JPS60135538A - Manufacture of hydrogen storing alloy - Google Patents
Manufacture of hydrogen storing alloyInfo
- Publication number
- JPS60135538A JPS60135538A JP24089483A JP24089483A JPS60135538A JP S60135538 A JPS60135538 A JP S60135538A JP 24089483 A JP24089483 A JP 24089483A JP 24089483 A JP24089483 A JP 24089483A JP S60135538 A JPS60135538 A JP S60135538A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- hydrogen
- alloy
- hydrogenation reaction
- solidification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Abstract
Description
【発明の詳細な説明】
本発明は水素貯蔵合金の製造方法、更に詳しくは微粉化
を抑制ないし防止した水素貯蔵合金の製造方法に関する
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a hydrogen storage alloy, and more particularly to a method for producing a hydrogen storage alloy in which pulverization is suppressed or prevented.
発明の背景
水素は将来のクリーンエネルギーの中核をなすと思われ
るが、水素の貯蔵及び輸送形態として高圧ガス、液体水
素、さらに金属水素化物による固形化が挙げられる。こ
のうち安全性および取扱い易さから金属水素化物を利用
する方法が注目されている。その理由として、
+l) 単位体積当りの水素貯蔵密度が高く気体水素の
7000倍以上を有し、また液体水素のそれと同程度で
ある。BACKGROUND OF THE INVENTION Hydrogen is likely to be at the core of future clean energy, and its storage and transportation forms include high pressure gas, liquid hydrogen, and solidification with metal hydrides. Among these methods, methods using metal hydrides are attracting attention because of their safety and ease of handling. The reasons for this are: +l) The hydrogen storage density per unit volume is high, more than 7000 times that of gaseous hydrogen, and comparable to that of liquid hydrogen.
(2) 水素の貯蔵に高圧容器を必要とせず、従って容
器の耐圧や水素脆性の点では問題はない、(3) 金属
水素化物は熱力学的には安定であるために液体水素のよ
うに蒸発による損失はなく長時間の貯蔵が可能である、
(4) 金属水素化物の解離圧はほぼ一定であり解離温
度を決めれば一定圧の水素ガスが得られる、
などが挙げられる。従って金属水素化物を利用した水素
貯蔵容器をはじめ燃料電池、内燃式エンジン用ボンベは
もとより水素精製装置、冷暖房器、コンプレッサー、冷
凍器に至るまで幅広い用途が考えられており、安全性の
向上、装置の簡略化、特注の向上などの面で従来のもの
に比べ多くの利点を有する。(2) Hydrogen storage does not require a high-pressure container, so there are no problems in terms of container pressure resistance or hydrogen embrittlement. (3) Metal hydrides are thermodynamically stable, so they can be used as liquid hydrogen. (4) The dissociation pressure of metal hydrides is almost constant, and hydrogen gas at a constant pressure can be obtained by determining the dissociation temperature. Therefore, a wide range of applications are being considered, including hydrogen storage containers using metal hydrides, fuel cells, cylinders for internal combustion engines, hydrogen purification equipment, air conditioners, compressors, and refrigerators, improving safety and equipment. It has many advantages over conventional ones in terms of simplification and improved customization.
このように水素の貯蔵及び輸送形態として金属水素化物
による水素の固形化が注目を浴びているが、水素貯蔵材
料として実用化されるためには、
(1) 水素の吸収・放出に伴ない合金が微粉化しない
こと、
(2)安価であること、
(3)活性化が容易であること、
(4) 水素吸蔵能力がすぐれていること、(5) 水
素の吸収・放出の〈シ返しによる合金性能の劣化が少な
いこと、
(6)常温近傍での金属水素化物の生成平衡圧や解離平
衡圧が散気圧であること、
(7) 金属水素化物の生成および解離平衡圧曲線のヒ
ステリシスが小さいこと、
(8) 平衡圧曲線が明瞭なプラトーを有することなど
が挙げられ、従来より種々の水素貯蔵用材料が提唱され
てきた。さらに、これらの実用的諸問題のうち水素吸収
・放出の繰り返し使用により材料が微粉化する問題は、
実用化に対する最大の障壁となっているのが現状であり
、その解決が大きな命題である。As described above, hydrogen solidification using metal hydrides is attracting attention as a form of hydrogen storage and transportation, but in order to be put to practical use as a hydrogen storage material, (1) An alloy that absorbs and releases hydrogen must be (2) It is inexpensive; (3) It is easy to activate; (4) It has excellent hydrogen storage capacity; (5) It has the following characteristics: (6) The equilibrium pressure for the production and dissociation of metal hydrides near room temperature is a diffuse pressure; (7) The hysteresis of the equilibrium pressure for production and dissociation of metal hydrides is small. (8) Various hydrogen storage materials have been proposed in the past, including the fact that the equilibrium pressure curve has a clear plateau. Furthermore, among these practical problems, the problem of material becoming pulverized due to repeated use of hydrogen absorption and release is
The current situation is the biggest barrier to practical application, and solving it is a major challenge.
