JPH10245663A - Production of hydrogen storage alloy - Google Patents
Production of hydrogen storage alloyInfo
- Publication number
- JPH10245663A JPH10245663A JP9063990A JP6399097A JPH10245663A JP H10245663 A JPH10245663 A JP H10245663A JP 9063990 A JP9063990 A JP 9063990A JP 6399097 A JP6399097 A JP 6399097A JP H10245663 A JPH10245663 A JP H10245663A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- treatment
- heat treatment
- hydrogen storage
- storage alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、水素吸蔵合金の製
造に関し、特に均質化処理によって平坦になったプラト
領域が、引き続きの時効処理によって、再び傾斜を有す
るようにして、この時効処理を適切に選択し、用途に応
じた水素吸蔵特性に制御できる水素吸蔵合金の製造方法
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of a hydrogen storage alloy, and more particularly, to a method in which a plateau region flattened by a homogenization treatment has a slope again by a subsequent aging treatment, and the aging treatment is appropriately performed. And a method for producing a hydrogen storage alloy capable of controlling the hydrogen storage characteristics according to the application.
【0002】[0002]
【従来の技術】水素吸蔵合金は水素の吸蔵・放出を可逆
的に行うことができることから、エネルギー貯蔵タンク
やニッケル水素電池をはじめ、水素放出時の吸熱反応を
利用したヒートポンプなどの用途に用いられる。従来技
術として、例えば、特開昭57−63669号公報に
は、500〜1000℃に加熱してプラト域が平坦であ
るミッシュメタル−ニッケル系三元合金の水素吸蔵用合
金の製造方法が開示され、また、特開平7−65834
号公報には、均質化として700℃以上融点以下の温度
で熱処理して、加圧水素雰囲気で水素吸蔵させ粉砕する
方法が開示されている。これらのAB5 型合金やAB2
型合金の水素吸蔵合金においては、高温の熱処理で圧力
−組成等温線のプラト領域の傾きを平坦化できることが
知られていた。元々、圧力−組成等温線のプラト領域
は、単相の合金では、原理的には水平になるが、製造時
の偏析や組成のバラツキおよび第2相の析出などによ
り、鋳造したままでは傾きをもっていることが多い。こ
れを高温で熱処理することにより単相化することにより
平坦化できる。このような熱処理プロセスは一般的に均
質化と称される。2. Description of the Related Art Since hydrogen storage alloys can reversibly store and release hydrogen, they are used in applications such as energy storage tanks and nickel-metal hydride batteries, as well as heat pumps that utilize an endothermic reaction when releasing hydrogen. . As a prior art, for example, Japanese Patent Application Laid-Open No. 57-63669 discloses a method for producing a hydrogen absorbing alloy of a misch metal-nickel ternary alloy which is heated to 500 to 1000 ° C. and has a flat plateau region. And JP-A-7-65834.
Japanese Patent Application Laid-Open Publication No. H11-157, discloses a method in which heat treatment is performed at a temperature of 700 ° C. or higher and a melting point or lower for homogenization, and hydrogen is occluded and pulverized in a pressurized hydrogen atmosphere. These AB 5 type alloys and AB 2
It has been known that, in a hydrogen storage alloy of a type alloy, the inclination of the plateau region of the pressure-composition isotherm can be flattened by a high-temperature heat treatment. Originally, the plateau region of the pressure-composition isotherm is flat in principle for a single-phase alloy, but has a slope when cast as it is due to segregation during production, variation in composition, and precipitation of the second phase. Often. This can be flattened by heat treatment at a high temperature to form a single phase. Such a heat treatment process is generally called homogenization.
【0003】一方、水素貯蔵タンクを設計する場合、完
全に平坦なプラト領域をもつ合金においては、温度の制
御で吸放出が制御し易い反面、小さな温度変化や圧力変
化で、急激に水素が移動する可能性がある。そのため適
当な傾きにプラト圧を制御する手法が必要となってい
る。また、貯蔵タンクにおいては、放出した流量でタン
クの残量を計算する方法が考えられるが、プラトが実用
運転範囲内で一定の傾きをもっていれば、タンクの内圧
から残量を求めることができる等の利便があり、このプ
ラト域の傾斜をコントロールする技術開発が望まれる。On the other hand, when a hydrogen storage tank is designed, in the case of an alloy having a completely flat plate region, the absorption and desorption can be easily controlled by controlling the temperature, but the hydrogen moves rapidly due to a small change in temperature or pressure. there's a possibility that. Therefore, a technique for controlling the plateau pressure at an appropriate inclination is required. For the storage tank, a method of calculating the remaining amount of the tank based on the released flow rate can be considered, but if the plate has a certain inclination within the practical operation range, the remaining amount can be obtained from the internal pressure of the tank. Therefore, technology development to control the inclination of the plateau is desired.
