつて行ない、200
時間経過後の錆発生部の面積率で評価した。
JISG0555「鋼の非金属介在物の顕微鏡試験方
法」に基づき、試験片を採取後、400倍の倍率に
より顕微鏡を使用して、視野内のガラス板上の総
格子点数、視野数および全介在物によつて占めら
れる格子点中心の数により、次式により介在物の
占める面積率を算出した。
面積率=n/(p×f)×100
p:視野内のガラス板会うの総格子点数
f:視野数、
n:f個の視野における全介在物によつて占め
られる格子点中心の数
この第2表から明らかなように、本発明に係る
耐銹性の優れた高強度非磁性鋼は、何れも錆の発
生がなく、耐銹性に優れており、また、115Kg
f/mm2以上の0.2%耐力を有し、かつ、透磁率が
≦1.01以上の低透磁率であり、これに対し、比較
鋼は錆が発生したのである。
[Industrial Application Field] The present invention relates to a high-strength non-magnetic steel with excellent rust resistance, and more specifically, to a high-strength non-magnetic steel that has the characteristics of a high-Mn steel,
The present invention also relates to a high-strength non-magnetic steel with excellent rust resistance. [Prior Art] In recent years, with the development of magnetic utilization technology, the range of applications of non-magnetic steel has been greatly expanded. In particular, in the recently rapidly developing field of light electrical technology, it is used for precision equipment parts such as VTRs, audio equipment, office equipment, and electronic equipment that need to avoid magnetism, such as micro motor shafts and guide pins and shafts for magnetic tapes. and its usage is increasing. The steel used in these products is required to have excellent rust resistance as well as wear resistance, and non-magnetic steels such as austenitic stainless steel and high
Mn low Cr steel is commonly used, but high Mn low
Cr steel has excellent characteristics such as higher strength than austenitic stainless steel, stable non-magnetic properties even after severe cold working, and low cost. However, this high-Mn, low-Cr steel has the problem of being susceptible to rust in a humid environment, and when used in the above-mentioned light electrical technology field, this rust deteriorates non-magnetic properties and also causes friction. Since the function as a precision component deteriorates due to an increase in resistance, high-Mn non-magnetic steel with excellent rust resistance is strongly desired. In addition, such high-Mn steels with excellent rust resistance are in demand not only in the light electrical field but also in the heavy electrical field, transportation field, construction field, and the like. [Problems to be Solved by the Invention] As explained above, the present invention aims to solve the various problems of conventional non-magnetic steels by improving the rust resistance of high Mn steel. As a result of extensive experimental research and detailed examination of the effects of contained components and component ratios, we found that rusting is caused by Cr, Cu, and Mo in steel.
This can be improved by increasing the content of these elements, and even steel containing a large amount of these elements is incomplete and has large nonmetallic inclusions such as MnS, Al 2 C 3 , SiO 2, etc. After discovering that these inclusions are the starting point for rusting due to pitting or intercalation corrosion, they developed a high-strength nonmagnetic steel with excellent rust resistance. [Means for solving the problems] The high-strength nonmagnetic steel with excellent rust resistance according to the present invention has (1) C0.01 to 0.15wt%, Si0.05 to 0.60wt%, and Mn exceeding 16wt%. Contains 25wt% or less, S≦0.010wt%, Cr14-20wt%, N0.3-0.6wt%, O≦0.01wt%, Al0.001-0.20wt%, and non-metallic inclusions≦ in terms of area ratio. The first invention is a high-strength nonmagnetic steel with excellent rust resistance characterized by having a carbon content of 0.01wt% and the balance consisting of iron and unavoidable impurities; (2) C0.01 to 0.15wt% and Si0. 05-0.60wt%, Mn over 16wt% and 25wt% or less, S≦0.010wt%, Cr14-20wt%, O≦0.01wt%, Al0.001-0.20wt%, Ni≦4.0wt% and N0.3-0.6 Contains one or two types selected from Cu0.1 to 4.0wt% and Mo0.1 to 3.0wt%, and furthermore, nonmetallic by area percentage. A second invention is a high-strength nonmagnetic steel with excellent rust resistance characterized by inclusions ≦0.10wt% and the remainder consisting of iron and unavoidable impurities, (3) C0.01~0.15wt% , Si0.05-0.60wt%, Mn over 16wt% and 25wt% or less, S≦0.010wt%, Cr14-20wt%, O≦0.01wt%, Al0.001-0.20wt%, Ni≦4.0wt% and N0. Contains 3 to 0.6 wt% of one or two types selected from V, Ti, Nb, W, and Zr, and 0.005 to 1.0 wt% of one or more selected from V, Ti, Nb, W, and Zr; A third invention is a high-strength nonmagnetic steel