合金の微粉化は性能劣化に@接関係するのみならず、熱
伝導率の低下に起因する合金容器設計の複雑化や水素の
吸収・放出に伴なう容器からの合金の飛散やフィルター
、パルプの目づまシ等維持管理上の問題にも関係するた
め、多くの研究の一焦点が微粉化しにくい合金開発へ絞
られている。しかし、現在の合金製造方法では微粉化の
回避は困難であり、視点を変えた材料の製造方法の研究
が必要である。The pulverization of alloys is not only directly related to performance deterioration, but also makes the alloy container design more complicated due to a decrease in thermal conductivity, as well as scattering of the alloy from the container due to the absorption and release of hydrogen, and problems with filters and pulp. Many studies have focused on the development of alloys that are difficult to pulverize, as they are also related to maintenance issues such as blind spots. However, it is difficult to avoid pulverization with current alloy manufacturing methods, and it is necessary to research methods for manufacturing materials from a different perspective.
このようなすう勢の中で、本発明者らは共晶反応により
組織を制御する技術を水素貯蔵合金の製造に適用するこ
とによって微粉化し難い水素貯蔵合金の製造が可能であ
ることを見出した。In view of this trend, the present inventors have discovered that it is possible to produce a hydrogen storage alloy that is difficult to pulverize by applying a technology for controlling the structure through a eutectic reaction to the production of a hydrogen storage alloy.
発明の概要
すなわち本発明は、多量の水素を吸収・放出(水素化反
応)する金属または金属間化合物を第1相の成分または
組成とし、第1相の成分または組成の水素化反応の触媒
作用と延性とを有する金属を第1相の成分とし、これら
第1相を構成する成分と第1相を構成する成分とを所定
量配合し溶解後凝固する過程において、共晶反応によシ
少くとも一部を第1相と第1相との共晶組織とすること
を特徴とする水素貯蔵合金の製造方法である。Summary of the invention That is, the present invention uses a metal or an intermetallic compound that absorbs and releases a large amount of hydrogen (hydrogenation reaction) as a component or composition of the first phase, and catalyzes the hydrogenation reaction of the component or composition of the first phase. A metal having ductility and ductility is used as a component of the first phase, and in the process of blending a predetermined amount of the components constituting the first phase and the components constituting the first phase, melting, and solidifying, the metal has a ductility that is less susceptible to eutectic reaction. This is a method for producing a hydrogen storage alloy, characterized in that both parts have a eutectic structure of two first phases.
発明の詳細な記述 以下本発明の製造方法について説明する。detailed description of the invention The manufacturing method of the present invention will be explained below.
本発明の基本的技術思想は多量の水素を吸収・放出(水
素化反応)する金属または金属間化合物からなる第1相
と、はとんど水素を吸収・放出しないが水素化反応の触
媒作用を有し且つ延性を有する金属からなる第1相との
共晶組織によFIN/相の微粉化を抑制するにある。The basic technical idea of the present invention is that the first phase consists of a metal or intermetallic compound that absorbs and releases a large amount of hydrogen (hydrogenation reaction), and the first phase that does not absorb or release hydrogen but acts as a catalyst for the hydrogenation reaction. The purpose is to suppress the pulverization of the FIN/phase due to the eutectic structure with the first phase made of a ductile metal.
第1相の金属間化合物としてはLaNi、、 Mg2N
i 。As the first phase intermetallic compound, LaNi, Mg2N
i.
