JP2006028621A - Heat-treatment method for hydrogen-storage alloy - Google Patents
Heat-treatment method for hydrogen-storage alloy Download PDFInfo
- Publication number
- JP2006028621A JP2006028621A JP2004212957A JP2004212957A JP2006028621A JP 2006028621 A JP2006028621 A JP 2006028621A JP 2004212957 A JP2004212957 A JP 2004212957A JP 2004212957 A JP2004212957 A JP 2004212957A JP 2006028621 A JP2006028621 A JP 2006028621A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen storage
- storage alloy
- hydrogen
- alloy
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
この発明は、水素を吸放出する水素吸蔵合金の熱処理方法に関するものである。 The present invention relates to a heat treatment method for a hydrogen storage alloy that absorbs and releases hydrogen.
水素吸蔵合金は、水素の吸放出作用を利用して、水素貯蔵用材料、熱変換用水素吸収材料、燃料電池用水素供給用材料、Ni−水素電池用負極材料、水素精製回収用材料、水素ガスアクチュエータ用水素吸収材料等に用いられている。各種用途の実用化においては、水素貯蔵材料の特性を一層向上させる必要があり、例えば、水素貯蔵量の増加、原料の低廉化、プラトー特性の改善、耐久性の向上などが大きな課題として挙げられている。 Hydrogen storage alloy uses hydrogen absorption / release action to store hydrogen storage material, heat absorption hydrogen absorption material, fuel cell hydrogen supply material, Ni-hydrogen battery negative electrode material, hydrogen refining and recovery material, hydrogen It is used as a hydrogen absorbing material for gas actuators. In the practical application of various applications, it is necessary to further improve the characteristics of hydrogen storage materials.For example, increasing the amount of hydrogen storage, lowering raw materials, improving plateau characteristics, improving durability, etc. ing.
例えば、特許文献1では、三次元網目構造の第2相を析出させることを特徴としたTi−V系固溶合金を作製し、次いで加熱処理することを特徴としている。
また、特許文献2や特許文献3では、一定組成範囲にあるTi−Cr−V系合金を急冷凝固法により平均粒径側40μm以下で作製し、Ni被覆して熱処理を行うか、または表面をメカニカルアロイング法によりNi被覆した水素吸蔵合金が提案されている。
特許文献4では、主相が体心立方晶でその平均粒径が100μm以下の一定組成範囲にある水素吸蔵合金を急冷凝固法または200℃/sec.以上の冷却速度で溶体化処理を行って作製する方法が提案されている。
For example, Patent Document 1 is characterized in that a Ti-V-based solid solution alloy characterized by precipitating a second phase having a three-dimensional network structure is manufactured and then heat-treated.
Further, in Patent Document 2 and Patent Document 3, a Ti—Cr—V alloy having a certain composition range is produced by a rapid solidification method with an average particle size side of 40 μm or less, and Ni is coated and heat-treated, or the surface is coated. A hydrogen storage alloy coated with Ni by a mechanical alloying method has been proposed.
In Patent Document 4, a hydrogen storage alloy having a main composition of a body-centered cubic crystal and an average particle size of 100 μm or less in a constant composition range is subjected to a rapid solidification method or 200 ° C./sec. A method has been proposed in which a solution treatment is performed at the above cooling rate.
特許文献5では、一定組成範囲にあるTi−Cr−V系合金をメカニカルアロイング法で作製し平均粒径が0.5μm以上40μm以下である単相体心立方構造の水素吸蔵合金が提案されている。
特許文献6では、一定組成範囲にある水素吸蔵合金を急冷凝固法で作製した合金粉末の表面にメカニカルアロイング法によりNi被覆し熱処理した水素吸蔵合金が提案されている。
特許文献7では、体心立方構造を主相としたTi−C−−(Mo−No−Fe)系水素吸蔵合金を無電解めっきまたはメカニカルアロイング等によりCuおよびNiを順に被覆し熱処理した合金が提案されている。
Patent Document 5 proposes a hydrogen storage alloy having a single-phase body-centered cubic structure in which a Ti—Cr—V alloy having a certain composition range is produced by a mechanical alloying method and an average particle size is 0.5 μm or more and 40 μm or less. ing.
Patent Document 6 proposes a hydrogen storage alloy in which a surface of an alloy powder produced by rapidly solidifying a hydrogen storage alloy having a certain composition range is coated with Ni by a mechanical alloying method and heat-treated.