with excellent rust resistance, characterized in that nonmetallic inclusions are ≦0.10wt%, and the remainder consists of iron and unavoidable impurities, (4) C0.01 ~0.15wt%, Si0.05~0.60wt%, Mn over 16wt% and up to 25wt%, S≦0.010wt%, Cr14~20wt% O≦0.01wt%, Al0.001~0.20wt% Ni≦4.0wt% and Contains one or two of N0.3-0.6wt%, and one or two selected from Cu0.1-4.0wt% and Mo0.1-3.0wt%, and Contains 0.005 to 1.0wt% of one or more selected from V, Ti, Nb, W, and Zr, and furthermore, the area ratio of nonmetallic inclusions is ≦0.10wt%, and the remainder is iron and unavoidable inclusions. This invention consists of four inventions, with the fourth invention being a high-strength nonmagnetic steel with excellent rust resistance characterized by being made of impurities. The high-strength nonmagnetic steel with excellent rust resistance according to the present invention will be described in detail below. First, the components and component ratios of the high-strength nonmagnetic steel with excellent rust resistance according to the present invention will be explained. C is an extremely excellent austenite-forming element and an element that imparts strength, and the content is
If it is less than 0.01wt%, non-magnetism will not be stable, and
If the content exceeds 0.15wt%, rust resistance will deteriorate. Therefore, the C content is 0.10-0.15wt%
shall be. Si is necessary as a deoxidizing agent for oxygen, which causes inclusions as described below. If the content is less than 0.05wt%, the deoxidizing effect will be insufficient, and if the content exceeds 0.60wt%, Si will oxidize. These substances precipitate as B-based inclusions and deteriorate rust resistance. Therefore, the Si content is 0.05~
The content shall be 0.60wt%. Mn is an austenite-forming element like Ni, and this effect is insufficient below 16wt%.
Furthermore, Mn has the effect of increasing the amount of solid solution of N, and therefore, the synergistic effect stabilizes non-magnetism and increases the strength of the steel, so it is desirable to contain a large amount. If the content exceeds 25 wt%, hot workability will be significantly deteriorated. Therefore, the Mn content should be more than 16wt% and less than 25wt%. Since S forms inclusions, it is an element that has a significant effect on the high-strength nonmagnetic steel with excellent rust resistance according to the present invention, and should be suppressed. That is, a large amount
In the case of steel containing Mn, MnS, which is a regulated inclusion, is likely to precipitate, and this MnS is eluted into an aqueous solution and becomes the starting point of pore formation that leads to deterioration of rust resistance. Therefore, the upper limit of the S content is set at 0.010wt%. Note that S can be reduced by adding calcium silicon or ferrosilicon during refining using a conventional method. Ni is an austenite-forming element like C, Mn, and N (described later), and when added in place of N, it can reduce the N content, which is a problem during melting. It is uneconomical. Therefore, the upper limit of Ni content is 4.0wt%.
shall be. Cr has a remarkable effect of stabilizing non-magnetism and imparting rust resistance, and a Cr content of 10 wt% or more is sufficient to satisfy rust resistance. If it is less than 14wt%, non-magnetism will be incomplete due to the formation of martensitic phase, and
If the content exceeds 20 wt%, non-magnetism becomes unstable due to the formation of a ferrite phase. Therefore, the Cr content is set to 14 to 20 wt%. Like C, N is an extremely effective austenite-forming element, and is also an effective element in imparting strength to steel. If the content is less than 0.3 wt%, this effect is insufficient; When melting in the atmosphere, if the content exceeds 0.6 wt%, air bubbles are likely to occur in the ingot and hot workability is significantly deteriorated. Therefore, the N content is set to 0.3 to 0.6 wt%. Like S, O also forms inclusions, so it is an element that has a significant effect on the high-strength nonmagnetic steel with excellent rust resistance according to the present invention, and should be suppressed. That is,
If the content exceeds 0.01wt%, the amount of B-based nonmetallic inclusions in the regulated Al 2 O 3 and SiO 2 increases, and giant inclusions are likely to be generated. , B-based inclusions become B when subjected to cold processing.