Cadi、などがあげられる。また第7相の金属として
はV、Nb、Pa、Mg、Oaなどがあり、第2相の金
属としてはNi、co、Ou、Mnなどがあり、従って
共晶反応を起こす系としてはLaNi、−Ni系1Mg
、Ni−Ni系、Mgz (!uトQX0aN i *
Oaなどがある。Cadi, etc. In addition, seventh phase metals include V, Nb, Pa, Mg, Oa, etc.; second phase metals include Ni, co, Ou, Mn, etc.; therefore, systems that cause eutectic reactions include LaNi, -Ni-based 1Mg
, Ni-Ni system, Mgz (!utoQX0aN i *
There are Oa etc.
本発明による第7.相の成分または組成と第1相の成分
との配合割合は水素の吸収・放出能力と水素吸収金属の
微粉化抑制能力とを考慮して決定される。すなわち、水
素吸収・放出能力を有する第1相をできるだけ多く晶出
させることが望ましいが、過度に多くなると第1相によ
る微粉化抑制能力が低下するために第1相の微粉化が生
起し、本発明による所望の効果を達成することはできな
い。従って、共晶点よ)も第7相側の組成に配合するこ
とが好ましい。7. According to the present invention. The blending ratio of the components or composition of the phase and the components of the first phase is determined in consideration of the ability to absorb and release hydrogen and the ability to suppress pulverization of the hydrogen-absorbing metal. That is, it is desirable to crystallize as much of the first phase that has the ability to absorb and release hydrogen as possible, but if the amount is too large, the first phase's ability to suppress pulverization will decrease, causing pulverization of the first phase. The desired effect according to the invention cannot be achieved. Therefore, it is preferable to include the eutectic point in the composition on the seventh phase side.
本発明方法における溶解は酸化を防止するために真空ま
たは不活性ガス(例えばアルゴン)中で、合金の融点以
上に温度上昇できる任意の溶解炉を使用して実施できる
が、ただ、水素貯蔵合金自体が不純物、特に酸素を極端
にきらうために「るつぼ」の材質の選定が重要なキーポ
イントとなる。例えば水冷鋼るつぼ等を使用して行われ
る。Melting in the method of the invention can be carried out in vacuum or in an inert gas (e.g. argon) to prevent oxidation, using any melting furnace capable of raising the temperature above the melting point of the alloy, but only the hydrogen storage alloy itself. The selection of the material for the crucible is an important key point, as it is extremely sensitive to impurities, especially oxygen. For example, this is carried out using a water-cooled steel crucible.
溶解した合金成分を凝固させれば、凝固過程で晶出する
初晶および共晶組織の量は第1相の成分(組成)と第1
組の成分との配合割合によって決定される。凝固の一態
様として凝固パラメータとなる温度勾配や凝固速度を調
節することからなる指向性凝固を行うことにより第1図
に示すような第1相または第1組を整列組織成長させ、
第1相または第1組の整列組織相間隔および大きさを任
意に変えることができる。If the melted alloy components are solidified, the amount of primary crystals and eutectic structures that crystallize during the solidification process will be the same as the components (composition) of the first phase.
It is determined by the blending ratio with the other components. By performing directional solidification, which consists of adjusting the temperature gradient and solidification rate, which are solidification parameters, as one mode of solidification, the first phase or first set shown in FIG. 1 is grown in an aligned structure,
The spacing and size of the first phase or first set of aligned tissue phases can be varied arbitrarily.
発明の実施例 以下実施例に基づき本発明を説明する。Examples of the invention The present invention will be explained below based on Examples.
実施例1
純度デ9・g%ランタン(La)と純度?ワ、デS%ニ
ッケル(Ni)を用いて金属間化合物LaNi、とN1
との共晶合金(第1表中符号/)および一部共晶組織を
有する合金(第1表中符号−〜6)を溶製した。La
(第1相の金属間化合物LaNi、の成分)およびNi
(第1組の成分)の調合割合と合金組成の関係を下記の
第1表に示す。Example 1 Purity de9.g% Lanthanum (La) and purity? W, De S% nickel (Ni) using intermetallic compound LaNi, and N1
A eutectic alloy with (symbol / in Table 1) and an alloy having a partial eutectic structure (symbol - to 6 in Table 1) were melt-produced. La
(components of the first phase intermetallic compound LaNi) and Ni
The relationship between the blending ratio of (first set of components) and alloy composition is shown in Table 1 below.