【0004】[0004]
【発明が解決しようとする課題】本発明の目的は、BC
C固溶体型の合金における連続的な濃度バラツキを均質
化する熱処理を検討し、さらに適当な傾きにプラト平衡
圧を制御できる水素吸蔵合金の製造方法を提供すること
にある。また、本発明の他の目的は、プラト平衡圧の平
坦化を得るための熱処理を検討し、前記合金組成および
合金組織の最適化を実現できる水素吸蔵合金の製造方法
を提供することにある。さらに、本発明の別の目的は、
平坦なプラト平衡圧状態からこれに比較的簡便な熱処理
を付加することによって、再度、実用運転範囲内で一定
の傾きを有するようにし、これをコントロール可能とす
る水素吸蔵合金の製造方法を提供することにある。SUMMARY OF THE INVENTION The object of the present invention is to provide a BC
It is an object of the present invention to examine a heat treatment for homogenizing a continuous concentration variation in a C solid solution type alloy and to provide a method for producing a hydrogen storage alloy capable of controlling a plateau equilibrium pressure at an appropriate slope. It is another object of the present invention to provide a method for producing a hydrogen storage alloy which can consider heat treatment for obtaining a flat plateau equilibrium pressure and realize the optimization of the alloy composition and alloy structure. Further, another object of the present invention is to
By providing a relatively simple heat treatment from a flat plateau equilibrium pressure state to provide a constant inclination within the practical operation range again, and to provide a method of manufacturing a hydrogen storage alloy capable of controlling the inclination. It is in.
【0005】[0005]
【課題を解決するための手段】上記の目的は、溶解・鋳
造後、第一段の熱処理として、850℃以上1400℃
以下で10分から30時間加熱する均質化処理を行い、
その後さらに、第二段の熱処理として、400〜800
℃で10分〜100時間加熱する時効処理を行うことを
特徴とする水素吸蔵合金の製造方法によって達成され
る。また、上記の目的は、前記水素吸蔵特性を有する合
金がBCC相を主体とするものである水素吸蔵合金の製
造方法によっても達成される。さらに、上記の目的は、
前記時効処理が、BCC相内部の微細な2相分離により
同一結晶構造で整合な粒子を析出させる水素吸蔵合金の
製造方法によっても達成される。The object of the present invention is to provide a first stage heat treatment after melting and casting, which is performed at a temperature of 850 ° C. or higher and 1400 ° C.
Perform the homogenization process to heat for 10 minutes to 30 hours below,
Thereafter, as a second stage heat treatment, 400 to 800
This is achieved by a method for producing a hydrogen storage alloy, which comprises performing an aging treatment by heating at a temperature of 10 minutes to 100 hours. Further, the above object is also achieved by a method for producing a hydrogen storage alloy in which the alloy having hydrogen storage properties is mainly composed of a BCC phase. In addition, the above objectives are
The aging treatment can also be achieved by a method for producing a hydrogen storage alloy in which consistent particles having the same crystal structure are precipitated by fine two-phase separation inside the BCC phase.
【0006】[0006]
【発明の実施の形態】本発明では、均質化焼鈍で濃度バ
ラツキがなくなることにより、プラト領域が平坦化す
る。さらに時効処理を行うことで、濃度バラツキのなく
なったBCC相から2相分離で微細な粒子が析出し、そ
れによってプラト領域が再び傾きを持つようにできる。
さらに、時効処理条件を適切に選択することで、用途に
応じた傾きに制御することができる。この用途の例とし
ては、例えば、水素タンクがあり、この場合小さな温度
変化、圧力変動で急激に水素の移動が起こることは好ま
しくないので、本発明をこれに適用できる。DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, the plateau region is flattened by eliminating the concentration variation by the homogenizing annealing. Further, by performing the aging treatment, fine particles are separated by two-phase separation from the BCC phase having no concentration variation, whereby the plateau region can be inclined again.