Cracks are likely to occur in the intervening objects in the system, or voids are likely to be formed between the system and the matrix, which becomes a starting point for intercalary corrosion and deteriorates rust resistance. Al is an important element, and like Sl, it is necessary as a deoxidizer for oxygen, which causes inclusions, and improves rust resistance by suppressing the amount of B-based inclusions such as Al 2 O and SiO 2 precipitated. It is an effective element for Furthermore, it is an element that refines austenite grains and increases strength. If the content is less than 0.001 wt%, the deoxidizing effect is insufficient, and if the content exceeds 0.20 wt%, the toughness is reduced. Therefore, the Al content is 0.001~0.20wt
%. Cu is an austenite-forming element and
It has the effect of increasing rust resistance, and the content is 0.1wt%
If it is less than 4.0wt, the expected effect will not be obtained, and
If the content exceeds %, hot workability will deteriorate. Therefore, the Cu content is set to 0.1 to 40 wt%. Mo is an effective element for improving corrosion resistance and strength, and if the content is less than 0.1wt%, no significant effect can be expected, and if the content exceeds 3.0wt%, it may produce ferrite. Non-magnetism becomes unstable, and Mo is expensive, making it economically disadvantageous. Therefore, the Mo content is set to 0.1 to 3.0 wt%. V, Ti, Nb, W, and Zr refine the grain size,
An element selected from among these elements that is effective in improving strength, suppressing the precipitation of Cr carbides that cause the formation of Cr-deficient layers at grain boundaries, and improving rust resistance. Or the content of two or more types
If the content is less than 0.005 wt%, the strength cannot be sufficiently improved, and if the content exceeds 1.0 wt%, the toughness will decrease. Therefore, V, Ti, Nb, W, Zr
The content of one or more selected from these is 0.005 to 1.0 wt%. If non-metallic inclusions are passivated by containing Cr etc., overall corrosion can be suppressed, but localized corrosion such as pitting corrosion and interstitial corrosion is likely to occur, and
Since nonmetallic inclusions become the starting point of local corrosion, it is necessary to reduce the content of S and O mentioned above to reduce their formation. Reduction of S, Al, S
Due to the reduction of O, non-metallic inclusions are reduced,
If the content is less than 0.10wt% in terms of area ratio, rust will not occur. Therefore, the content of nonmetallic inclusions is set to ≦0.10wt% in terms of area ratio. In addition, the measurement of the area ratio of nonmetallic inclusions is as follows:
This can be done in accordance with JISG0555 "Microscopic testing method for nonmetallic inclusions in steel." [Example] Next, an example of a high-strength nonmagnetic steel with excellent rust resistance according to the present invention will be described. Example The ingot was melted and cast in a high frequency furnace according to a conventional method to obtain the ingredients and molding ratio shown in Table 1, and then a 150 kg ingot was made, and then hot rolled into an ingot of 6.5 kg.
The specimen was heated at a temperature of 1100° C. for 1 hour, air-cooled, and then cold-drawn at a processing rate of 30% to obtain a test piece. Table 2 shows the test results for rust resistance, 0.2% proof stress, and magnetic permeability. For rust resistance, test pieces (φ4.0×170mm) were tested according to JISZ2371.
(1976) using the salt spray test method, 200
Evaluation was made based on the area ratio of rusted parts after time elapsed. Based on JISG0555 "Microscopic test method for non-metallic inclusions in steel", after collecting the test piece, use a microscope at 400x magnification to determine the total number of lattice points, number of fields of view, and total inclusions on the glass plate within the field of view. Based on the number of lattice point centers occupied by , the area ratio occupied by inclusions was calculated using the following formula. Area ratio = n/(p×f)×100 p: Total number of grid points that meet the glass plates in the field of view f: Number of fields of view, n: Number of grid point centers occupied by all inclusions in f fields of view As is clear from Table 2, the high-strength non-magnetic steel with excellent rust resistance according to the present invention does not cause rust and has excellent rust resistance.