まず、各割合で調合した原材料soogを水冷銅るつぼ
内に入れ、 / 0−”〜io−’トルまで排ガス後、
プラズマアーク(Arガス中)にて溶解した。次いで溶
湯状態から冷却すると各試料の凝固後の組成及び組成比
(初晶/共晶組織)は第1表に示す通りである。First, the raw material soog prepared in various proportions was put into a water-cooled copper crucible, and after exhausting the gas until
It was melted in a plasma arc (in Ar gas). Next, when the molten metal was cooled, the composition and composition ratio (primary crystal/eutectic structure) of each sample after solidification were as shown in Table 1.
このようにして得た各合金試料を/σ角に小割し、高温
高圧水素ガス雰囲気中で温度、圧力自動制御可能な自動
天秤装置にセットして、コ、tll;l’Qで排気後純
度?デ、1冒??−の水素を導入し30分間保持したの
ち、再び排気した。その後室温にてlio気圧の水素を
加圧したときの水素化反応に伴う合金重量の変化から、
合金が吸収・放出した水素量をめ、第1表に示した。Each alloy sample obtained in this way was divided into small pieces of /σ angle, set in an automatic balance device that can automatically control temperature and pressure in a high-temperature, high-pressure hydrogen gas atmosphere, and after exhausting with purity? De, 1st adventure? ? - After introducing hydrogen and holding it for 30 minutes, it was evacuated again. From the change in alloy weight due to the hydrogenation reaction when hydrogen was then pressurized at lio atmospheric pressure at room temperature,
The amount of hydrogen absorbed and released by the alloy is shown in Table 1.
更に1本発明合金および比較材(LaNi、 )に(1
)
つい゛ff室温における水素吸収量、水素吸収速度、更
に室温で水素をIO気圧の条件で吸収させたのち100
℃で水素圧70気圧の条件で水素を放出する操作をSO
回く夛返した試料について、微粉化の状況を第1表に示
した。Furthermore, (1
) ff Hydrogen absorption amount at room temperature, hydrogen absorption rate, and 100% after hydrogen is absorbed at room temperature under IO atmospheric conditions
The operation to release hydrogen under the conditions of hydrogen pressure of 70 atm at ℃ is performed using SO
Table 1 shows the state of pulverization of the samples that were repeated several times.
/
/
(lUノ
本発明方法によって製造した合金は比較材に比べていず
れの場合も水素吸収速度が速く、また符号3の合金を除
いては微粉化は止じていないことがわかる。また共晶組
成の水素吸収量(3,0水素原子/金属原子(H/M)
)は比較材のLaNi s (A 、j H/ M )
のそれに比べて約s0%と小さいが、共晶組成よりLa
1JiB側へずれるにつれて水素吸収量は増大し、例え
ば符号グの合金(La2r重量%−Ni 7−重量%)
の水素吸収量(41,9H/M) は共晶組成に比べて
LaNi5の約jコチと大幅に改善され、且つ水素吸収
速度が比較材に比べて速く、さらに微粉化しない点を考
慮すると水素吸収量の不利は実用上問題とならない。/ / (It can be seen that the hydrogen absorption rate of the alloys manufactured by the method of the present invention is faster than that of the comparative materials in all cases, and the pulverization does not stop except for alloy 3. Hydrogen absorption amount of crystal composition (3,0 hydrogen atoms/metal atom (H/M)
) is the comparison material LaNis (A, j H/M)
Although it is small at about s0% compared to that of La
The amount of hydrogen absorption increases as it shifts to the 1JiB side, for example, the alloy of the code (La2r weight % - Ni 7 - weight %)
The hydrogen absorption amount (41.9H/M) of LaNi5 is significantly improved compared to the eutectic composition, and the hydrogen absorption rate is faster than that of the comparative material, and considering that it does not become pulverized, the hydrogen The disadvantage in absorption amount is not a practical problem.
実施例2
実施例1と同様に調合したLaおよびN1を第2図に示
した指向性凝固装置にセットし10〜10 )ルまで排
ガスした。温度勾配をつくるために底部側を水冷しなが
ら、sia発熱体から成る炉をゆっくりと上部へ引き上
げることに赤吹より、痔融部が下部から上部へ連続的に
移動する間に、 LaNi、の第1相およびN1の第2
組から成る指向性凝固合金を得た。Example 2 La and N1 prepared in the same manner as in Example 1 were set in the directional coagulation apparatus shown in FIG. 2, and exhaust gas was discharged to 10 to 10 μl. While cooling the bottom side with water to create a temperature gradient, the furnace consisting of the SIA heating element is slowly pulled up to the top, and while the hemorrhoid melting part moves continuously from the bottom to the top, the LaNi, 1st phase and 2nd of N1
A directional solidification alloy consisting of a set was obtained.