In Patent Document 7, a Ti—C —— (Mo—No—Fe) hydrogen storage alloy having a body-centered cubic structure as a main phase is coated with Cu and Ni in order by electroless plating or mechanical alloying, and then heat-treated. Has been proposed.
さらに、特許文献8では、体心立方構造を主相とするTi−Cr−V系水素吸蔵合金を溶体化処理後、冷却処理および/または時効処理する方法が提案されている。
特許文献9では、Ti−Cr−V−Ni−Xの一定組成範囲において、主相の結晶構造が体心立方構造であることを特徴とし、かつ熱処理により体心立方構造としたことを特徴とした耐久性等に優れる水素吸蔵合金が提案されており、溶体化処理後の処理として冷却処理および時効処理を提案しており冷却処理は焼き入れ処理が好ましいとしている。
Furthermore, Patent Document 8 proposes a method of cooling and / or aging treatment of a Ti—Cr—V hydrogen storage alloy having a body-centered cubic structure as a main phase after solution treatment.
Patent Document 9 is characterized in that the crystal structure of the main phase is a body-centered cubic structure in a constant composition range of Ti-Cr-V-Ni-X, and is characterized by having a body-centered cubic structure by heat treatment. A hydrogen storage alloy excellent in durability and the like has been proposed, and a cooling treatment and an aging treatment are proposed as the treatment after the solution treatment, and the quenching treatment is preferable for the cooling treatment.
特許文献10では、一定組成範囲にあるTi−Cr−V−A系合金(AはIIIb族等の金属)を加熱急冷してBBC相に単相化させる水素吸蔵合金が提案されている。
特許文献11では、体心立方構造を主相とした一定組成範囲にあるT−Cr−Mo−Fe系水素吸蔵合金を水冷以上で冷却することが提案されている。
特許文献12では、BCC構造をもつ合金の耐久性等の向上方法として融点以上に加熱した後徐冷させつつ凝固させる方法が提案されている。
Patent Document 11 proposes cooling a T-Cr-Mo-Fe-based hydrogen storage alloy having a constant composition range having a body-centered cubic structure as a main phase by water cooling or more.
In Patent Document 12, as a method for improving the durability and the like of an alloy having a BCC structure, a method is proposed in which the alloy is heated to a melting point or higher and then solidified while being gradually cooled.
ところで、Ti−V−Mn系、Ti−V−Cr系合金などのBCC構造を有した合金は、すでに実用化されているAB5型合金やAB2型合金に比べ 1.5倍以上の大量の水素を吸蔵するが水素吸放出の繰り返しによる劣化が非常に早い。そして、BCC構造を有した合金は前記したように主として急冷法によって製造されるため、多かれ少なかれ凝固偏析や析出物あるいは歪みが存在し、繰り返し水素化させることで相分離や結晶性の崩れ、欠陥への水素の安定トラップという欠点があり、水素の吸収・放出を繰返し行なうと合金の劣化が大きく、吸収・放出の繰返しのサイクル数が増加するほど、平衡解離圧が大きく低下してしまうという実用上の問題がある。 By the way, alloys having a BCC structure such as Ti-V-Mn series and Ti-V-Cr series alloys are 1.5 times larger than AB 5 type alloys and AB 2 type alloys already in practical use. However, the deterioration due to repeated hydrogen absorption / release is very fast. Since the alloy having the BCC structure is mainly manufactured by the rapid cooling method as described above, there is more or less solidification segregation, precipitates or distortion, and phase separation, crystallinity breakage, defects due to repeated hydrogenation. There is a drawback of stable trapping of hydrogen into the metal, and repeated absorption and release of hydrogen causes a significant deterioration of the alloy, and the equilibrium dissociation pressure decreases greatly as the number of repeated absorption and release cycles increases. There is a problem above.
本発明は、上記課題を解決することを基本的な目的とし、BCC単相構造を持つ水素吸蔵合金について、母相の組成揺らぎや結晶粒内の微細析出を抑制し、格子欠陥や歪み等を減少させて耐久性を改善した水素吸蔵合金を得ることを目的とする。 The basic object of the present invention is to solve the above-mentioned problems, and in the hydrogen storage alloy having a BCC single phase structure, the compositional fluctuation of the parent phase and the fine precipitation in the crystal grains are suppressed, and the lattice defects and strains are reduced. It aims at obtaining the hydrogen storage alloy which reduced and improved durability.