Further, by appropriately selecting the aging treatment conditions, it is possible to control the inclination according to the use. As an example of this application, for example, there is a hydrogen tank. In this case, it is not preferable that rapid movement of hydrogen is caused by a small change in temperature and pressure, and the present invention can be applied to this.
【0007】本発明は、本発明者等の次の知見によって
達成されたものである。BCC固溶体型の合金に対して
行う均質化の後に時効処理を行うと、組成の連続的な変
化によるバラツキが起こりやすい。さらに、ナノオーダ
ーの濃度ゆらぎに起因する微細なβ→β1 +β2 の2相
分離も確認されている。このようなBCC型合金のプラ
ト領域の平坦性を制御する方法として、前記本発明の特
徴である次の組み合わせが最適である。 まず連続的な濃度バラツキを均質化することを目的と
して、850℃以上1400℃以下で、10min 〜30
hの熱処理で行う。次に、の熱処理後、均質化した
合金に対して、さらに400℃〜800℃の一定温度で
10min 〜100hの時効熱処理を行う。この熱処理に
おいては、BCC相内部の微細な2相分離を成長させる
ことを目的としている。このような成長によりプラト領
域の傾きは、再度大きくできる。なお、第一段の熱処理
において、850℃未満の均質化温度では、前記濃度の
均一化効果を期待できない。また、1400℃超の温度
は工業的熱処理を逸脱し、設備等の問題が大きくなる。
均質化時間については、均質化温度と関連するが、10
min 未満では、均一化には不十分であって、30h超で
はその効果が飽和する傾向にあり、前記の請求範囲に限
定した。The present invention has been achieved by the following findings of the present inventors. When the aging treatment is performed after the homogenization performed on the BCC solid solution type alloy, a variation due to a continuous change in the composition is likely to occur. Furthermore, fine two-phase separation of β → β1 + β2 due to concentration fluctuation on the order of nanometers has also been confirmed. As a method for controlling the flatness of the plate region of the BCC type alloy, the following combination which is a feature of the present invention is optimal. First, for the purpose of homogenizing the continuous concentration variation, at 850 ° C. to 1400 ° C., 10 min to 30
h). Next, after the heat treatment, the homogenized alloy is further subjected to an aging heat treatment at a constant temperature of 400 ° C. to 800 ° C. for 10 minutes to 100 hours. The purpose of this heat treatment is to grow fine two-phase separation inside the BCC phase. By such growth, the inclination of the platen region can be increased again. In the first stage heat treatment, at a homogenization temperature lower than 850 ° C., the effect of homogenizing the concentration cannot be expected. On the other hand, a temperature exceeding 1400 ° C. deviates from the industrial heat treatment, and causes a problem in equipment and the like.
The homogenization time is related to the homogenization temperature,
If it is less than min, it is not sufficient for homogenization, and if it exceeds 30 h, its effect tends to be saturated.
【0008】第二段の熱処理として、時効処理が400
℃未満の時効温度では、前記析出効果を期待できない。
また、800℃超の温度はその効果が飽和する。時効時
間については、時効温度と関連するが、10min 未満で
は、析出が不十分であって、100h超ではその効果が
飽和する傾向にあり、前記の請求範囲に限定した。以下
に、本発明について実施例に添付の図面に基づいてさら
に詳述する。[0008] As the second stage heat treatment, aging treatment is 400
If the aging temperature is lower than ℃, the above-mentioned effect of precipitation cannot be expected.
On the other hand, when the temperature exceeds 800 ° C., the effect is saturated. The aging time is related to the aging temperature. However, if the aging time is less than 10 minutes, the precipitation is insufficient, and if the aging time exceeds 100 hours, the effect tends to be saturated. Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
【0009】[0009]
【実施例】本実施例における合金組成の設定理由につい
て説明する。合金系としてTi−Cr−V系において
は、図1の三元状態図に示すように、Ti−Mn−V系
と同様に、ラーベス(C14)相とBCC相とが共存す
る領域がある。そこで、本実施例ではナノオーダの微細
組織による効果を検討するために、図2のV−TiCr2
線の擬二元状態図を参考にして、合金組成を低温で熱処
理してもC14相の出現しないTi25Cr35V40に組成
を設定した。EXAMPLE The reason for setting the alloy composition in this example will be described. As shown in the ternary phase diagram of FIG. 1, in a Ti—Cr—V system as an alloy system, there is a region where a Laves (C14) phase and a BCC phase coexist, as in the Ti—Mn—V system. Therefore, in order to examine the effect of microstructure of nano-order in the present embodiment, V-TiC r2 in FIG. 2
Referring to the pseudo-binary phase diagram of the line, the composition was set to Ti 25 Cr 35 V 40 where no C14 phase appeared even when the alloy composition was heat-treated at a low temperature.
【0010】図3に、Ti25Cr35V40合金の鋳造した
ままと各熱処理後の圧力−組成等温線を示す。アーク溶
解で鋳造したままの合金では、圧力−組成等温線の平衡
圧は大きく傾いている。これを平坦化するために400
℃から1200℃までの温度で均質化熱処理を施した。
1000℃までの温度では、プラトの平坦性にほとんど
変化は認められなかったが、1200℃の熱処理では、
プラトは大きく平坦化した。このような平坦化効果に関
する検討として、Ti25Cr35V40合金の鋳造したまま
と、1200℃の熱処理品とで各合金元素の濃度分布を
EPMAで組成分析した結果を図4に、ここで図4
(a)鋳造したまま、図4(b)1200℃×2h熱処
理を示す。またTEMに付属のEDXで分析した結果を
表1に示す。FIG. 3 shows pressure-composition isotherms of the Ti 25 Cr 35 V 40 alloy as cast and after each heat treatment. In the alloy as cast by arc melting, the equilibrium pressure of the pressure-composition isotherm is greatly inclined. 400 to flatten this
The homogenization heat treatment was performed at a temperature of from 1200C to 1200C.
At temperatures up to 1000 ° C., little change was observed in the flatness of the plate, but in the heat treatment at 1200 ° C.,
The plate was largely flattened. As a study on such a flattening effect, FIG. 4 shows the result of composition analysis of the concentration distribution of each alloy element by EPMA between the as-cast Ti 25 Cr 35 V 40 alloy and the heat-treated product at 1200 ° C. FIG.
(A) As-cast, FIG. 4 (b) shows a heat treatment at 1200 ° C. for 2 hours. Table 1 shows the results of analysis using the EDX attached to the TEM.
【0011】[0011]
【表1】 [Table 1]
【0012】鋳造したままのものでは、α−Tiのデン
ドライトが晶出しており、これに向かってTiの正の濃
度勾配がある。BCC相のマトリックスのTi富化およ
び欠乏部分では7at%程度の濃度差があり、これがプラ
トの傾きを大きくしていると考えられる。これに対して
熱処理品では、α−Tiのデンドライトは島状に残って
いるが、BCC相のマトリックスは十分均質化されてお
り、濃度差は1at%以内である、ことから、圧力−組成
等温線の平衡圧プラトの傾きがTiとCrの濃度分布に
よるものであると考えられる。In the as-cast state, α-Ti dendrites are crystallized, and there is a positive concentration gradient of Ti toward the dendrites. There is a concentration difference of about 7 at% in the Ti-enriched and depleted portions of the matrix of the BCC phase, which is considered to increase the inclination of the plateau. On the other hand, in the heat-treated product, the α-Ti dendrites remain in the form of islands, but the matrix of the BCC phase is sufficiently homogenized, and the concentration difference is within 1 at%. It is considered that the slope of the equilibrium pressure plate of the line is due to the concentration distribution of Ti and Cr.
【0013】次に、本実施例の熱処理による組織変化と
して、二段熱処理の効果を確認した結果について説明す
る。図5にTi25Cr35V40合金の鋳造したまま(図5
(a))、1200℃×5hの熱処理で均質化した(図
5(b))試料についての透過電子顕微鏡組織を示す。
これらの試料のBCC相内部には、Zr−Ti−V−M
n系やTi−Cr−V合金において通常認められる微細
な層状組織はみられない。この状態をベースに、さらに
低温での時効処理を行いBCC相の内部組織を成長させ
た。図6に、時効の温度を変えて熱処理した合金の圧力
−組成等温線測定の結果を示す。時効熱処理により明確
にプラトの傾きが大きくなっている。さらに、図7に
は、700℃で時間を変えて熱処理した合金の圧力−組
成等温線測定の結果を示す。やはり時効時間の増大とと
もにプラトの傾きが大きくなっていることが確認でき
た。Next, the result of confirming the effect of the two-step heat treatment as the structure change by the heat treatment of the present embodiment will be described. FIG. 5 shows an as-cast Ti 25 Cr 35 V 40 alloy (FIG. 5).
(A)) A transmission electron microscope structure of a sample homogenized by a heat treatment at 1200 ° C. for 5 hours (FIG. 5 (b)).
Inside the BCC phase of these samples, Zr-Ti-VM
No fine layered structure normally observed in n-type and Ti-Cr-V alloys is not found. Based on this state, aging treatment was further performed at a lower temperature to grow the internal structure of the BCC phase. FIG. 6 shows the results of pressure-composition isotherm measurement of the alloy heat-treated at different aging temperatures. The aging heat treatment clearly increases the inclination of the plate. Further, FIG. 7 shows the result of pressure-composition isotherm measurement of the alloy heat-treated at 700 ° C. for various times. Again, it was confirmed that the inclination of the plateau increased with the aging time.
【0014】因みに、図10(a)のように、プラト圧
が完全に平坦な場合は、吸蔵量がX1 からX2 に増加し
たり、X2 からX1 に減少した場合にも常に圧力はP0
で一定である。これに対して、図10(b)のように、
適当な傾きを持つ場合は、吸蔵量に応じて平衡圧が増減
するため、圧力から吸蔵量を知ることができる。水素タ
ンク等の応用の場合、プラト領域を外れて吸蔵させた
り、放出させたりすることは好ましくないが、プラトの
限界点を検知するシステムの設計が可能となる。さら
に、プラト圧は温度変化により増減するが、図11
(a)のように、完全に平坦な場合、全量の水素が移動
してしまうが、図11(b)のように、適度の傾きがあ
る場合、あるいは傾きが制御できる場合には、このよう
な温度変化による吸蔵・放出量を合金自体の特性で制御
することが可能となる。By the way, as shown in FIG. 10 (a), when the plateau pressure is completely flat, even if the occlusion amount increases from X1 to X2 or decreases from X2 to X1, the pressure always becomes P0.
Is constant. On the other hand, as shown in FIG.
When the inclination is appropriate, the equilibrium pressure increases or decreases according to the amount of occlusion, so that the amount of occlusion can be known from the pressure. In the case of an application such as a hydrogen tank, it is not preferable to occlude or release the gas outside the platen region, but it is possible to design a system for detecting the limit point of the platen. Further, although the plateau pressure increases and decreases due to a temperature change, FIG.
As shown in FIG. 11A, when hydrogen is completely flat, the entire amount of hydrogen moves. However, as shown in FIG. It becomes possible to control the amount of occlusion and release due to a change in temperature by the characteristics of the alloy itself.
【0015】このようなプラトの傾きは、変調構造の成
長によるものと考えられ、プラトの傾きの増大のみられ
た700℃×20hと100hの熱処理試料について、
透過電子顕微鏡観察を行った結果を、図8(a)700
℃×20h、図8(b)700℃×100hのそれぞれ
を示す。700℃×20hの熱処理試料の明視野像に
は、縞状の変調構造とは別の粒状の析出物が観察されて
いる。さらに時効の進んだ100hの試料においては、
この析出物は粗大化していることが確認された。この析
出物は、構造はマトリックスと同じBCC構造で、ED
Xによる組成分析もマトリックスとほとんど同じであっ
た。この結果から、粒状の析出物は、マトリックスの変
調構造が成長した結果であると考えられる。本来、スピ
ノーダル分解により形成された変調構造の成長は、その
濃度波長を増大させ、次第に整合性がなくなって界面転
位がみられるようになる成長過程が知られている。これ
に対して、本実施例では、第一段熱処理時に1200℃
×5hで、変調構造が一旦溶体化されるが、冷却過程の
任意の温度で形成した変調構造が700℃での時効析出
の核となって、このような不均質な組織となったと考え
られる。It is considered that such a plate inclination is caused by the growth of the modulation structure. For heat-treated samples at 700 ° C. × 20 h and 100 h in which the plate inclination is increased,
FIG. 8 (a) 700 shows the result of transmission electron microscope observation.
8C and 20 hours, and FIG. In the bright-field image of the heat-treated sample at 700 ° C for 20 hours, a granular precipitate different from the striped modulation structure is observed. In the more aged 100h sample,
It was confirmed that this precipitate was coarse. This precipitate has the same BCC structure as the matrix,
The composition analysis by X was almost the same as that of the matrix. From this result, it is considered that the granular precipitate is a result of the growth of the modulated structure of the matrix. Originally, a growth process is known in which the growth of a modulation structure formed by spinodal decomposition increases its concentration wavelength and gradually loses its consistency to show interfacial dislocations. On the other hand, in the present embodiment, 1200 ° C.
At × 5 h, the modulated structure is once dissolved, but it is considered that the modulated structure formed at an arbitrary temperature during the cooling process became the nucleus of the aging precipitation at 700 ° C., resulting in such a heterogeneous structure. .
【0016】前記のことから、第一段熱処理後の冷却が
析出物に何らかの影響を及ぼすことも考えられる。図9
は、この検討のために、種々の溶体化条件を検討した結
果であるが、いずれの場合もさらなるプラト平坦化効果
は得られなかった。このことから、第一段熱処理と第二
段熱処理との間の冷却速度の影響は小さく、適宜冷却を
選択することが可能であることがわかる。場合によって
は、第一段熱処理温度から直接第二段熱処理温度へ降下
させることも可能である。From the above, it is conceivable that the cooling after the first-stage heat treatment has some influence on the precipitates. FIG.
Are the results of examining various solution treatment conditions for this examination, but in any case, no further flattening effect was obtained. This indicates that the effect of the cooling rate between the first-stage heat treatment and the second-stage heat treatment is small, and that it is possible to appropriately select cooling. In some cases, it is possible to directly lower the temperature from the first heat treatment temperature to the second heat treatment temperature.
【0017】[0017]
【発明の効果】本発明によって、二段熱処理により、ミ
クロンオーダーで存在する溶質元素の濃度勾配が均質化
され、これによりプラト平坦性が大きく改善でき、均質
化後の時効処理により、変調構造が成長し、再びプラト
平坦性の傾斜を大きくできる。さらに、この熱処理を調
整することによってプラト域の傾斜を適宜コントロール
することが可能となる。According to the present invention, the concentration gradient of the solute element existing on the order of microns is homogenized by the two-step heat treatment, whereby the flatness of the plate can be greatly improved. After growing, the inclination of the plateau flatness can be increased again. Further, by adjusting the heat treatment, the inclination of the platen region can be appropriately controlled.
【図1】本発明に係るTiCrV系三元合金状態図に実
施例の組成および格子定数を示す図である。FIG. 1 is a diagram showing the composition and lattice constant of an example in a TiCrV-based ternary alloy phase diagram according to the present invention.
【図2】本発明に係るTiCr2 −V擬二元合金状態図
を示す図である。FIG. 2 is a diagram showing a phase diagram of a TiCr 2 -V pseudo binary alloy according to the present invention.
【図3】本発明の実施例に係る鋳造ままおよび均質化処
理後の圧力組成等温線を示す図である。FIG. 3 is a diagram showing pressure composition isotherms as-cast and after homogenization according to an example of the present invention.
【図4】本発明の実施例に係る(a)鋳造ままおよび
(b)均質化処理後の合金元素の濃度分布を分析した結
果の図である。FIG. 4 is a diagram showing the results of analyzing the concentration distribution of alloy elements after (a) as-casting and (b) after homogenization according to the example of the present invention.
【図5】本発明の実施例に係るTi25Cr35V40合金の
均質化処理後の金属組織の透過電子顕微鏡写真で、
(a)鋳造まま、(b)1200℃×2hを示す。FIG. 5 is a transmission electron micrograph of a metal structure of a Ti 25 Cr 35 V 40 alloy according to an example of the present invention after homogenization.
(A) As cast, (b) 1200 ° C. × 2 h.
【図6】本発明の実施例に係るTi25Cr35V40合金の
時効処理後の圧力組成等温線を示す図である。FIG. 6 is a graph showing a pressure composition isotherm after aging treatment of a Ti 25 Cr 35 V 40 alloy according to an example of the present invention.
【図7】本発明の実施例に係るTi25Cr35V40合金の
時効処理時間による圧力組成等温線を示す図である。FIG. 7 is a diagram showing a pressure composition isotherm according to the aging treatment time of the Ti 25 Cr 35 V 40 alloy according to the example of the present invention.
【図8】本発明の実施例に係るTi25Cr35V40合金の
時効処理後の金属組織の透過電子顕微鏡写真で、(a)
700℃×20h、(b)700℃×100hを示す。FIG. 8 is a transmission electron micrograph of a metal structure after aging treatment of a Ti 25 Cr 35 V 40 alloy according to an example of the present invention.
700 ° C. × 20 h, (b) 700 ° C. × 100 h.
【図9】本発明の実施例に係るTi25Cr35V40合金の
均質化処理後の冷却速度による圧力組成等温線を示す図
である。FIG. 9 is a diagram showing a pressure composition isotherm according to a cooling rate after a homogenization treatment of a Ti 25 Cr 35 V 40 alloy according to an example of the present invention.
【図10】本発明に係るプラト平坦性を示し、(a)平
坦なもの、(b)傾斜を有するものを示す説明図であ
る。FIGS. 10A and 10B are explanatory diagrams showing plateau flatness according to the present invention, showing (a) a flat plate and (b) a plate having a slope.
【図11】本発明に係るプラト平坦性を示し、(a)完
全に水素が移動するもの、(b)一部の水素の移動を示
す説明図である。FIGS. 11A and 11B are explanatory diagrams showing plateau flatness according to the present invention, in which (a) completely transfers hydrogen and (b) partially transfers hydrogen.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 691 C22F 1/00 691B 691C ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C22F 1/00 691 C22F 1/00 691B 691C
Claims (3)
850℃以上1400℃以下で10分から30時間加熱
する均質化処理を行い、その後さらに、第二段の熱処理
として、400〜800℃で10分〜100時間加熱す
る時効処理を行うことを特徴とする水素吸蔵合金の製造
方法。1. After melting and casting, as a first stage heat treatment,
A homogenization treatment of heating at 850 ° C. or more and 1400 ° C. or less for 10 minutes to 30 hours is performed, and then, as a second stage heat treatment, an aging treatment of heating at 400 to 800 ° C. for 10 minutes to 100 hours is performed. Manufacturing method of hydrogen storage alloy.
相を主体とするものである請求項1に記載の水素吸蔵合
金の製造方法。2. The alloy having hydrogen storage properties is BCC.
The method for producing a hydrogen storage alloy according to claim 1, wherein the method mainly comprises a phase.
2相分離により同一結晶構造で整合な粒子を析出させる
請求項2に記載の水素吸蔵合金の製造方法。3. The method for producing a hydrogen storage alloy according to claim 2, wherein the aging treatment precipitates consistent particles having the same crystal structure by fine two-phase separation inside the BCC phase.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9063990A JPH10245663A (en) | 1997-03-04 | 1997-03-04 | Production of hydrogen storage alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9063990A JPH10245663A (en) | 1997-03-04 | 1997-03-04 | Production of hydrogen storage alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10245663A true JPH10245663A (en) | 1998-09-14 |
Family
ID=13245238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9063990A Pending JPH10245663A (en) | 1997-03-04 | 1997-03-04 | Production of hydrogen storage alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10245663A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1249507A1 (en) * | 1999-12-17 | 2002-10-16 | Tohoku Techno Arch Co., Ltd. | Method for preparing hydrogen storage alloy |
JP2006177535A (en) * | 2004-12-24 | 2006-07-06 | Toyota Industries Corp | Device and method for detecting deterioration of hydrogen storage material of hydrogen storage tank, and hydrogen storage supply system |
US7413589B2 (en) | 2002-03-22 | 2008-08-19 | The Japan Steel Works, Ltd. | Method of producing hydrogen storage alloy |
JP2011157569A (en) * | 2010-01-29 | 2011-08-18 | Mitsubishi Heavy Ind Ltd | Method for producing hydrogen storage metal or hydrogen storage alloy |
-
1997
- 1997-03-04 JP JP9063990A patent/JPH10245663A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1249507A1 (en) * | 1999-12-17 | 2002-10-16 | Tohoku Techno Arch Co., Ltd. | Method for preparing hydrogen storage alloy |
EP1249507A4 (en) * | 1999-12-17 | 2003-04-02 | Tohoku Techno Arch Co Ltd | Method for preparing hydrogen storage alloy |
US7413589B2 (en) | 2002-03-22 | 2008-08-19 | The Japan Steel Works, Ltd. | Method of producing hydrogen storage alloy |
US7691216B2 (en) * | 2002-03-22 | 2010-04-06 | The Japan Steel Works, Ltd. | Method of producing hydrogen storage alloy |
JP2006177535A (en) * | 2004-12-24 | 2006-07-06 | Toyota Industries Corp | Device and method for detecting deterioration of hydrogen storage material of hydrogen storage tank, and hydrogen storage supply system |
WO2006075501A1 (en) * | 2004-12-24 | 2006-07-20 | Kabushiki Kaisha Toyota Jidoshokki | Degradation detection device and degradation detection method for hydrogen occlusion material in hydrogen storage tank, and hydrogen storage and supply system |
JP4575140B2 (en) * | 2004-12-24 | 2010-11-04 | 株式会社豊田自動織機 | Hydrogen storage material deterioration detection device for hydrogen storage tank, hydrogen storage material deterioration detection method for hydrogen storage tank, and hydrogen storage supply system |
JP2011157569A (en) * | 2010-01-29 | 2011-08-18 | Mitsubishi Heavy Ind Ltd | Method for producing hydrogen storage metal or hydrogen storage alloy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3626298B2 (en) | Hydrogen storage alloy and manufacturing method | |
JP4838963B2 (en) | Method for producing hydrogen storage alloy | |
JP4103252B2 (en) | Hydrogen storage alloy | |
JPH10245663A (en) | Production of hydrogen storage alloy | |
US7413589B2 (en) | Method of producing hydrogen storage alloy | |
JP3845057B2 (en) | Hydrogen storage alloy and heat treatment method of hydrogen storage alloy | |
Jurczyk | Hydrogen storage properties of amorphous and nanocrystalline MmNi4. 2Al0. 8 alloys | |
WO2002042507A1 (en) | Hydrogen-occluding alloy and method for production thereof | |
JP3953138B2 (en) | Hydrogen storage alloy | |
Liu et al. | Oxygen-stabilised partial amorphisation in a Zr 50 Cu 50 alloy | |
JP2002146446A (en) | Method for recovering hydrogen storage alloy, and hydrogen fuel tank | |
JP4062819B2 (en) | Hydrogen storage alloy and method for producing the same | |
JP2006028621A (en) | Heat-treatment method for hydrogen-storage alloy | |
JP7175372B1 (en) | Low Co hydrogen storage alloy | |
JP2001247927A (en) | Vanadium base solid solution type hydrogen storage alloy | |
CN116875866A (en) | L1 2 Phase reinforced Fe-Co-Ni-based high-entropy alloy and preparation method thereof | |
JPH0819500B2 (en) | Hydrogen storage alloy thin film body and method for producing the same | |
JP3751063B2 (en) | Hydrogen storage alloy | |
JP2009155682A (en) | Hydrogen storage alloy and manufacturing method therefor | |
CN109825786A (en) | A method of keeping casting TiAl alloy high temperature the long duration strenth | |
JPS61270362A (en) | Manufacture of metallic alloy for hydrogen storage | |
Zhang et al. | Evolution Process of Homogenization Treatment of Mg-Gd-Y-Zn Zr Alloy for Transformation of Β-Mg5re Phase into 14h Lpso Phase | |
JPS60135538A (en) | Manufacture of hydrogen storing alloy | |
JP2004183076A (en) | Hydrogen storage alloy and hydrogen storage system using the same | |
JPH10245648A (en) | Hydrogen storage alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040316 |