本合金ではLaNi、の第1相は凝固方間に連続であり
、任意の垂直断面で切断しても同様の様相を呈した。In this alloy, the first phase of LaNi was continuous during solidification, and the same appearance was observed even when cut at any vertical cross section.
このようにして製造した合金を前述の高温高天
圧熱平秤装置を用いて水素の吸収・放出をくシ返しても
、全く微粉化は生じなかった。Even when the alloy thus produced was repeatedly absorbed and released from hydrogen using the above-mentioned high-temperature, high-pressure thermobalance device, no pulverization occurred.
発明の効果
本発明の製造方法によれば水嵩貯蔵合金の微粉化が防止
される。Effects of the Invention According to the manufacturing method of the present invention, pulverization of the water bulk storage alloy is prevented.
また、指向性凝固を採用することによシ凝固方向に長範
囲で連続な第1相を得ることができるため、例えば水素
フィルターや半透膜などの新用途への適用も可能となる
。Furthermore, by employing directional coagulation, it is possible to obtain a first phase that is continuous over a long range in the coagulation direction, making it possible to apply it to new applications such as hydrogen filters and semipermeable membranes.
第1A図は本発明による指向性凝固合金の模式図、第1
B図は第1A図に示す合金の断面組織を示す写真、第2
図は指向性凝固合金製造装置の概略断面図である。
特許出願人 株式会社 日本製鋼府
県2図
冷却水入口
手続補正帯
昭和5抑12月28日
特許庁長官殿
2、 発明の名称
水素貯蔵合金の製造方法
3、 補正をする者
事件との関係 特許出願人
名称(、J / ) 株式会社日本製鋼所4、代理人
5、 補正の対象
/’−−’T−人
(1)明細書の発明の詳細な説明の欄 \・ムー
ム補正の内容
(1) 明細書第6頁7行「、CaNi、 −−Cal
を「caNt。
−Ca系」に補正する。
(2) 同第g頁IO行「組成比(初晶/共晶組織)」
を「初晶量(初晶/全組織)」に補正する。
(3) 同第1コ頁/?行「断面」を[マトリックスの
]に補正する。
(2)
手続補正書(方式)
%式%
1、事件の表示
昭和58年特許願第240894号
2、発明の名称
水素貯蔵合金のi!!遣方法
3、補正をする者
事件との関係 特許出願人
名称 (421)株式会社日本製鋼所
4、代理人
住 所 東京都千代田区丸の内二丁目4番1号丸の内ビ
ルディング4階
5、補正命令の日付
昭和59年3月27日
1−
7、補正の内容
(1)第2図を別紙の通り補正する。
(2)別紙委任状を補充する。
麗2図
ら
手続補正書(自発)
昭和59年4月26日
特許庁長官殿
】、事件の表示
昭和58年特許願第240894号
2、発明の名称
水素貯蔵合金の製造方法
3、補正をする者
事件との関係 特許出願人
名称 (42]、)株式会社日本製鋼所4、代理人
住 所 東京都千代田区丸の内二丁目4番1号丸の内ビ
ルディング4階
5、補正の対象
6、補正の内容
(1)明細書第11頁16行[LaおよびNilを[1
−aおよびNiからなる試料2」に補正する。
(2)同第11頁17行「指向性凝固装置」を1指向性
凝固今金製造装置1」に補正する。
(3)同第11頁18行「排ガスした。」の前に「真空
ポンプ(図示せず)により真空ポンプ接続管11から」
を加入する。
(4)同第11頁19行[水冷しながら]の前に「冷却
水(冷却水人口12および冷却水出口13)で」を加入
する。
(5)同第11頁19行[SiC発熱体−1を[SiC
発熱体3」に補正する。
(6)同第12頁3行[指向性凝固合金を得た。]の後
に「なお、第2図において4はアルミするつぼ、5は温
度計、6は耐火レンが、7はシリカチューブ、8はセラ
ミック管、9は銅棒、10はOリングである。」を加入
する。
(7)同第13頁2行に下記を加入する:「1・・指向
性凝固合金製造装置、2・・試料、32−
・・SiC発熱体、4・・アルミするつぼ、5・・温度
計、6・・耐火レンガ、7・・シリカチューブ、8・・
セラミック管、9・・銅棒、10・・Oリング、11・
・真空ポンプ接続管、12・・冷却水入口、13・・冷
却水出口。」FIG. 1A is a schematic diagram of a directionally solidified alloy according to the present invention;
Figure B is a photograph showing the cross-sectional structure of the alloy shown in Figure 1A;