一般にTi−Cr−V系合金のBCC構造は高温平衡相であり、溶解・鋳造時に形成される各成分の凝固偏析、特にTi成分とV成分のデンドライト状の凝固偏析を解消して均質化するためには、BCC構造相の安定な高温域における溶体化処理が必要となる。これら溶体化処理温度と時間に関する条件は、前述した特許文献8を始め多くの特許文献に記載されている。しかし、BCC構造を持つ水素吸蔵合金において、溶体化処理温度と時間を同じ条件で行っても、熱処理後の冷却速度を変化させることにより耐久性に違いが表れる。冷却速度の制御は、BCC構造の格子欠陥や歪みを制御する上で極めて重要である。溶体化処理温度からの水や油による焼入れ処理等の急冷処理では、結晶粒内に多くの欠陥や歪みが導入される。このような欠陥や歪みの導入を抑制するためには、降温過程の冷却速度は合金製造の許容範囲内で制御しなくてはならない。本発明は、本発明者等による上記知見に基づいてなされたものである。 In general, the BCC structure of Ti-Cr-V alloys is a high-temperature equilibrium phase, which eliminates the solidification segregation of each component formed during melting and casting, particularly dendritic solidification segregation of Ti and V components, and homogenizes them. For this purpose, a solution treatment in a stable high temperature region of the BCC structural phase is required. The conditions regarding the solution treatment temperature and time are described in many patent documents including the above-mentioned patent document 8. However, in a hydrogen storage alloy having a BCC structure, even if the solution treatment temperature and time are performed under the same conditions, a difference appears in durability by changing the cooling rate after the heat treatment. Control of the cooling rate is extremely important in controlling lattice defects and distortion of the BCC structure. In the rapid cooling treatment such as quenching treatment with water or oil from the solution treatment temperature, many defects and strains are introduced into the crystal grains. In order to suppress the introduction of such defects and strains, the cooling rate in the temperature lowering process must be controlled within the allowable range of alloy production. The present invention has been made based on the above findings by the present inventors.
すなわち、本発明水素吸蔵合金の熱処理方法のうち、請求項1記載の発明は、溶製されたBCC単相構造の水素吸蔵合金を非酸化性雰囲気下で溶体化処理をし、その後、非酸化性雰囲気下で300℃/時間以下の冷却速度で350℃以下まで降温させることを特徴とする。 That is, among the heat treatment methods of the hydrogen storage alloy of the present invention, the invention according to claim 1 is a solution treatment of a hydrogen storage alloy having a BCC single-phase structure produced in a non-oxidizing atmosphere, and then non-oxidizing. The temperature is lowered to 350 ° C. or lower at a cooling rate of 300 ° C./hour or lower in a neutral atmosphere.
請求項2記載の水素吸蔵合金の熱処理方法の発明は、請求項1において、前記非酸化性雰囲気が、不活性ガス雰囲気または還元性ガス雰囲気であることを特徴とする。 An invention of a heat treatment method for a hydrogen storage alloy according to claim 2 is characterized in that, in claim 1, the non-oxidizing atmosphere is an inert gas atmosphere or a reducing gas atmosphere.
請求項3記載の水素吸蔵合金の熱処理方法の発明は、請求項1または2に記載の発明において、前記溶体化処理が、加熱温度1100〜1450℃、保持時間1分〜48時間で行われることを特徴とする。 According to a third aspect of the present invention, there is provided a hydrogen storage alloy heat treatment method according to the first or second aspect, wherein the solution treatment is performed at a heating temperature of 1100 to 1450 ° C. and a holding time of 1 minute to 48 hours. It is characterized by.
請求項4記載の水素吸蔵合金の熱処理方法の発明は、請求項1〜3のいずれかに記載の発明において、前記水素吸蔵合金が平均粒径100μm以上の粉末であることを特徴とする。 According to a fourth aspect of the present invention, there is provided a hydrogen storage alloy heat treatment method according to any one of the first to third aspects, wherein the hydrogen storage alloy is a powder having an average particle size of 100 μm or more.