It has a 0.2% proof stress of f/mm 2 or more and a low magnetic permeability of ≦1.01 or more, whereas the comparative steel developed rust.
【表】【table】
【表】【table】
【表】
銹性の優れた高強度非磁性鋼。
鋼種19〜24‥比較例。
[発明の効果]
以上説明したように、本発明に係る耐銹性の優
れた高強度非磁性鋼は上記に説明したような構成
を有しているものであるから、高い強度を有し、
透磁率にも優れ、さらに、著しく優れた耐銹性を
有しており、弱電分野はもとより重電分野その他
運輸、建築の分野等にも広く使用することができ
るという効果を有するものである。[Table] High-strength non-magnetic steel with excellent rust properties.
Steel type 19-24‥Comparative example.
[Effects of the Invention] As explained above, since the high-strength nonmagnetic steel with excellent rust resistance according to the present invention has the structure as explained above, it has high strength,
It has excellent magnetic permeability and extremely high rust resistance, and has the advantage that it can be widely used not only in the light electrical field but also in the heavy electrical field, transportation, construction, etc.
Claims (1)
とを特徴とする耐銹性の優れた高強度非磁性鋼。 2 C0.01〜0.15wt%、Si0.05〜0.60wt%、 Mn16wt%を越え25wt%以下、 S≦0.010wt%、Cr14〜20wt%、 O≦0.01wt%、Al0.001〜0.20wt%、 Ni≦4.0wt%およびN0.3〜0.6wt%の1種また
は2種 を含有し、かつ、 Cu0.1〜4.0wt%、Mo0.1〜3.0wt% のうちから選んだ1種または2種 を含有し、さらに、面積率で 非金属介在物≦0.10wt% であり、残部が鉄および不可避不純物からなるこ
とを特徴とする耐銹性の優れた高強度非磁性鋼。 3 C0.01〜0.15wt%、Si0.05〜0.60wt%、 Mn16wt%を越え25wt%以下、 S≦0.010wt%、Cr14〜20wt%、 O≦0.01wt%、Al0.001〜0.20wt%、 Ni≦4.0wt%およびN0.3〜0.6wt% の1種または2種 を含有し、かつ、 V、Ti、Nb、W、Zrのうちから選んだ1種ま
たは2種以上 0.005〜1.0wt% を含有し、さらに、面積率で 非金属介在物≦0.10wt% であり、残部が鉄および不可避不純物からなるこ
とを特徴とする耐銹性の優れた高強度非磁性鋼。 4 C0.01〜0.15wt%、Si0.05〜0.60wt%、 Mn16wt%ヲ越え25wt%以下、 S≦0.010wt%、Cr14〜20wt%、 O≦0.01wt%、Al0.001〜0.20wt% Ni≦4.0wt%およびN0.3〜0.6wt%の1種また
は2種 を含有し、かつ、 Cu0.1〜4.0wt%、Mo0.1〜3.0wt% のうちから選んだ1種または2種 を含有し、また、 V、Ti、Nb、W、Zrのうちから選んだ1種ま
たは2種以上0.005〜1.0wt% を含有し、さらに、面積率で 非金属介在物≦0.10wt% であり、残部が鉄および不可避不純物からなるこ
とを特徴とする耐銹性の優れた高強度非磁性鋼。[Claims] 1 C0.01-0.15wt%, Si0.05-0.60wt%, Mn over 16wt% and 25wt% or less, S≦0.010wt%, Cr14-20wt%, N0.3-0.6wt%, Rust resistance characterized by containing O≦0.01wt%, Al 0.001-0.20wt%, and non-metallic inclusions≦0.01wt% in terms of area ratio, with the remainder consisting of iron and inevitable impurities. Superior high strength non-magnetic steel. 2 C0.01-0.15wt%, Si0.05-0.60wt%, Mn over 16wt% and 25wt% or less, S≦0.010wt%, Cr14-20wt%, O≦0.01wt%, Al0.001-0.20wt%, Contains one or two of Ni≦4.0wt% and N0.3-0.6wt%, and one or two selected from Cu0.1-4.0wt% and Mo0.1-3.0wt%. A high-strength non-magnetic steel with excellent rust resistance, further comprising non-metallic inclusions ≦0.10wt% in terms of area ratio, with the remainder consisting of iron and unavoidable impurities. 3 C0.01-0.15wt%, Si0.05-0.60wt%, Mn over 16wt% and 25wt% or less, S≦0.010wt%, Cr14-20wt%, O≦0.01wt%, Al0.001-0.20wt%, Contains one or two of Ni≦4.0wt% and N0.3-0.6wt%, and one or more selected from V, Ti, Nb, W, and Zr 0.005-1.0wt% A high-strength non-magnetic steel with excellent rust resistance, further comprising non-metallic inclusions ≦0.10wt% in terms of area ratio, with the remainder consisting of iron and unavoidable impurities. 4 C0.01~0.15wt%, Si0.05~0.60wt%, Mn16wt% over 25wt%, S≦0.010wt%, Cr14~20wt%, O≦0.01wt%, Al0.001~0.20wt% Ni Contains one or two of ≦4.0wt% and N0.3-0.6wt%, and one or two selected from Cu0.1-4.0wt% and Mo0.1-3.0wt%. It also contains 0.005 to 1.0wt% of one or more selected from V, Ti, Nb, W, and Zr, and furthermore, the area ratio of nonmetallic inclusions is ≦0.10wt%, A high-strength non-magnetic steel with excellent rust resistance characterized by the balance being iron and unavoidable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60079968A JPS61238943A (en) | 1985-04-15 | 1985-04-15 | High-strength non-magnetic steel excelling in rust resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60079968A JPS61238943A (en) | 1985-04-15 | 1985-04-15 | High-strength non-magnetic steel excelling in rust resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61238943A JPS61238943A (en) | 1986-10-24 |
JPH0542493B2 true JPH0542493B2 (en) | 1993-06-28 |
Family
ID=13705115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60079968A Granted JPS61238943A (en) | 1985-04-15 | 1985-04-15 | High-strength non-magnetic steel excelling in rust resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61238943A (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62136557A (en) * | 1985-12-07 | 1987-06-19 | Kobe Steel Ltd | High strength nonmagnetic steel having rust resistance |
JPH068490B2 (en) * | 1988-08-20 | 1994-02-02 | 川崎製鉄株式会社 | Sintered alloy with excellent specularity and method for producing the same |
JPH0759723B2 (en) * | 1988-12-07 | 1995-06-28 | 新日本製鐵株式会社 | High hardness non-magnetic stainless steel manufacturing method |
JPH06253485A (en) * | 1992-12-28 | 1994-09-09 | Japan Casting & Forging Corp | High strength end ring and manufacture thereof |
GB9922757D0 (en) * | 1999-09-27 | 1999-11-24 | Heymark Metals Ltd | Improved steel composition |
JP2001263526A (en) * | 2000-03-16 | 2001-09-26 | Mitsubishi Electric Corp | Solenoid valve |
JP5526809B2 (en) | 2009-04-27 | 2014-06-18 | 大同特殊鋼株式会社 | High corrosion resistance, high strength, non-magnetic stainless steel and high corrosion resistance, high strength, non magnetic stainless steel products and methods for producing the same |
DE102012212426B3 (en) * | 2012-07-16 | 2013-08-29 | Schaeffler Technologies AG & Co. KG | Rolling element, in particular rolling bearing ring |
EP2813906A1 (en) * | 2013-06-12 | 2014-12-17 | Nivarox-FAR S.A. | Part for clockwork |
JP2015199971A (en) * | 2014-04-04 | 2015-11-12 | 大同特殊鋼株式会社 | High strength nonmagnetic stainless steel and stainless steel component |
EP3147378A1 (en) * | 2015-09-25 | 2017-03-29 | The Swatch Group Research and Development Ltd. | Nickel-free austenitic stainless steel |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3151979A (en) * | 1962-03-21 | 1964-10-06 | United States Steel Corp | High strength steel and method of treatment thereof |
JPS5118917A (en) * | 1974-08-09 | 1976-02-14 | Nippon Steel Corp | Jinseinosugureta kokyodooosutenaitokono seizoho |
JPS57155350A (en) * | 1981-03-20 | 1982-09-25 | Toshiba Corp | Corrosion resistant nonmagnetic steel |
JPS59104455A (en) * | 1982-12-03 | 1984-06-16 | Nippon Steel Corp | Tenacious steel for ultra-low temperature excellent in anti-rust property |
JPS59205451A (en) * | 1983-05-09 | 1984-11-21 | Nippon Yakin Kogyo Co Ltd | High strength non-magnetic steel |
JPS60197853A (en) * | 1984-03-20 | 1985-10-07 | Aichi Steel Works Ltd | High strength nonmagnetic stainless steel and its manufacture |
-
1985
- 1985-04-15 JP JP60079968A patent/JPS61238943A/en active Granted
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3151979A (en) * | 1962-03-21 | 1964-10-06 | United States Steel Corp | High strength steel and method of treatment thereof |
JPS5118917A (en) * | 1974-08-09 | 1976-02-14 | Nippon Steel Corp | Jinseinosugureta kokyodooosutenaitokono seizoho |
JPS57155350A (en) * | 1981-03-20 | 1982-09-25 | Toshiba Corp | Corrosion resistant nonmagnetic steel |
JPS59104455A (en) * | 1982-12-03 | 1984-06-16 | Nippon Steel Corp | Tenacious steel for ultra-low temperature excellent in anti-rust property |
JPS59205451A (en) * | 1983-05-09 | 1984-11-21 | Nippon Yakin Kogyo Co Ltd | High strength non-magnetic steel |
JPS60197853A (en) * | 1984-03-20 | 1985-10-07 | Aichi Steel Works Ltd | High strength nonmagnetic stainless steel and its manufacture |
Also Published As
Publication number | Publication date |
---|---|
JPS61238943A (en) | 1986-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH03115546A (en) | Corrosion-resisting magnetic alloy | |
JP2533481B2 (en) | Non-magnetic high strength stainless steel and method for producing the same | |
JPH0542493B2 (en) | ||
JPH07113144A (en) | Nonmagnetic stainless steel excellent in surface property and production thereof | |
JP3169977B2 (en) | ▲ high ▼ strength non-magnetic stainless steel | |
JP2715033B2 (en) | Non-magnetic PC steel wire and method of manufacturing the same | |
JP4018021B2 (en) | Nonmagnetic sulfur free-cutting stainless steel wire with excellent cold-drawing workability and corrosion resistance | |
JP7475181B2 (en) | Ferritic Stainless Steel | |
JPS62136557A (en) | High strength nonmagnetic steel having rust resistance | |
JPS6369950A (en) | Nonmagnetic austenitic stainless steel having high hardness | |
JP2003082445A (en) | Nonmagnetic stainless steel having excellent workability | |
JP3197573B2 (en) | High cold forging electromagnetic stainless steel | |
JPH0753896B2 (en) | High Mn non-magnetic steel with good rust resistance and machinability | |
JP3429133B2 (en) | High magnetic flux density corrosion-resistant soft magnetic material | |
JPS6123750A (en) | Nonmagnetic steel | |
JPH11279717A (en) | Free cutting corrosion resistant soft magnetic material | |
JP2001040456A (en) | Electromagnetic material having excellent cold forgeability and weat resistance | |
JPH0649606A (en) | Magnetic stainless steel | |
JP7506479B2 (en) | Austenitic stainless steel material, its manufacturing method, and electronic device component | |
JP2587520B2 (en) | High Mn nonmagnetic steel with excellent local deformability for gas circuit breakers | |
JP3676477B2 (en) | Composite magnetic member and manufacturing method thereof | |
JPS60110848A (en) | Nonmagnetic high hardness steel | |
JPS6153408B2 (en) | ||
JPH08120420A (en) | Corrosion resistant soft-magnetic steel | |
JPS61261463A (en) | Work hardening-type nonmagnetic stainless steel |