The figure is a schematic cross-sectional view of a directional solidification alloy manufacturing apparatus. Patent Applicant Nippon Steel Corporation Prefecture 2 Cooling Water Entrance Procedures Amendment Band December 28, 1937 Mr. Commissioner of the Japan Patent Office 2 Title of Invention Process for Producing Hydrogen Storage Alloy 3 Relationship with the Amendment Person Case Patent Application Name of person (,J/) Japan Steel Works, Ltd. 4, Agent 5, Target of amendment/'--'T-Person (1) Column for detailed explanation of the invention in the specification \・Contents of the Muum amendment (1) ) Page 6 line 7 of the specification ", CaNi, --Cal
is corrected to "caNt.-Ca system". (2) “Composition ratio (primary crystal/eutectic structure)” on page g, line IO
is corrected to “primary crystal amount (primary crystal/total structure)”. (3) Same page 1/? Correct the line "Cross section" to [Matrix]. (2) Procedural amendment (method) % formula % 1. Indication of the case 1982 Patent Application No. 240894 2. Name of the invention Hydrogen storage alloy i! ! Method of submission 3, Relationship with the case of the person making the amendment Patent applicant name (421) Japan Steel Works, Ltd. 4, agent address 4th floor 5, Marunouchi Building, 2-4-1 Marunouchi, Chiyoda-ku, Tokyo, of the amendment order Date March 27, 1980 1-7 Contents of amendment (1) Figure 2 will be corrected as shown in the attached sheet. (2) Supplement the attached power of attorney. Rei 2, et al. Procedural Amendment (Spontaneous) April 26, 1980, Commissioner of the Patent Office], Description of the case, 1982 Patent Application No. 240894 2, Name of the invention Process for manufacturing hydrogen storage alloy 3, Person making the amendment Relationship to the case Patent applicant name (42),) Japan Steel Works Co., Ltd. 4, agent address 4th floor 5, Marunouchi Building, 2-4-1 Marunouchi, Chiyoda-ku, Tokyo, subject of amendment 6, content of amendment ( 1) Page 11, line 16 of the specification [La and Nil [1]
-a and sample 2 consisting of Ni. (2) ``Directional coagulation apparatus'' on page 11, line 17 is corrected to ``1 directional coagulation gold manufacturing apparatus 1''. (3) On page 11, line 18 of the same text, before "exhaust gas.""From the vacuum pump connection pipe 11 using a vacuum pump (not shown)."
join. (4) Add "with cooling water (cooling water population 12 and cooling water outlet 13)" before "while cooling with water" on page 11, line 19 of the same document. (5) Page 11, line 19 [SiC heating element-1]
Heating element 3". (6) Page 12, line 3 [Directional solidification alloy was obtained. ] followed by ``In Figure 2, 4 is an aluminum crucible, 5 is a thermometer, 6 is a refractory wire, 7 is a silica tube, 8 is a ceramic tube, 9 is a copper rod, and 10 is an O-ring.'' join. (7) Add the following to the second line of page 13: ``1. Directional solidification alloy manufacturing device, 2. Sample, 32-... SiC heating element, 4. Aluminum crucible, 5. Temperature. Total, 6... Firebrick, 7... Silica tube, 8...
Ceramic tube, 9...Copper rod, 10...O ring, 11...