請求項5記載の水素吸蔵合金の熱処理方法の発明は、請求項1〜4のいずれかに記載の発明において、前記水素吸蔵合金は、V系固溶体型BCC構造を有する合金であることを特徴とする。 The invention according to claim 5 is characterized in that in the invention according to any one of claims 1 to 4, the hydrogen storage alloy is an alloy having a V-based solid solution type BCC structure. To do.
すなわち、本発明によれば、BCC単相構造を持つ水素吸蔵合金の熱処理後の冷却を300℃/hrより遅い速度で行うことにより、母相の組成揺らぎや結晶粒内の微細析出を抑制し、格子欠陥や歪み等を減少させた水素吸蔵合金を得ることができる。 That is, according to the present invention, the composition after the heat treatment of the hydrogen storage alloy having a BCC single phase structure is cooled at a rate slower than 300 ° C./hr, thereby suppressing the compositional fluctuation of the matrix and the fine precipitation in the crystal grains. In addition, a hydrogen storage alloy with reduced lattice defects and strains can be obtained.
すなわち、本発明の水素吸蔵合金の熱処理方法によれば、溶製されたBCC単相構造の水素吸蔵合金を非酸化性雰囲気下で溶体化処理をし、その後、非酸化性雰囲気下で300℃/時間以下の冷却速度で350℃以下まで降温させるので、従来の急冷法による水素吸蔵合金の製造では困難であった母相の組成揺らぎや結晶粒内の微細析出を抑制し、格子欠陥や歪み等を減少させることが可能となり、より優れた耐久性を有した水素吸蔵合金が製造できる効果がある。特にBCC単相構造が安定なV濃度の高い水素吸蔵合金においては効果が顕著であり、溶体化処理後の冷却速度を300℃/hourより遅くすることで、高い水素吸蔵能力を持ち、例えば100℃、50気圧以下で優れた特性を発揮することができ、さらに、水素吸放出の繰り返しによる性能劣化が小さく、500回までの水素吸蔵量の劣化をほぼ0%にすることが可能である。 That is, according to the hydrogen storage alloy heat treatment method of the present invention, the melted BCC single-phase structure hydrogen storage alloy is subjected to a solution treatment in a non-oxidizing atmosphere, and then 300 ° C. in a non-oxidizing atmosphere. Since the temperature is lowered to 350 ° C. or less at a cooling rate of / hour or less, the compositional fluctuation of the parent phase and the fine precipitation in the crystal grains, which were difficult in the production of the hydrogen storage alloy by the conventional quenching method, are suppressed, and lattice defects and strains are suppressed. Etc. can be reduced, and there is an effect that a hydrogen storage alloy having more excellent durability can be manufactured. In particular, the effect is remarkable in a hydrogen storage alloy having a high V concentration and having a stable BCC single-phase structure. By making the cooling rate after solution treatment slower than 300 ° C./hour, it has a high hydrogen storage capacity. Excellent characteristics can be exhibited at 50 ° C. and below 50 ° C. Further, performance degradation due to repeated hydrogen absorption / release is small, and degradation of hydrogen storage capacity up to 500 times can be reduced to almost 0%.
本発明では、溶製された合金を溶体化処理する。本発明としては合金の溶製方法は特定のものに限定されるものではなく、常法により行うことができる。また、溶体化処理における加熱温度、保持時間も本発明としては適宜の条件を選定することができるが、好適には1100〜1450℃で、1分〜48時間保持する条件が例示される。これは1100℃未満では欠陥の緩和効果が不十分であり、1450℃を超えると、合金が溶融するためである。また、保持時間は1分未満であると溶体化処理が不十分であり、48時間を超えると合金内の酸素含有量が増加し特性を劣化させるためである。なお、溶体化処理は、非酸化性雰囲気で行う。非酸化性雰囲気としては、1×10−2Torr以下の減圧下や不活性ガス雰囲気下、還元ガス雰囲気下で行うことができる。不活性ガスとしては窒素ガスやアルゴン等の周期表18族の元素のガスが示される。また、還元性ガスとしては、水素、COなどが挙げられる。 In the present invention, the melted alloy is subjected to a solution treatment. In the present invention, the melting method of the alloy is not limited to a specific one, and can be performed by a conventional method. Moreover, although the appropriate conditions can also be selected as heating temperature and holding time in solution treatment as this invention, the conditions hold | maintained at 1100-1450 degreeC suitably for 1 minute-48 hours are illustrated. This is because the effect of mitigating defects is insufficient when the temperature is lower than 1100 ° C., and the alloy melts when the temperature exceeds 1450 ° C. Further, when the holding time is less than 1 minute, the solution treatment is insufficient, and when it exceeds 48 hours, the oxygen content in the alloy increases and the characteristics are deteriorated. The solution treatment is performed in a non-oxidizing atmosphere. The non-oxidizing atmosphere can be performed under a reduced pressure of 1 × 10 −2 Torr or less, an inert gas atmosphere, or a reducing gas atmosphere. As the inert gas, a gas of an element belonging to Group 18 of the periodic table such as nitrogen gas or argon is shown. Examples of the reducing gas include hydrogen and CO.
溶体化処理後の冷却速度は、本発明特有のものであり、その冷却速度を規定以下にすることが必要となる。ここの冷却速度を300℃/時間を超えるものとすると、格子欠陥等の欠陥や歪みが生じて合金の水素吸放出における耐久性を劣化させる。なお、急速冷却を回避した上記冷却速度は、350℃以下まで上記条件を満たすことが必要である。350℃よりも高い温度で上記条件を満たすことなく急冷する過程が含まれると本発明による効果が得られない。なお、冷却過程においても上記と同様に非酸化性雰囲気下であることが必要とされる。 The cooling rate after the solution treatment is unique to the present invention, and it is necessary to set the cooling rate below a specified value. If the cooling rate here exceeds 300 ° C./hour, defects such as lattice defects and distortion occur, and the durability of the alloy in absorbing and releasing hydrogen deteriorates. In addition, the said cooling rate which avoided rapid cooling needs to satisfy | fill the said conditions to 350 degrees C or less. The effect of the present invention cannot be obtained if a process of rapid cooling at a temperature higher than 350 ° C. without including the above conditions is included. In the cooling process, a non-oxidizing atmosphere is required as described above.
また、本発明の水素吸蔵合金は、粉末形態においては円相当径が100μm以上であるのが望ましい。100μm未満の場合、粒界偏析の影響が大きくなるためである。本発明としては粉末とする方法は特に限定されるものではなく、常法により行うことができる。 Further, the hydrogen storage alloy of the present invention desirably has an equivalent circle diameter of 100 μm or more in the powder form. This is because when the particle size is less than 100 μm, the influence of grain boundary segregation increases. In the present invention, the method of forming a powder is not particularly limited, and can be performed by a conventional method.
さらに、本発明の水素吸蔵合金の熱処理方法は、V濃度の高い水素吸蔵合金において顕著な効果が得られる。特に、V系固溶体型BCC構造を有する合金は、水素吸放出の繰り返しによる劣化が非常に早く、本願発明の熱処理方法による耐久性改善の効果が顕著に現れる。上記V系固溶体型BCC構造を有する合金の代表格であるTi−V−Cr系では、Vの量比が20%以上で、Tiの量比が8〜35%、Crの量比が12〜50%のものを例示することができる。 Furthermore, the heat treatment method of the hydrogen storage alloy of the present invention can provide a remarkable effect in a hydrogen storage alloy having a high V concentration. In particular, an alloy having a V-based solid solution type BCC structure is very rapidly deteriorated due to repeated hydrogen absorption and desorption, and the effect of improving the durability by the heat treatment method of the present invention is remarkable. In the Ti-V-Cr system, which is a typical alloy having the V-based solid solution type BCC structure, the amount ratio of V is 20% or more, the amount ratio of Ti is 8 to 35%, and the amount ratio of Cr is 12 to 12%. 50% can be exemplified.
以下に、本発明の実施例について図を交えて説明する。
TiとCrの組成比を室温で大気圧付近のプラトー圧が得られるように2対3とし、V濃度を40at%と80at%で配合し、高純度Arガス雰囲気下でアーク溶解後、装置内で室温まで冷却して凝固させた。次いで、アルゴン雰囲気シリコニット熱処理炉を使用して昇温速度400℃/hourで1400℃まで加熱し3時間保持した後の冷却を300℃/hour〜20℃/hourの冷却速度で炉内にて常温まで冷却したものを本発明の実施例としての測定試料(発明材)とした。また、比較の為、同じ組成で原料を配合し同じ条件で溶解と溶体化処理を行った後、冷却を水焼入れ処理したものを比較例としての測定試料(比較材)とした。
Embodiments of the present invention will be described below with reference to the drawings.
The composition ratio of Ti and Cr is 2 to 3 so that a plateau pressure near atmospheric pressure can be obtained at room temperature, V concentration is blended at 40at% and 80at%, and after melting in arc under high purity Ar gas atmosphere, And cooled to room temperature to solidify. Next, after cooling to 1400 ° C. at a temperature increase rate of 400 ° C./hour using an argon atmosphere siliconite heat treatment furnace, the cooling after holding for 3 hours is performed at room temperature in the furnace at a cooling rate of 300 ° C./hour to 20 ° C./hour. The sample was cooled to a measurement sample (invention material) as an example of the present invention. In addition, for comparison, a raw material was blended with the same composition, subjected to dissolution and solution treatment under the same conditions, and then subjected to water quenching treatment as a measurement sample (comparative material) as a comparative example.
得られた合金の結晶構造をXRDにより調査したところ、すべての合金においてBCC単相であることがわかった。水素化特性の測定は約50〜200メッシュの範囲に粉砕した試料について水素ガス雰囲気で、耐久性試験前と後の合金に対して行った。合金の活性化処理は100℃1時間の真空脱ガス後、20℃、4.5MPaの水素印加で行い、水素化特性の測定は100℃1時間の真空脱ガス後20℃にて行った。また、耐久性試験は温度20℃一定のもと圧力変化により水素の移動量変化を測定した。 When the crystal structure of the obtained alloy was investigated by XRD, it was found that all the alloys were BCC single phase. The hydrogenation characteristics were measured on the alloy before and after the durability test in a hydrogen gas atmosphere for a sample pulverized to a range of about 50 to 200 mesh. The activation treatment of the alloy was performed by applying vacuum at 20 ° C. and 4.5 MPa after vacuum degassing at 100 ° C. for 1 hour, and the hydrogenation characteristics were measured at 20 ° C. after vacuum degassing at 100 ° C. for 1 hour. In the durability test, the change in the amount of hydrogen transferred was measured by changing the pressure at a constant temperature of 20 ° C.
図1に、耐久性試験前のTi24Cr36V40組成における測定温度20℃での実施例と比較例とで得られる試料の水素化特性、図2にTi24Cr36V40組成における測定温度20℃での実施例と比較例とで得られる試料の100回までの耐久性試験結果、図3に耐久性試験後のTi24Cr36V40組成における測定温度20℃での実施例と比較例とで得られる試料の水素化特性を示した。 FIG. 1 shows the hydrogenation characteristics of samples obtained by the example and the comparative example at a measurement temperature of 20 ° C. in the Ti 24 Cr 36 V 40 composition before the durability test, and FIG. 2 shows the measurement in the Ti 24 Cr 36 V 40 composition. Results of durability tests of samples obtained in Examples and Comparative Examples at a temperature of 20 ° C. up to 100 times, FIG. 3 shows an example at a measurement temperature of 20 ° C. in a Ti 24 Cr 36 V 40 composition after the durability test, The hydrogenation characteristics of the samples obtained in the comparative example were shown.
実施例では、溶体化処理後、冷却速度300℃/hrで冷却した。これらの図から明らかなように、耐久性前の水素吸蔵量は冷却条件によらずほぼ同量の水素吸蔵量を示しているが、水素吸放出の繰り返し回数を重ねる毎に水素吸収量に差が開き、100回繰り返し水素吸放出させた合金の比較では、実施例の合金(発明材)の方が比較例の合金(比較材)に比べ明らかに多くの水素を吸収することが判明した。 In the examples, the solution was cooled at a cooling rate of 300 ° C./hr after the solution treatment. As is clear from these figures, the hydrogen storage amount before durability shows the same amount of hydrogen storage regardless of the cooling conditions, but the difference in the hydrogen absorption amount each time the number of repeated hydrogen storage / release is repeated. As a result of the comparison of the alloys that repeatedly absorbed and released hydrogen 100 times, it was found that the alloy of the example (invention material) clearly absorbs more hydrogen than the alloy of the comparative example (comparative material).
次に、得られた合金中における転位等の欠陥の存在状態は透過型電子顕微鏡を利用して電子線を薄片化した合金に透過させて調査した。図4に発明材の像を、図5に比較材の像を示した。発明材では図4に示すように比較的転位等の欠陥を示すコントラストが少ないのに対し、比較材では図5に示すように転位等の欠陥の存在を表すコントラストがかなり多量にあることが観察された。実際に転位密度を測定してみると、数十倍〜百倍近くの差が観察された。 Next, the existence state of defects such as dislocations in the obtained alloy was investigated by transmitting an electron beam through the sliced alloy using a transmission electron microscope. FIG. 4 shows an image of the inventive material, and FIG. 5 shows an image of the comparative material. As shown in FIG. 4, the inventive material has a relatively low contrast indicating defects such as dislocations, whereas the comparative material has a relatively large amount of contrast indicating the presence of defects such as dislocations as shown in FIG. It was done. When the dislocation density was actually measured, a difference of several tens to one hundred times was observed.
さらに組成を変化させた合金についても同様の試験を行った。図6に耐久性試験前のTi8Cr12V80組成における測定温度20℃での実施例と比較例とで得られる試料の水素化特性、図7にTi8Cr12V80組成における測定温度20℃での実施例と比較例とで得られる試料の100回までの耐久性試験結果、図8に耐久性試験後のTi8Cr12V80組成における測定温度20℃での実施例と比較例とで得られる試料の水素化特性を示す。実施例では、溶体化処理後、冷却速度30℃/hrで冷却した。組成を変えたTi8Cr12V80組成合金においてもTi24Cr36V40組成のときと同様に、耐久性前の水素吸蔵量は冷却条件によらずほぼ同量の水素吸蔵量を示しているが、水素吸放出の繰り返し回数を重ねる毎に水素吸収量に差が開き、1000回繰り返し水素吸放出させた合金の比較では、実施例の合金(発明材)の方が比較例の合金(比較材)に比べ明らかに多くの水素を吸収することが判明した。さらに、Ti8Cr12V80組成の実施例の合金では500回を過ぎるまで、水素吸蔵量の減少はほぼ0%であった。 Further, the same test was performed on the alloy whose composition was changed. FIG. 6 shows the hydrogenation characteristics of the samples obtained in the example and the comparative example at a measurement temperature of 20 ° C. in the Ti 8 Cr 12 V 80 composition before the durability test, and FIG. 7 shows the measurement temperature in the Ti 8 Cr 12 V 80 composition. Results of durability test of samples obtained in Example and Comparative Example at 20 ° C. up to 100 times, and comparison with Example at measurement temperature of 20 ° C. in Ti 8 Cr 12 V 80 composition after durability test in FIG. The hydrogenation characteristics of the sample obtained in the examples are shown. In the examples, the solution was cooled at a cooling rate of 30 ° C./hr after the solution treatment. As with the Ti 24 Cr 3 6V 40 composition, even in the Ti 8 Cr 12 V 80 composition alloy with a different composition, the hydrogen storage amount before durability shows almost the same hydrogen storage amount regardless of the cooling conditions. However, every time the number of repeated hydrogen absorption / desorption is repeated, the difference in the hydrogen absorption amount is increased, and in the comparison of the alloys repeatedly absorbed and released 1000 times, the alloy of the example (invention material) is the alloy of the comparative example ( It was found that it absorbs more hydrogen than the comparative material. Further, in the alloy of the example of the Ti 8 Cr 12 V 80 composition, the decrease in the hydrogen storage amount was almost 0% until 500 times.
以上実施例で説明したように、BCC単相構造を有するTiCrV系水素吸蔵合金において本発明の熱処理方法を実施することにより、BCC構造の格子欠陥や歪み等を減少させることにより、耐久試験後の水素吸蔵量の減少を抑えることができ、実用性に優れた水素吸蔵合金を得ることが可能であることが判明した。なお、上記実施例ではTiCrV系水素吸蔵合金について実証を行ったが、本発明は、TiCrV系水素吸蔵合金に限らず、他のV、TiCrMn系は勿論のこと、他のBCC単相構造の水素吸蔵合金においても同様の効果が得られることが確認された。 As described in the above examples, by carrying out the heat treatment method of the present invention in a TiCrV-based hydrogen storage alloy having a BCC single-phase structure, by reducing lattice defects, strains, etc. of the BCC structure, It has been found that it is possible to suppress a decrease in the amount of hydrogen occlusion and to obtain a hydrogen occlusion alloy having excellent practicality. In the above examples, TiCrV-based hydrogen storage alloys have been demonstrated. However, the present invention is not limited to TiCrV-based hydrogen storage alloys, and other V, TiCrMn-based, as well as other BCC single-phase structure hydrogens. It was confirmed that the same effect can be obtained in the occlusion alloy.
Claims (5)
The method for heat-treating a hydrogen storage alloy according to claim 1, wherein the hydrogen storage alloy is an alloy having a V-based solid solution type BCC structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004212957A JP2006028621A (en) | 2004-07-21 | 2004-07-21 | Heat-treatment method for hydrogen-storage alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004212957A JP2006028621A (en) | 2004-07-21 | 2004-07-21 | Heat-treatment method for hydrogen-storage alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006028621A true JP2006028621A (en) | 2006-02-02 |
Family
ID=35895325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004212957A Pending JP2006028621A (en) | 2004-07-21 | 2004-07-21 | Heat-treatment method for hydrogen-storage alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006028621A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010236084A (en) * | 2009-03-13 | 2010-10-21 | Toyota Central R&D Labs Inc | Hydrogen storage alloy, method of preparing the same and hydrogen storage device |
CN114427045A (en) * | 2021-12-10 | 2022-05-03 | 厚普清洁能源股份有限公司 | High-uniformity vanadium-titanium-based hydrogen storage alloy and preparation method thereof |
-
2004
- 2004-07-21 JP JP2004212957A patent/JP2006028621A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010236084A (en) * | 2009-03-13 | 2010-10-21 | Toyota Central R&D Labs Inc | Hydrogen storage alloy, method of preparing the same and hydrogen storage device |
CN114427045A (en) * | 2021-12-10 | 2022-05-03 | 厚普清洁能源股份有限公司 | High-uniformity vanadium-titanium-based hydrogen storage alloy and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4282707B2 (en) | Alloy and magnetic refrigeration material particle manufacturing method | |
CN108642362B (en) | High-entropy alloy and preparation method thereof | |
WO2011152369A1 (en) | Hydrogen separation alloy and method for producing same | |
Wang et al. | Grain size effects of tungsten powder on the micro-structure and mechanical properties of tungsten-based alloys | |
JP5449989B2 (en) | Hydrogen storage alloy, method for producing the same, and hydrogen storage device | |
JP5310541B2 (en) | Hydrogen permeable alloy and method for producing the same | |
Liu et al. | Tin whisker growth on the surface of Sn-0.7 Cu lead-free solder with a rare earth (Nd) addition | |
US7413589B2 (en) | Method of producing hydrogen storage alloy | |
JP2006028621A (en) | Heat-treatment method for hydrogen-storage alloy | |
US5900334A (en) | Hydrogen occluding alloy | |
JP3845057B2 (en) | Hydrogen storage alloy and heat treatment method of hydrogen storage alloy | |
JP3775639B2 (en) | Method for producing hydrogen storage alloy | |
JP5199760B2 (en) | Hydrogen permeation separation thin film with excellent hydrogen permeation separation performance | |
CN115449659A (en) | Oxide dispersion strengthening nickel-based high-temperature alloy and preparation method and application thereof | |
JPS60228651A (en) | Hydrogen storage substance and increase of storage capacity | |
JP4577775B2 (en) | Method for producing double phase alloy for hydrogen separation and purification | |
Louzguine-Luzgin et al. | Observation of linear defects in Al particles below 7 nm in size | |
JPH10245663A (en) | Production of hydrogen storage alloy | |
Imam et al. | Fabrication and Characterization of Palladium–Boron Alloys Used in LENR Experiments | |
JP2000303101A (en) | Hydrogen storage alloy excellent in durability, and its manufacture | |
JP2007084883A (en) | Method for manufacturing hydrogen occlusion alloy | |
JP2001247927A (en) | Vanadium base solid solution type hydrogen storage alloy | |
CN116875866A (en) | L1 2 Phase reinforced Fe-Co-Ni-based high-entropy alloy and preparation method thereof | |
US9957593B2 (en) | Ductile metal alloys, method for making ductile metal alloys | |
CN111644600A (en) | Nb-Zr-Co hydrogen separation material with continuous hydrogen permeation phase and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060927 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090716 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090728 |
|
A02 | Decision of refusal |
Effective date: 20091124 Free format text: JAPANESE INTERMEDIATE CODE: A02 |