・Vacuum pump connection pipe, 12...Cooling water inlet, 13...Cooling water outlet. ”
Claims (1)
たは金属間化合物を第1相の成分または組成とし、第1
相の成分または組成の水素化反応の触媒作用と延性とを
有する金属を第1組の成分とし、これら第1相を構成す
る成分と第1組を構成する成分とを所定量配合し溶解後
凝固する過程において、共晶反応により少くとも一部を
第1相と第1組との共晶組織とすることを特徴とする水
素貯蔵合金の製造方法。 ユ 凝固過程において指向性凝固を行うことにより整列
組織成長させる特許請求の範囲第1項記載の製造方法。[Scope of Claims] l A metal or an intermetallic compound that absorbs and releases a large amount of hydrogen (hydrogenation reaction) is a component or composition of the first phase;
A metal having a catalytic action and ductility for the hydrogenation reaction of the phase component or composition is used as a first set of components, and the components constituting the first phase and the components constituting the first group are blended in predetermined amounts and then melted. 1. A method for producing a hydrogen storage alloy, which comprises forming at least a portion of the alloy into a eutectic structure of a first phase and a first set by a eutectic reaction during the solidification process. The manufacturing method according to claim 1, wherein aligned tissue is grown by performing directional solidification in the solidification process.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24089483A JPS60135538A (en) | 1983-12-22 | 1983-12-22 | Manufacture of hydrogen storing alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24089483A JPS60135538A (en) | 1983-12-22 | 1983-12-22 | Manufacture of hydrogen storing alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60135538A true JPS60135538A (en) | 1985-07-18 |
JPH0132299B2 JPH0132299B2 (en) | 1989-06-30 |
Family
ID=17066264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24089483A Granted JPS60135538A (en) | 1983-12-22 | 1983-12-22 | Manufacture of hydrogen storing alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60135538A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02107332A (en) * | 1988-10-17 | 1990-04-19 | Muroran Kogyo Univ | Partition type catalyst and reactor using said catalyst |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4934315A (en) * | 1972-07-26 | 1974-03-29 | ||
JPS5319129A (en) * | 1976-08-05 | 1978-02-22 | Matsushita Electric Ind Co Ltd | Metal material for hydrogen storage |
JPS5814361A (en) * | 1981-07-20 | 1983-01-27 | Sanyo Electric Co Ltd | Cassette loading device for tape recorder |
-
1983
- 1983-12-22 JP JP24089483A patent/JPS60135538A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4934315A (en) * | 1972-07-26 | 1974-03-29 | ||
JPS5319129A (en) * | 1976-08-05 | 1978-02-22 | Matsushita Electric Ind Co Ltd | Metal material for hydrogen storage |
JPS5814361A (en) * | 1981-07-20 | 1983-01-27 | Sanyo Electric Co Ltd | Cassette loading device for tape recorder |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02107332A (en) * | 1988-10-17 | 1990-04-19 | Muroran Kogyo Univ | Partition type catalyst and reactor using said catalyst |
Also Published As
Publication number | Publication date |
---|---|
JPH0132299B2 (en) | 1989-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2002327230A (en) | Magnesium-based hydrogen absorbing alloy | |
GB1593764A (en) | Nickel mischmetal calcium alloys for hydrogen storage | |
CN105695828A (en) | Mg-based high-capacity hydrogen storage alloy and preparation method thereof | |
JP5300265B2 (en) | Magnesium alloy for hydrogen storage | |
US7413589B2 (en) | Method of producing hydrogen storage alloy | |
JPS60135538A (en) | Manufacture of hydrogen storing alloy | |
JP2859187B2 (en) | Hydrogen storage alloy | |
JPH0247535B2 (en) | ||
US4421718A (en) | Alloy for occlusion of hydrogen | |
US4576639A (en) | Hydrogen storage metal material | |
JP3953138B2 (en) | Hydrogen storage alloy | |
CN110387495A (en) | A kind of antioxygen gas poisons Zr-V-Ni hydrogen storage material and preparation method thereof | |
JP4768111B2 (en) | Hydrogen storage alloy | |
JP2896433B2 (en) | Magnesium hydrogen storage alloy | |
JP3751063B2 (en) | Hydrogen storage alloy | |
JPS5841334B2 (en) | Quaternary hydrogen storage alloy | |
JPH0210210B2 (en) | ||
JPH11246923A (en) | Hydrogen storage alloy and its production | |
Okumura et al. | Microstructure and protium absorbing/desorbing characteristics of Mg2Ni-Mn alloys | |
JP3000680B2 (en) | Materials for hydrogen storage | |
JPS6024337A (en) | Rare earth metal-base hydrogen occluding alloy | |
JPS583940A (en) | Vanadium-containing alloy for occlusion of hydrogen | |
JP2002060804A (en) | Hydrogen storage alloy excellent in durability and its production method | |
JP2006028632A (en) | Hydrogen storage alloy and hydrogen storage vessel | |
JPH1030138A (en) | Hydrogen storage body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |