[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH10205366A - Vehicle tracking control device and control method - Google Patents

Vehicle tracking control device and control method

Info

Publication number
JPH10205366A
JPH10205366A JP917297A JP917297A JPH10205366A JP H10205366 A JPH10205366 A JP H10205366A JP 917297 A JP917297 A JP 917297A JP 917297 A JP917297 A JP 917297A JP H10205366 A JPH10205366 A JP H10205366A
Authority
JP
Japan
Prior art keywords
vehicle
inter
relative speed
distance
arrival time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP917297A
Other languages
Japanese (ja)
Inventor
Mitsuo Kayano
光男 萱野
Koji Kuroda
浩司 黒田
Satoshi Kuragaki
倉垣  智
徳治 ▲吉▼川
Tokuji Yoshikawa
Hiroto Morisane
裕人 森實
Hiroshi Takenaga
寛 武長
Kozo Nakamura
浩三 中村
Kazuro Takano
和朗 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP917297A priority Critical patent/JPH10205366A/en
Publication of JPH10205366A publication Critical patent/JPH10205366A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Controls For Constant Speed Travelling (AREA)

Abstract

(57)【要約】 【課題】レーザレーダが割込車との車間距離を捕えた時
点からしか割込が検出できず、検出が遅れるため、制御
も応答性が悪くなり、危険回避が遅れて安全な走行が出
来なかった。 【解決手段】自車両と前方車両との車間距離検出手段
と、車間距離が適正となるように自車両を制御する追従
走行制御手段とを備えた車両用追従走行制御装置で、自
車両と前方車両との相対速度検出手段と、自車両と前方
車両との前方車両角度検出手段と、複数の前方車両ID
設定手段と、検出した角度により自車両と前方車両との
横相対速度計算手段と、計算した横相対速度により前方
車両の割込車両判定手段とを備え、割込車両判定手段で
割込車両有りを判定すると、追従走行制御手段は車間距
離と相対速度検出手段からの相対速度と横相対速度計算
手段からの横相対速度に応じて自車両を制御する。
(57) [Abstract] [Problem] An interrupt can be detected only when the laser radar captures the distance between the vehicle and the interrupted vehicle, and the detection is delayed, so that the response becomes poor in control and the risk avoidance is delayed. I could not drive safely. A following-traveling control device for a vehicle, comprising: an inter-vehicle distance detecting means between a subject vehicle and a preceding vehicle; and a following traveling control means for controlling the subject vehicle so that the following distance becomes appropriate. Means for detecting relative speed with respect to the vehicle, means for detecting front vehicle angle between own vehicle and the preceding vehicle, and a plurality of front vehicle IDs
Setting means; calculating a lateral relative speed between the host vehicle and the preceding vehicle based on the detected angle; and determining an interrupting vehicle of the preceding vehicle based on the calculated relative lateral speed. Is determined, the following control unit controls the own vehicle according to the following distance, the relative speed from the relative speed detecting unit, and the lateral relative speed from the lateral relative speed calculating unit.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は車両用追従走行制御
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle cruising control system.

【0002】[0002]

【従来の技術】従来、この種の車両用追従走行制御手段
は、二つのレーザレーダにより車間距離を検出し、一方
の距離の微分値が所定の閾値以上に大きくなったら割込
と判断し、相対速度を算出し、相対速度に基づいて、減
速度の大きさを変更するようにスロットルやブレーキを
制御する装置が特開平4−314638 号公報に開示されてい
る。
2. Description of the Related Art Conventionally, this type of vehicle following travel control means detects an inter-vehicle distance by two laser radars, and determines that an interrupt occurs when a differential value of one of the distances becomes larger than a predetermined threshold value. An apparatus for calculating a relative speed and controlling a throttle and a brake so as to change the magnitude of the deceleration based on the relative speed is disclosed in Japanese Patent Application Laid-Open No. Hei 4-31438.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来方法は、
レーザレーダが割込車両との車間距離を捕らえた時点か
らしか割込が検出できず、検出が遅れるため、制御も応
答性が悪くなり、危険回避が遅れて安全な走行が出来な
いという課題があった。また、自車両と前方車両との横
方向の相対速度,自車両と前方車両との横方向の相対加
速度,前方車両が自車両前方路に到達する時間,前方車
両が自車両前方路に到達した時の自車両との車間距離を
考慮した制御を行っていないので、通常走行時に運転手
が操作するような割込車両の横の動きに応じた制御がで
きず、運転者に違和感を与えるという課題もあった。
However, the conventional method is
Interrupts can only be detected from the point at which the laser radar captures the inter-vehicle distance to the interrupted vehicle, and the detection is delayed, resulting in poor control response and delay in avoiding danger, making it impossible to drive safely. there were. In addition, the relative speed in the lateral direction between the own vehicle and the preceding vehicle, the relative acceleration in the lateral direction between the own vehicle and the preceding vehicle, the time required for the preceding vehicle to reach the preceding road of the own vehicle, and the preceding vehicle reaching the preceding road of the own vehicle. Control that does not take into account the distance between the vehicle and the driver's own vehicle at the time, it is not possible to control according to the lateral movement of the interrupted vehicle that the driver operates during normal driving, giving the driver a sense of discomfort. There were also issues.

【0004】[0004]

【課題を解決するための手段】本発明の車両用追従走行
制御装置は自車両と前方車両との車間距離検出手段と、
前記車間距離検出手段からの車間距離が所定の適正値と
なるように自車両を制御する追従走行制御手段とを備え
た車両用追従走行制御装置において、自車両と前方車両
との相対速度検出手段と、自車両と前方車両との前方車
両角度検出手段と、複数の前方車両ID設定手段と、前
記車間距離検出手段からの車間距離と前記前方車両角度
検出手段からの角度により自車両と前方車両との横方向
の横相対速度計算手段と、前記横相対速度計算手段から
の横相対速度により前方車両の割込の有無を判定する割
込車両判定手段とを備え、前記割込車両判定手段で割込
車両有りと判定されると、前記追従走行制御手段は前記
車間距離検出手段からの車間距離と相対速度検出手段か
らの相対速度と前記横相対速度計算手段からの横相対速
度に応じて自車両を制御する。
According to a first aspect of the present invention, there is provided a vehicle follow-up cruise control device for detecting a distance between a host vehicle and a preceding vehicle;
A cruising control device for a vehicle, comprising: a cruising control device for controlling the own vehicle such that an inter-vehicle distance from the inter-vehicle distance detecting device becomes a predetermined appropriate value; A forward vehicle angle detecting unit between the own vehicle and the forward vehicle, a plurality of forward vehicle ID setting units, and an own vehicle and a forward vehicle based on an inter-vehicle distance from the inter-vehicle distance detecting unit and an angle from the forward vehicle angle detecting unit. A lateral relative speed calculating means in the lateral direction, and an interrupting vehicle determining means for determining whether or not the preceding vehicle is interrupted based on the lateral relative speed from the lateral relative speed calculating means. When it is determined that there is an interrupting vehicle, the following traveling control means automatically determines the following distance according to the following distance from the following distance detecting means, the relative speed from the relative speed detecting means, and the lateral relative speed from the lateral relative speed calculating means. vehicle Control to.

【0005】[0005]

【発明の実施の形態】以下、本発明の実施例を詳細に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail.

【0006】図1は横相対速度を用いた追従制御のブロ
ック図である。
FIG. 1 is a block diagram of tracking control using the lateral relative speed.

【0007】車間距離検出手段1で自車両の前方に存在
する前方車両との車間距離を検出する。相対速度検出手
段2で相対速度を検出する。前方車両角度検出手段3で
自車両と前方車両との角度を検出する。前方車両ID設
定手段で複数の前方車両から捕捉車両,割込車両を特定
するための前方車両IDを設定する。横相対速度計算手
段5で車間距離と角度より自車両と前方車両との横方向
の相対速度を計算する。割込車両判定手段6で横相対速
度に基づき隣接車線から自車両前方路に車線変更をする
前方車両の有無である割込車両の有無,割込車両の危険
度を判定する。割込車両有りと判定されると、追従制御
用車間距離変更手段7で車間距離,相対速度,横相対速
度に応じて自車両を制御する。このように横相対速度を
用いて割込車両判定と追従制御を行うことにより、応答
性が良く、運転者の感覚にあった追従走行が出来る。
The inter-vehicle distance detecting means 1 detects the inter-vehicle distance between the host vehicle and a preceding vehicle existing in front of the own vehicle. The relative speed is detected by the relative speed detecting means 2. The front vehicle angle detection means 3 detects the angle between the host vehicle and the front vehicle. The forward vehicle ID setting means sets a forward vehicle ID for specifying a captured vehicle or an interrupting vehicle from a plurality of forward vehicles. The lateral relative speed calculating means 5 calculates the relative speed in the lateral direction between the host vehicle and the preceding vehicle from the inter-vehicle distance and the angle. The interrupting vehicle determining means 6 determines the presence or absence of an interrupting vehicle, which is the presence or absence of a preceding vehicle that changes lanes from the adjacent lane to the road ahead of the own vehicle, based on the lateral relative speed, and the degree of risk of the interrupting vehicle. When it is determined that there is an interrupting vehicle, the following vehicle inter-vehicle distance changing means 7 controls the own vehicle according to the inter-vehicle distance, relative speed, and lateral relative speed. By performing the interrupted vehicle determination and the follow-up control using the lateral relative speed in this manner, the responsiveness is good, and the follow-up traveling that matches the driver's feeling can be performed.

【0008】図2は横相対速度,横相対加速度を用いた
追従制御のブロック図である。
FIG. 2 is a block diagram of tracking control using the lateral relative speed and the lateral relative acceleration.

【0009】横相対速度計算手段8で横相対速度から横
相対加速度を求める。割込車両判定手段6で横相対速
度,横相対加速度に基づき割込車両の有無,割込車両の
危険度を判定する。割込車両有りと判定されると、追従
制御用車間距離変更手段7で車間距離,相対速度,横相
対速度,横相対加速度に応じて自車両を制御する。この
ように横相対速度,横相対加速度を用いて割込車両判定
と追従制御を行うことにより、応答性が良く、運転者の
感覚にあった追従走行が出来る。
The lateral relative speed calculation means 8 determines the lateral relative acceleration from the lateral relative speed. The interrupting vehicle determination means 6 determines the presence or absence of the interrupting vehicle and the risk of the interrupting vehicle based on the lateral relative speed and the lateral relative acceleration. If it is determined that there is an interrupting vehicle, the following control inter-vehicle distance changing means 7 controls the own vehicle according to the following distance, relative speed, lateral relative speed, and lateral relative acceleration. As described above, by performing the interrupted vehicle determination and the following control using the lateral relative speed and the lateral relative acceleration, the responsiveness is good, and the following traveling that matches the driver's feeling can be performed.

【0010】図3は到達時間を用いた追従制御のブロッ
ク図である。
FIG. 3 is a block diagram of tracking control using the arrival time.

【0011】到達時間推定手段9で横相対速度と横相対
加速度により前方車両が自車両前方路に到達するまでの
時間を推定する。割込車両判定手段6で到達時間に基づ
き割込車両の有無,割込車両の危険度を判定する。割込
車両有りと判定されると、追従制御用車間距離変更手段
7で車間距離,相対速度,到達時間に応じて自車両を制
御する。このように到達時間を用いて割込車両判定と追
従制御を行うことにより、応答性が良く、運転者の感覚
にあった追従走行が出来る。
The arrival time estimating means 9 estimates the time until the preceding vehicle reaches the road ahead of the own vehicle based on the lateral relative speed and the lateral relative acceleration. The presence / absence of the interrupted vehicle and the degree of danger of the interrupted vehicle are determined by the interrupted vehicle determining means 6 based on the arrival time. When it is determined that there is an interrupting vehicle, the following vehicle inter-vehicle distance changing means 7 controls the own vehicle according to the following distance, relative speed, and arrival time. By performing the interrupted vehicle determination and the following control using the arrival time as described above, the responsiveness is good, and the following running that matches the driver's feeling can be performed.

【0012】図4は到達時間,到達時車間距離を用いた
追従制御のブロック図である。
FIG. 4 is a block diagram of tracking control using the arrival time and the inter-vehicle distance at the time of arrival.

【0013】到達時車間距離推定手段10で到達時間よ
り前方車両が自車両前方路に到達する時の車間距離を推
定する。割込車両判定手段6で到達時間,到達時車間距
離に基づき割込車両の有無,割込車両の危険度を判定す
る。割込車両有りと判定されると、追従制御用車間距離
変更手段7で車間距離,相対速度,到達時間,到達時車
間距離に応じて自車両を制御する。このように到達時
間,到達時車間距離を用いて割込車両判定と追従制御を
行うことにより、応答性が良く、運転者の感覚にあった
追従走行が出来る。
The inter-vehicle distance estimating means 10 estimates the inter-vehicle distance when the preceding vehicle reaches the road ahead of the host vehicle based on the arrival time. The presence / absence of the interrupted vehicle and the degree of danger of the interrupted vehicle are determined by the interrupted vehicle determination means 6 based on the arrival time and the inter-vehicle distance at the time of arrival. When it is determined that there is an interrupting vehicle, the following vehicle inter-vehicle distance changing means 7 controls the own vehicle according to the inter-vehicle distance, relative speed, arrival time, and arrival inter-vehicle distance. As described above, by performing the interrupted vehicle determination and the following control using the arrival time and the inter-vehicle distance at the time of arrival, the responsiveness is good, and the following traveling that matches the driver's feeling can be performed.

【0014】図5はハードウェアのブロック図である。FIG. 5 is a block diagram of the hardware.

【0015】レーダ100で自車両と前方車両11との
車間距離,相対速度,自車両と前方車両11との角度,
複数の前方車両から捕捉車両,割込車両を特定するため
の前方車両IDを計測する。また、カメラ101で前方
車両11及び自車両周囲を撮像する。車間距離,相対速
度,角度,前方車両IDはレーダ100とマイクロコン
ピュータ(以下マイコンと略す)700のシリアルコミ
ュニケーションインターフェース(以下SCIと略す)
701とでシリアル通信を行い、メモリ704に格納さ
れる。カメラ101からのアナログ信号はアナログ/デ
ジタル変換器(以下A/Dと略す)702でデジタル信
号に変換される。このデータをセントラルプロセッシン
グユニット(以下CPUと略す)703で解析し、前方
車両11の色,メーカ名,車種,車番等の特徴を認識
し、レーダ100からのデータと関連づけてメモリ70
4に格納する。この特徴認識方法は特願平6−159943 号
明細書で開示されている従来方法と同様のものである。
また、自車両の速度に対応してパルスを出力する車速セ
ンサ1200のパルス信号をタイマ706でカウント
し、CPU703で車速に換算し、メモリ704に格納する。
また、ブレーキ操作を検知するブレーキスイッチ(以下
ブレーキSWと略す)1201と追従走行の開始や解除
等の操作を検知する操作スイッチ(以下操作SWと略す)
1202の信号をデジタル入出力ポート(以下DI/O
と略す)705で取り込み、その状態をメモリ704に
格納する。追従走行の開始指令が出たら、CPU703でメモ
リ704に格納されている車間距離,相対速度,前方車両
11の位置,自車両の速度等のデータより捕捉車両を決
定し、自車両と捕捉車両となった前方車両11との車間
距離と自車両の速度に対応して予め定められている安全
車間距離を比較し、捕捉車両との車間距離が安全車間距
離より短いときには電制スロットル1300を閉じ側に
駆動するようなデューティー信号をPWMタイマ707
から出力し、長いときには電制スロットル1300を開
き側に駆動するようなデューティー信号をPWMタイマ
707から出力し、自車両の速度を調整する。電制スロ
ットル1300だけでは対応できないような減速をする場合
はDI/O705で変速機1301を操作し、エンジン
ブレーキを効かせたり、デジタル/アナログ変換器(以
下D/Aと略す)708でブレーキ力に応じたアナログ
信号を出力し、アンプ1302で増幅し、ブレーキアクチュ
エータ1303を操作し、適切な減速を得るようにす
る。また、捕捉車両を決定したとき、捕捉車の特徴デー
タを音声合成し、D/A708でアナログ信号に変換
し、アンプ1304を通し、スピーカー1305で捕捉
車両の特徴を音声出力したり、ディスプレイに表示す
る。また、レーダ100とカメラ101のデータからCPU70
3で前方車両11の位置,前方車両11の速度,前方車
両11の加速度,自車両と前方車両11との相対加速
度,自車両と前方車両11との横方向の相対速度,自車
両と前方車両11との横方向の相対加速度,前方車両1
1が自車両前方路に到達する時間,前方車両11が自車
両前方路に到達した時の自車両との車間距離を計算し、
車間距離,相対速度,角度,前方車両ID,自車両の速
度,自車両の加速度,前方車両11の位置,前方車両1
1の速度,前方車両11の加速度,相対加速度,横相対
速度,横相対加速度,到達時間,到達時車間距離の内の
少なくとも一つのデータに基づいて割込車両の有無,割
込車両の危険度を検出し、割込車両が有った場合、車間
距離,相対速度,角度,前方車両ID,自車両の速度,
自車両の加速度,前方車両11の位置,前方車両11の
速度,前方車両11の加速度,相対加速度,横相対速
度,横相対加速度,到達時間,到達時車間距離の内の少
なくとも一つのデータに基づいて追従制御を行うことに
より、応答性が良く、運転者の感覚にあった追従走行が
出来る。
The distance between the own vehicle and the preceding vehicle 11 on the radar 100, the relative speed, the angle between the own vehicle and the preceding vehicle 11,
A front vehicle ID for specifying a captured vehicle and an interrupting vehicle from a plurality of front vehicles is measured. Further, the camera 101 captures an image of the front vehicle 11 and the surroundings of the host vehicle. The inter-vehicle distance, relative speed, angle, and forward vehicle ID are serial communication interfaces (hereinafter abbreviated as SCI) between the radar 100 and a microcomputer 700.
Serial communication is performed with the memory 701 and stored in the memory 704. An analog signal from the camera 101 is converted into a digital signal by an analog / digital converter (hereinafter abbreviated as A / D) 702. This data is analyzed by a central processing unit (hereinafter abbreviated as CPU) 703, and features such as a color, a maker name, a vehicle type, and a vehicle number of the preceding vehicle 11 are recognized, and the memory 70 is associated with data from the radar 100.
4 is stored. This feature recognition method is the same as the conventional method disclosed in Japanese Patent Application No. 6-159943.
Further, a pulse signal of the vehicle speed sensor 1200 that outputs a pulse corresponding to the speed of the own vehicle is counted by the timer 706, converted into a vehicle speed by the CPU 703, and stored in the memory 704.
Also, a brake switch (hereinafter abbreviated as SW) 1201 for detecting a brake operation and an operation switch (hereinafter abbreviated as an operation SW) for detecting an operation such as start or release of the following running.
A signal of the digital input / output port 1202 (hereinafter referred to as DI / O
705), and the state is stored in the memory 704. When a follow-up running start command is issued, the CPU 703 determines a captured vehicle from data such as the following distance, the relative speed, the position of the preceding vehicle 11, and the speed of the own vehicle stored in the memory 704. A predetermined safety inter-vehicle distance corresponding to the speed of the host vehicle is compared with the following inter-vehicle distance to the preceding vehicle 11. When the inter-vehicle distance to the captured vehicle is shorter than the safe inter-vehicle distance, the electronically controlled throttle 1300 is closed. PWM timer 707 outputs a duty signal to drive
If it is long, a duty signal for driving the electronically controlled throttle 1300 to the open side is output from the PWM timer 707 to adjust the speed of the host vehicle. In the case of deceleration that cannot be handled by the electronically controlled throttle 1300 alone, the transmission 1301 is operated by the DI / O 705 to apply the engine brake, and the digital / analog converter (hereinafter abbreviated as D / A) 708 is used to apply the braking force. Is output by the amplifier 1302 and amplified by the amplifier 1302, and the brake actuator 1303 is operated to obtain an appropriate deceleration. When a vehicle to be captured is determined, the characteristic data of the vehicle to be captured is voice-synthesized, converted into an analog signal by the D / A 708, passed through the amplifier 1304, and the characteristics of the vehicle to be captured are output by voice through the speaker 1305 or displayed on a display. I do. Also, the data of the radar 100 and the camera 101
3, the position of the front vehicle 11, the speed of the front vehicle 11, the acceleration of the front vehicle 11, the relative acceleration of the own vehicle and the front vehicle 11, the relative speed of the own vehicle and the front vehicle 11 in the lateral direction, the own vehicle and the front vehicle 11 relative acceleration in the lateral direction, vehicle 1 ahead
When the vehicle 1 reaches the road ahead of the host vehicle, the inter-vehicle distance between the host vehicle and the host vehicle 11 when it reaches the road ahead of the host vehicle is calculated.
Inter-vehicle distance, relative speed, angle, front vehicle ID, own vehicle speed, own vehicle acceleration, position of front vehicle 11, position of front vehicle 1
1, the presence or absence of an interrupted vehicle, and the risk of the interrupted vehicle based on at least one of the following data: speed 1, acceleration of the preceding vehicle 11, relative acceleration, lateral relative speed, lateral relative acceleration, arrival time, and inter-vehicle distance at arrival. Is detected, and if there is an interrupting vehicle, the following distance, relative speed, angle, preceding vehicle ID, own vehicle speed,
Based on at least one of the following data: the acceleration of the own vehicle, the position of the preceding vehicle 11, the speed of the preceding vehicle 11, the acceleration of the preceding vehicle 11, the relative acceleration, the lateral relative speed, the lateral relative acceleration, the arrival time, and the inter-vehicle distance at arrival. By performing the follow-up control, the responsiveness is good, and the follow-up traveling that matches the driver's feeling can be performed.

【0016】図6は追従走行時に割込車両がある例であ
る。
FIG. 6 shows an example in which there is an interrupting vehicle at the time of follow-up running.

【0017】前方車両が1100と1101と2台いて
前方車両1100を捕捉し、追従走行をしている場合、
レーダからは前方車両1100までの車間距離Da,相
対速度Vrxa,角度θa,前方車両ID idaと隣
接レーンを走行する前方車両1101までの車間距離D
b,相対速度Vrxb,角度θb,前方車両ID idbが一
定時間毎にレーダから送られてくる。時間tn-2
n-1,tn の状況が図のようになっており、前方車両
1101が自車走行レーンに近づいているデータが送ら
れてきた場合、tn+p 時では前方車両1101が自車両
12と前方車両1100の間に割り込んだ状況が予測でき
る。通常走行時は運転手がこの状況に合わせてアクセ
ル,ブレーキ,ギア位置を操作し、安全な走行をする。
よって追従走行時も割込車両の動きに応じて追従制御を
行うことにより、応答性が良く、運転者の感覚にあった
追従走行が出来る。
When there are two vehicles in front, 1100 and 1101, and the vehicle 1100 is being captured and following the vehicle,
From the radar, the following distance Da to the preceding vehicle 1100, the relative speed Vrxa, the angle θa, the preceding vehicle ID ida, and the following distance D to the preceding vehicle 1101 running in the adjacent lane.
b, the relative speed Vrxb, the angle θb, and the preceding vehicle ID idb are sent from the radar at regular intervals. Time t n-2 ,
The situation at t n-1 and t n is as shown in the figure, and when data indicating that the preceding vehicle 1101 is approaching the own vehicle traveling lane is sent, at t n + p , the preceding vehicle 1101 becomes the own vehicle. It is possible to predict a situation where the vehicle has interrupted between the vehicle 12 and the vehicle 1100 ahead. During normal driving, the driver operates the accelerator, brake, and gear positions in accordance with this situation to drive safely.
Therefore, by performing the follow-up control according to the movement of the interrupting vehicle even during the follow-up traveling, the responsiveness is good, and the follow-up traveling that matches the driver's feeling can be performed.

【0018】図7は前方車両状態検出のブロック図であ
る。
FIG. 7 is a block diagram for detecting the state of the front vehicle.

【0019】車速センサ1200からの車速に応じたパ
ルスをタイマ706でカウントしたVSPSENが自車両速度
計算部1203に入力され、自車両の速度VSPに換算
される。自車両加速度計算部1204でVSPから自車
両の加速度Aを求める。VSPとレーダ100からの自車
両と前方車両との車間距離Di,相対速度Vrxi,角
度θi,前方車両ID idiの各前方車両毎のデータ
が入力され、前方車両の位置,前方車両の速度,前方車
両の加速度,自車両と前方車両との相対加速度,自車両
と前方車両との横方向の相対速度,自車両と前方車両と
の横方向の相対加速度,前方車両が自車両前方路に到達
する時間,前方車両が自車両前方路に到達した時の自車
両との車間距離が求められる。まず、前方車両位置計算
部500で車間距離Di,角度θiより、自車両の位置
を原点(0,0),自車両進行方向をx軸,自車両進行
方向直交方向をy軸とした直交座標系での前方車両位置
(xy0i,yx0i)を求める。次に横相対速度計算部
501で横方向の動きであるyx0iの時系列データよ
り横相対速度Vryiを求める。さらに横相対加速度計
算部800でVryiの時系列データより横相対加速度
Aryiを求める。また、相対加速度計算部502でレ
ーダ100からの相対速度Vrxiの時系列データより
相対加速度Arxiを求める。到達時間推定部900で
はyx0i,Vryi,Aryiより前方車両が現時刻
から何秒後に自車前方路に到達するかという到達時間t
y0iを求める。到達時車間距離推定部1000ではVr
xi,Arxi,xy0i,ty0iより現在の走行状態
が続いた場合に前方車両が自車前方路に到達した時の車
間距離xy0i(ty0i)を求める。また前方車両速
度計算部503でVSP,Vrxiより前方車両速度V
xiを求め、前方車両加速度計算部504でVxiより
前方車両加速度Axiを求める。これら求めた前方車両
の位置(xy0i,yx0i),前方車両の速度Vx
i,前方車両の加速度Axi,自車両と前方車両との相
対加速度Arxi,自車両と前方車両との横方向の相対
速度Vryi,自車両と前方車両との横方向の相対加速
度Aryi,前方車両が自車両前方路に到達する時間t
y0i,前方車両が自車両前方路に到達した時の自車両
との車間距離xy0i(ty0i)と車間距離Di,相
対速度Vrxi,角度θi,前方車両ID idi,自
車両の速度VSP,自車両の加速度Aは割込車両の判定
と、割込車両があった場合の追従走行制御に使われる。
The VSPSEN obtained by counting the pulses corresponding to the vehicle speed from the vehicle speed sensor 1200 by the timer 706 is input to the host vehicle speed calculation unit 1203, and is converted into the host vehicle speed VSP. The host vehicle acceleration calculation unit 1204 obtains the host vehicle acceleration A from the VSP. Data from the VSP and the radar 100 for each inter-vehicle, such as the inter-vehicle distance Di, the relative speed Vrxi, the angle θi, and the pre-vehicle ID idi, between the own vehicle and the front vehicle, are input, and the position of the front vehicle, the speed of the front vehicle, the front Vehicle acceleration, relative acceleration between the host vehicle and the front vehicle, relative lateral speed between the host vehicle and the front vehicle, relative lateral acceleration between the host vehicle and the front vehicle, and the front vehicle arriving on the road ahead of the host vehicle The inter-vehicle distance from the host vehicle when the preceding vehicle reaches the road ahead of the host vehicle is determined. First, the front vehicle position calculation unit 500 calculates, based on the inter-vehicle distance Di and the angle θi, orthogonal coordinates with the position of the own vehicle as the origin (0, 0), the own vehicle traveling direction on the x axis, and the own vehicle traveling direction orthogonal direction on the y axis. Vehicle position ahead in the train
(xy0i, yx0i) is obtained. Next, the horizontal relative speed calculation unit 501 obtains the horizontal relative speed Vryi from the time-series data of yx0i, which is the horizontal motion. Further, the lateral relative acceleration calculation section 800 obtains the lateral relative acceleration Aryi from the Vryi time-series data. Further, a relative acceleration Arxi is obtained from the time series data of the relative speed Vrxi from the radar 100 by the relative acceleration calculator 502. In the arrival time estimating unit 900, the arrival time t indicating how many seconds after the current time the preceding vehicle arrives on the road ahead of the own vehicle from yx0i, Vryi, Aryi.
Find y0i. Vr in the inter-arrival time estimation unit 1000
From xi, Arxi, xy0i, and ty0i, the inter-vehicle distance xy0i (ty0i) when the preceding vehicle arrives on the road ahead of the own vehicle when the current traveling state continues is obtained. Further, the forward vehicle speed calculation unit 503 calculates the forward vehicle speed V from VSP and Vrxi.
xi is obtained, and the front vehicle acceleration calculation unit 504 obtains the front vehicle acceleration Axi from Vxi. The obtained position (xy0i, yx0i) of the preceding vehicle and the speed Vx of the preceding vehicle
i, acceleration Axi of the front vehicle, relative acceleration Arxi between the host vehicle and the front vehicle, lateral relative speed Vryi between the host vehicle and the front vehicle, horizontal relative acceleration Aryi between the host vehicle and the front vehicle, and the front vehicle Time t to reach the road ahead of the vehicle
y0i, an inter-vehicle distance xy0i (ty0i) and an inter-vehicle distance Di with respect to the own vehicle when the preceding vehicle arrives at a road ahead of the own vehicle, a relative speed Vrxi, an angle θi, a preceding vehicle ID idi, a speed VSP of the own vehicle, and a speed of the own vehicle. The acceleration A is used for the determination of the interrupting vehicle and the follow-up running control when there is the interrupting vehicle.

【0020】図8は前方車両状態検出のフローチャート
である。
FIG. 8 is a flow chart for detecting the state of the preceding vehicle.

【0021】自車両状態及び自車両周囲状況検出ルーチ
ン1400は一定の周期tctで起動,実行される。ス
テップ1401で車間距離Di,角度θiより、自車両
の位置を原点(0,0),自車両進行方向をx軸,自車
両進行方向直交方向をy軸とした直交座標系での前方車
両位置(xy0i,yx0i)を求める。ステップ14
02で横方向の動きであるyx0iの時系列データより
横相対速度Vryiを求める。ステップ1403でVr
yiの時系列データより横相対加速度Aryiを求める。ス
テップ1404でレーダ100からの相対速度Vrxi
の時系列データより相対加速度Arxiを求める。ステ
ップ1405でyx0i,Vryi,Aryiより前方
車両が現時刻から何秒後に自車前方路に到達するかとい
う到達時間ty0iを求める。ステップ1406でVr
xi,Arxi,xy0i,ty0iより現在の走行状
態が続いた場合に前方車両が自車前方路に到達した時の
車間距離xy0i(ty0i)を求める。ステップ140
7でVSP,Vrxiより前方車両速度Vxiを求め、
ステップ1408でVxiより前方車両加速度Axiを
求める。このルーチン1400はレーダ及びカメラが捕
らえた前方車両毎にそれぞれ実行される。
The own-vehicle state and own-vehicle surrounding situation detection routine 1400 is started and executed at a constant cycle tct. In step 1401, based on the inter-vehicle distance Di and the angle θi, the position of the host vehicle at the origin (0, 0), the x-axis in the host vehicle traveling direction, and the y-axis in the orthogonal coordinate system with the host vehicle traveling direction orthogonal to the y-axis. (Xy0i, yx0i) is obtained. Step 14
In step 02, a lateral relative velocity Vryi is obtained from time-series data of yx0i, which is a lateral movement. Vr at step 1403
The lateral relative acceleration Aryi is obtained from the time series data of yi. In step 1404, the relative speed Vrxi from the radar 100
, The relative acceleration Arxi is obtained from the time series data. In step 1405, an arrival time ty0i is calculated from yx0i, Vryi, and Aryi as to how many seconds after the current time the preceding vehicle reaches the road ahead of the own vehicle. Vr at step 1406
From xi, Arxi, xy0i, and ty0i, the inter-vehicle distance xy0i (ty0i) when the preceding vehicle arrives on the road ahead of the own vehicle when the current running state continues is obtained. Step 140
At 7, the forward vehicle speed Vxi is obtained from VSP and Vrxi,
In step 1408, a forward vehicle acceleration Axi is obtained from Vxi. This routine 1400 is executed for each preceding vehicle captured by the radar and the camera.

【0022】図9は割込車両判定のブロック図である。FIG. 9 is a block diagram of the judgment of the interrupting vehicle.

【0023】到達時間ty0iと到達時車間距離xy0
i(ty0i)により割込車両判定部600で割込車両
が有るか否かまた割込車両がこのままの状態ではぶつか
りそうで危険か否かを判定する。この判定結果は割込車
両があった場合の追従走行制御に使われる。この割込判
定,危険判定で用いる閾値は自車両速度や相対速度,学
習制御等によって変える。
The arrival time ty0i and the inter-vehicle distance at arrival xy0
Based on i (ty0i), the interrupting vehicle determination unit 600 determines whether or not there is an interrupting vehicle and whether or not the interrupting vehicle is likely to collide with the current state and is dangerous. This determination result is used for follow-up running control when there is an interrupting vehicle. The threshold value used in the interruption determination and the danger determination is changed by the own vehicle speed, the relative speed, the learning control, and the like.

【0024】図10は割込車両判定のフローチャートで
ある。割込車両判定ルーチン1500は一定の周期で起動、
実行される。ステップ1501で前方車両の横相対速度
Vryiが負か否か比較する。負でないならば割込は無しと
判定し、なにも実行せずに終わる。負ならばステップ1
502で危険範囲内か否か判定し、危険範囲内ならばス
テップ1503で危険フラグDgr_flagをオン
し、終わる。危険範囲でなければステップ1504で危
険フラグをオフし、ステップ1505で割込車両が有り
制御を開始する範囲内か否か判定し、範囲内ならばステ
ップ1506で割込制御フラグCut_in_flag
をオンする。範囲外ならばなにも実行せずに終わる。こ
のルーチン1500はレーダ及びカメラが捕らえた前方
車両毎にそれぞれ実行され、一番危険な前方車両に対応
して制御を行うようにする。
FIG. 10 is a flowchart of the interrupted vehicle determination. The interrupting vehicle determination routine 1500 starts at a fixed cycle,
Be executed. In step 1501, the lateral relative speed of the preceding vehicle
Compare if Vryi is negative or not. If it is not negative, it is determined that there is no interrupt, and the process ends without executing anything. If negative, step 1
At 502, it is determined whether or not it is within the danger range, and if it is within the danger range, at step 1503, the danger flag Dgr_flag is turned on, and the process ends. If not, the danger flag is turned off in step 1504, and it is determined in step 1505 whether or not the interrupted vehicle is within the range in which the control is started. If it is in the range, the interrupt control flag Cut_in_flag is determined in step 1506.
Turn on. If it is out of range, it ends without executing anything. This routine 1500 is executed for each preceding vehicle captured by the radar and the camera, and control is performed corresponding to the most dangerous preceding vehicle.

【0025】図11は割込車両を考慮し車間距離を切り
換える追従走行制御のブロック図である。
FIG. 11 is a block diagram of follow-up running control for switching the inter-vehicle distance in consideration of the interrupting vehicle.

【0026】到達時間ty0iと到達時車間距離xy0
i(ty0i)と自車両と前方車両との車間距離Da,
Db,...Dzと割込制御フラグCut_in_fla
g,危険フラグDgr_flagより追従制御車間距離
変更部700で割込車両を考慮した車間距離Dを求め
る。目標車間距離計算部701では自車両速度VSPよ
り目標車間距離Dtを求める。DtとDの差分である目
標車間距離誤差Ddを車間距離制御部702のPI制御
部703に入力し、PI制御車間距離補償速度Vdc_
piを求める。また、相対速度Vrxを車間距離制御部
702のD制御部704へ入力し、D制御車間距離補償
速度Vdc_dを求め、これらを加算して車間距離補償
速度Vdcとする。PI制御部703の伝達関数はGPI
[z]=(c0+c1・z~1)/(1−z~1)でc0 は0.
05〜0.5,c1 は−0.05〜−0.5 ぐらいの範囲
の値をとる。D制御部704の伝達関数はGD[z]=
DでKDは0.5〜2.0ぐらいの範囲の値をとる。制御
周期は1.0[msec]〜500.0[msec]ぐらいの範
囲の値をである。目標車両速度計算部705で前方車両
速度Vxより目標車両速度Vtを求める。VtとVSP
の差分にVdcを加えたものをVdとし、速度制御部7
06に入力する。速度制御部706はVdから目標駆動
軸トルクTtを算出する。トルク変換部707では自車
両エンジン及び変速機のトルク特性よりTtを出力する
ようなスロットル開度TVO,ギア位置Gpos,ブレ
ーキ力Brkを算出し、それぞれのアクチュエータに出
力する。
The arrival time ty0i and the inter-vehicle distance at arrival xy0
i (ty0i), the inter-vehicle distance Da between the own vehicle and the preceding vehicle,
Db, ... Dz and interrupt control flag Cut_in_fla
g, the following control inter-vehicle distance changing unit 700 obtains the inter-vehicle distance D in consideration of the interrupting vehicle from the danger flag Dgr_flag. The target inter-vehicle distance calculation unit 701 obtains a target inter-vehicle distance Dt from the host vehicle speed VSP. The target inter-vehicle distance error Dd, which is the difference between Dt and D, is input to the PI control unit 703 of the inter-vehicle distance control unit 702, and the PI control inter-vehicle distance compensation speed Vdc_
Find pi. Further, the relative speed Vrx is input to the D control unit 704 of the inter-vehicle distance control unit 702 to obtain the D control inter-vehicle distance compensation speed Vdc_d, and these are added to obtain the inter-vehicle distance compensation speed Vdc. The transfer function of the PI control unit 703 is G PI
[Z] = (c 0 + c 1 · z ~ 1 ) / (1−z ~ 1 ), where c 0 is equal to 0.
From 05 to 0.5, c 1 has a value in the range of about -0.05 to -0.5. The transfer function of the D control unit 704 is G D [z] =
K D with a K D takes a value in the range of about 0.5 to 2.0. The control cycle is a value in a range of about 1.0 [msec] to 500.0 [msec]. A target vehicle speed Vt is obtained from a forward vehicle speed Vx by a target vehicle speed calculation unit 705. Vt and VSP
Vd is obtained by adding Vdc to the difference of
Enter 06. The speed control unit 706 calculates the target drive shaft torque Tt from Vd. The torque converter 707 calculates a throttle opening TVO, a gear position Gpos, and a braking force Brk that output Tt from the torque characteristics of the own vehicle engine and the transmission, and outputs them to the respective actuators.

【0027】図12は車速制御のブロック図である。自
動車の運動特性は
FIG. 12 is a block diagram of the vehicle speed control. The dynamic characteristics of a car

【0028】[0028]

【数1】 d/dt・v(t)=−μ′A/m・v(t)+1/m・Fo(t) …(数1) v :車両速度 μ′:ころがり抵抗係数 A :車両の全面投影面積 m :車両重量 Fo:エンジン駆動力 この式より直列補償器の伝達関数を求めるとD / dt ・ v (t) = − μ′A / m ・ v (t) + 1 / m ・ Fo (t) (Equation 1) v: vehicle speed μ ': rolling resistance coefficient A: vehicle M: vehicle weight Fo: engine driving force From this equation, the transfer function of the series compensator is obtained.

【0029】[0029]

【数2】 Gc[z]=(a0+a1・z~1+a2・Z~2)/(1−b1・z~1−b2・z~2) …(数2) a0 は10.0〜200.0,a1 は1.0*10~7〜2.
0*10~6,a2 は−10.0〜−100.0,b1は1.
0〜2.0,b2は−0.5〜−1.0ぐらいの範囲の値を
とる。制御周期は1.0[msec]〜500.0[msec]
ぐらいの範囲の値である。
G c [z] = (a 0 + a 1 · z ~ 1 + a 2 · ZZ 2 ) / (1-b 1 · z ・1 -b 2 · z ~ 2 ) (Equation 2) a 0 10.0~200.0, a 1 is 1.0 * 10-7 ~2.
0 * 10 ~ 6, a 2 is -10.0~-100.0, b 1 1.
0~2.0, b 2 takes a value in the range of about -0.5 to 1.0. The control cycle is 1.0 [msec] to 50.0 [msec].
This is a value in the range of about.

【0030】図13は追従制御車間距離変更のブロック
図である。
FIG. 13 is a block diagram of the follow-up control inter-vehicle distance change.

【0031】割込車両がない場合は捕捉車車間距離選択
部710で現在捕捉している捕捉車両の車間距離Diが
割込車両を考慮した車間距離Dとして出力される。割込
車両がある場合は割込考慮車間距離計算部711で到達
時間ty0iと到達時車間距離xy0i(ty0i)に
より車間距離Dciを求め、これをDとして出力する。
割込車両が危険な状態であれば自車走行路到達時車間距
離xy0i(ty0i)をDとして出力する。これら切換
は危険フラグDgr_flagと割込制御フラグCut
_in_flagの状態に応じて切換部712,713
を切り換えることによって行う。
When there is no interrupting vehicle, the inter-vehicle distance Di of the currently-captured vehicle is output as the inter-vehicle distance D in consideration of the interrupting vehicle by the inter-vehicle distance selection unit 710. When there is an interrupting vehicle, the inter-vehicle distance calculation unit 711 calculates the inter-vehicle distance Dci based on the arrival time ty0i and the inter-vehicle distance at arrival xy0i (ty0i), and outputs this as D.
If the interrupting vehicle is in a dangerous state, D is output as the inter-vehicle distance xy0i (ty0i) when the own vehicle travels. These switching are performed by the danger flag Dgr_flag and the interrupt control flag Cut.
Switching units 712 and 713 in accordance with the state of _in_flag
This is done by switching.

【0032】図14は追従制御車間距離変更のフローチ
ャートである。
FIG. 14 is a flowchart of the follow-up control inter-vehicle distance change.

【0033】割込車両考慮車間距離切換ルーチン160
0は一定の周期tctで起動,実行される。ステップ1
601で危険フラグがオンか否か判定し、オンならばス
テップ1602で自車走行路到達時車間距離xy0i
(ty0i)を割込車両を考慮した車間距離Dとする。
危険フラグがオフならばステップ1603で割込制御フ
ラグがオンか否かを判定し、オフならばステップ160
4で現在捕捉している捕捉車の車間距離DiをDとして
出力する。割込制御フラグがオンならばステップ160
5で自車両前方路到達時間ty0iと自車走行路到達時
車間距離xy0i(ty0i)によりDの変化量Dsl
を求め、ステップ1606で割込制御フラグがオンにな
る前の車間距離からDslを制御周期tct毎にデクリ
メントし、Dciとする。ステップ1607でDをDc
iとする。ステップ1608でxy0i(ty0i)がD以
上になったか否か比較し、xy0i(ty0i)がD以
上になったならばステップ1609で割込制御フラグを
オフし、そうでなければなにもしない。
Inter-vehicle distance switching routine 160 considering interrupted vehicle
0 is started and executed at a constant cycle tct. Step 1
At 601 it is determined whether or not the danger flag is on. If the danger flag is on, then at step 1602, the following distance xy0i when the own vehicle travels on the traveling path is obtained.
Let (ty0i) be the inter-vehicle distance D considering the interrupting vehicle.
If the danger flag is off, it is determined in step 1603 whether or not the interrupt control flag is on.
In step 4, the inter-vehicle distance Di of the currently captured vehicle is output as D. If the interrupt control flag is on, step 160
5, the change amount Dsl of D according to the time ty0i of arrival on the road ahead of the host vehicle and the distance xy0i (ty0i) between the vehicles when the host vehicle travels on the road.
Dsl is decremented every control cycle tct from the inter-vehicle distance before the interrupt control flag is turned on in step 1606, and is set as Dci. In step 1607, D is set to Dc
i. At step 1608, it is compared whether or not xy0i (ty0i) is equal to or greater than D. If xy0i (ty0i) is equal to or greater than D, the interrupt control flag is turned off at step 1609, otherwise nothing is done.

【0034】図15は追従走行時に割込車両がある場合
の車間距離のタイミングチャート例である。
FIG. 15 is an example of a timing chart of the inter-vehicle distance when there is an interrupting vehicle during the following operation.

【0035】図3のような状況で割込車両があった場
合、時刻tnで割込車を検出するとtn以後は太線の車間
距離を制御に使用する。そしてtn+o の時点で割込車両
の車間距離xy0bが大きくなるとxy0bを制御に使
用する。このように車間距離を滑らかに切り換えること
により割込車両があっても運転者に違和感のない追従制
御が実現できる。
When there is an interrupted vehicle in the situation as shown in FIG. 3, if an interrupted vehicle is detected at time t n , the inter-vehicle distance indicated by the thick line is used for control after t n . Then, when the inter-vehicle distance xy0b of the interrupting vehicle increases at the time point of t n + o , xy0b is used for control. By smoothly switching the inter-vehicle distance in this way, even if there is an interrupting vehicle, it is possible to realize a follow-up control that does not make the driver feel uncomfortable.

【0036】図16は割込車両を考慮し駆動軸トルクを
切り換える追従走行制御ブロック図である。図11と同
様に到達時間ty0iと到達時車間距離xy0i(ty
0i)と自車両と前方車両との車間距離Da,Db,...
Dz と割込制御フラグCut_in_flag,危険
フラグDgr_flagより追従制御駆動軸トルク変更
部720で割込車両を考慮した駆動軸トルクTciを求
め、目標駆動軸トルクTtから差し引くことにより割込
車両の動きに応じた追従制御が実現できる。
FIG. 16 is a block diagram of a follow-up running control for switching the drive shaft torque in consideration of the interrupting vehicle. As in FIG. 11, the arrival time ty0i and the inter-vehicle distance xy0i (ty
0i) and the inter-vehicle distances Da, Db,.
The follow-up control drive shaft torque changing unit 720 obtains the drive shaft torque Tci considering the interrupt vehicle from the Dz, the interrupt control flag Cut_in_flag, and the danger flag Dgr_flag, and subtracts from the target drive shaft torque Tt to respond to the movement of the interrupt vehicle. Tracking control can be realized.

【0037】[0037]

【発明の効果】本発明によれば、自車両速度,自車両加
速度,前方車両の位置,前方車両の速度,前方車両の加
速度,相対速度,相対加速度,横方向の相対速度,横方
向の相対加速度、割込車両が自車両前方路に到達する時
間,前方車両が到達する地点等のデータから割込車両を
検出して、割込車両の動きに合わせて追従走行制御を行
うので応答性が良く、運転者の感覚にあった追従走行が
出来る。
According to the present invention, own vehicle speed, own vehicle acceleration, position of the preceding vehicle, speed of the preceding vehicle, acceleration of the preceding vehicle, relative speed, relative acceleration, relative speed in the lateral direction, relative speed in the lateral direction Responsiveness is obtained by detecting the interrupting vehicle from data such as acceleration, the time when the interrupting vehicle arrives on the road ahead of the vehicle, the point where the vehicle ahead arrives, and performing follow-up running control in accordance with the movement of the interrupting vehicle. The driver can follow the vehicle according to the driver's feeling.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による横相対速度を用いた追従制御のブ
ロック図。
FIG. 1 is a block diagram of tracking control using a lateral relative speed according to the present invention.

【図2】本発明による横相対速度,横相対加速度を用い
た追従制御のブロック図。
FIG. 2 is a block diagram of tracking control using a lateral relative speed and a lateral relative acceleration according to the present invention.

【図3】本発明による到達時間を用いた追従制御のブロ
ック図。
FIG. 3 is a block diagram of tracking control using arrival time according to the present invention.

【図4】本発明による到達時間,到達時車間距離を用い
た追従制御のブロック図。
FIG. 4 is a block diagram of tracking control using arrival time and inter-vehicle distance at arrival according to the present invention.

【図5】本発明によるハードウェアのブロック図。FIG. 5 is a block diagram of hardware according to the present invention.

【図6】追従走行時に割込車両がある例の説明図。FIG. 6 is an explanatory diagram of an example in which there is an interrupting vehicle during follow-up running.

【図7】自車両状態及び自車両周囲状況検出のブロック
図。
FIG. 7 is a block diagram of the detection of the own vehicle state and the surrounding state of the own vehicle.

【図8】自車両状態及び自車両周囲状況検出のフローチ
ャート。
FIG. 8 is a flowchart of the detection of the own vehicle state and the surrounding state of the own vehicle.

【図9】割込車両判定のブロック図。FIG. 9 is a block diagram of an interrupted vehicle determination.

【図10】割込車両判定のフローチャート。FIG. 10 is a flowchart of an interrupted vehicle determination.

【図11】割込車両を考慮し車間距離を切り換える追従
走行制御のブロック図。
FIG. 11 is a block diagram of follow-up running control for switching the inter-vehicle distance in consideration of an interrupting vehicle.

【図12】車速制御のブロック図。FIG. 12 is a block diagram of vehicle speed control.

【図13】割込車両考慮車間距離切換のブロック図。FIG. 13 is a block diagram of the inter-vehicle distance switching considering the interrupted vehicle.

【図14】割込車両考慮車間距離切換のフローチャー
ト。
FIG. 14 is a flowchart of the inter-vehicle distance switching considering the interrupted vehicle.

【図15】追従走行時に割込車両がある場合の車間距離
のタイミングチャート。
FIG. 15 is a timing chart of an inter-vehicle distance when an interrupting vehicle is present during a follow-up running.

【図16】割込車両を考慮し駆動軸トルクを切り換える
追従走行制御のブロック図。
FIG. 16 is a block diagram of follow-up running control for switching a drive shaft torque in consideration of an interrupting vehicle.

【符号の説明】[Explanation of symbols]

1…車間距離検出手段、2…相対速度検出手段、3…前
方車両角度検出手段、4…前方車両ID設定手段、5…
横相対速度計算手段、6…割込車両判定手段、7…追従
走行制御手段。
DESCRIPTION OF SYMBOLS 1 ... Inter-vehicle distance detection means, 2 ... Relative speed detection means, 3 ... Front vehicle angle detection means, 4 ... Front vehicle ID setting means, 5 ...
Lateral relative speed calculating means, 6: interrupting vehicle determining means, 7: following running control means.

フロントページの続き (72)発明者 ▲吉▼川 徳治 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 森實 裕人 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 武長 寛 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 中村 浩三 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 高野 和朗 茨城県ひたちなか市大字高場2520番地 株 式会社日立製作所自動車機器事業部内Continuation of the front page (72) Inventor ▲ Yoshi ▼ Tokuharu 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside the Hitachi Research Laboratory, Hitachi, Ltd. No. 1-1 Inside Hitachi, Ltd. Hitachi Research Laboratory (72) Inventor Hiroshi Takenaga 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd. Hitachi Research Laboratory (72) Inventor Kozo Nakamura Hitachi, Ibaraki Prefecture 7-1-1, Omika-cho, Hitachi, Ltd.Hitachi, Ltd.Hitachi Research Laboratory Co., Ltd. (72) Inventor Kazuo Takano 2520, Odaiba, Hitachinaka-shi, Ibaraki Pref.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】自車両と前方車両との車間距離検出手段
と、前記車間距離検出手段からの車間距離が所定の適正
値となるように前記自車両を制御する追従走行制御手段
とを備えた車両用追従走行制御装置において、前記自車
両と前記前方車両との相対速度を検出する相対速度検出
手段と、前記自車両と前記前方車両との角度を検出する
前方車両角度検出手段と、複数の前記前方車両に車両I
Dを設定する前方車両ID設定手段と、前記車間距離検
出手段からの車間距離と前記前方車両角度検出手段から
の角度により前記自車両と前記前方車両との横方向の相
対速度を計算する横相対速度計算手段と、前記横相対速
度計算手段からの横相対速度により前方車両の割込の有
無を判定する割込車両判定手段とを備え、前記割込車両
判定手段で割込車両有りと判定されると、前記追従走行
制御手段は前記車間距離検出手段からの車間距離と相対
速度検出手段からの相対速度と前記横相対速度計算手段
からの横相対速度に応じて自車両を制御する構成とした
ことを特徴とする車両用追従走行制御装置。
1. An inter-vehicle distance detecting means between a host vehicle and a preceding vehicle, and a follow-up running control means for controlling the host vehicle so that the inter-vehicle distance from the inter-vehicle distance detecting means becomes a predetermined appropriate value. In the vehicle following travel control device, a relative speed detection unit that detects a relative speed between the host vehicle and the front vehicle, a front vehicle angle detection unit that detects an angle between the host vehicle and the front vehicle, Vehicle I
A forward vehicle ID setting means for setting D, and a lateral relative for calculating a lateral relative speed between the host vehicle and the forward vehicle based on an inter-vehicle distance from the inter-vehicle distance detecting means and an angle from the forward vehicle angle detecting means. Speed calculating means, and an interrupting vehicle determining means for determining whether or not the preceding vehicle is interrupted based on the lateral relative speed from the lateral relative speed calculating means, wherein the interrupting vehicle determining means determines that there is an interrupting vehicle. Then, the following running control means controls the own vehicle according to the following distance from the following distance detecting means, the relative speed from the relative speed detecting means, and the lateral relative speed from the lateral relative speed calculating means. A follow-up running control device for a vehicle, comprising:
【請求項2】前記横相対速度計算手段からの横相対速度
により横相対加速度計算手段を備え、前記割込車両判定
手段は前記横相対速度計算手段からの横相対速度と前記
横相対加速度計算手段からの横相対加速度により前方車
両の割込の有無を判定し、前記割込車両判定手段で割込
車両有りと判定されると、前記追従走行制御手段は前記
車間距離検出手段からの車間距離と前記相対速度検出手
段からの相対速度と前記横相対速度計算手段からの横相
対速度と前記横相対加速度計算手段からの横相対加速度
に応じて自車両を制御する請求項1に記載の車両用追従
走行制御装置。
2. The vehicle according to claim 1, further comprising a lateral relative acceleration calculating means based on the lateral relative speed from said lateral relative velocity calculating means, wherein said interrupted vehicle determining means includes a lateral relative speed from said lateral relative speed calculating means and said lateral relative acceleration calculating means. The presence or absence of an interruption of the preceding vehicle is determined based on the lateral relative acceleration from, and when it is determined that the interruption vehicle is present by the interruption vehicle determination unit, the following travel control unit determines the inter-vehicle distance from the inter-vehicle distance detection unit. The vehicle follow-up according to claim 1, wherein the vehicle is controlled in accordance with a relative speed from the relative speed detecting means, a lateral relative speed from the lateral relative speed calculating means, and a lateral relative acceleration from the lateral relative acceleration calculating means. Travel control device.
【請求項3】前記横相対速度計算手段からの横相対速度
と前記横相対加速度計算手段からの横相対加速度により
前方車両が自車両前方路に到達するまでの到達時間推定
手段を備え、前記割込車両判定手段は前記到達時間推定
手段からの到達時間により前方車両の割込の有無を判定
し、前記割込車両判定手段で割込車両有りと判定される
と、前記追従走行制御手段は前記車間距離検出手段から
の車間距離と前記相対速度検出手段からの相対速度と前
記到達時間推定手段からの到達時間に応じて自車両を制
御する請求項2に記載の車両用追従走行制御装置。
3. An arrival time estimating means for a preceding vehicle to reach a road ahead of the own vehicle based on a lateral relative speed from the lateral relative velocity calculating means and a lateral relative acceleration from the lateral relative acceleration calculating means, The interrupting vehicle determining means determines the presence or absence of an interrupt of the preceding vehicle based on the arrival time from the arrival time estimating means, and when the interrupting vehicle determining means determines that there is an interrupting vehicle, the following traveling control means 3. The vehicle following travel control device according to claim 2, wherein the own vehicle is controlled according to an inter-vehicle distance from an inter-vehicle distance detection unit, a relative speed from the relative speed detection unit, and an arrival time from the arrival time estimation unit.
【請求項4】前記相対速度検出手段からの相対速度と前
記到達時間推定手段からの到達時間により前方車両が自
車両前方路に到達する時の車間距離を推定する到達時車
間距離推定手段を備え、前記割込車両判定手段は前記到
達時間推定手段からの到達時間と前記到達時車間距離推
定手段からの到達時車間距離により前方車両の割込の有
無を判定し、前記割込車両判定手段で割込車両有りと判
定されると、前記追従走行制御手段は前記到達時間推定
手段からの到達時間と前記到達時車間距離推定手段から
の到達時車間距離と前記割込車両判定手段からの割込車
両の有無に応じて自車両を制御する請求項3に記載の車
両用追従走行制御装置。
4. An inter-vehicle distance estimating means for estimating an inter-vehicle distance when a preceding vehicle reaches a road ahead of the own vehicle based on a relative speed from the relative speed detecting means and an arrival time from the reaching time estimating means. The interrupting vehicle determining means determines whether there is an interrupt of a preceding vehicle based on the arrival time from the arrival time estimating means and the inter-arrival time from the reaching inter-vehicle distance estimating means. When it is determined that there is an interrupting vehicle, the following traveling control means determines the arrival time from the arrival time estimating means, the inter-vehicle distance at arrival from the inter-arrival time estimating means, and the interrupt from the interrupting vehicle determining means. The vehicle follow-up running control device according to claim 3, wherein the own vehicle is controlled according to the presence or absence of the vehicle.
【請求項5】前記追従走行制御手段は前記到達時間推定
手段からの到達時間と前記到達時車間距離推定手段から
の到達時車間距離により求めた追従制御に用いる車間距
離データに応じて自車両を制御する請求項4に記載の車
両用追従走行制御装置。
5. The vehicle control system according to claim 1, wherein the following travel control means controls the own vehicle in accordance with inter-vehicle distance data used for following control obtained from the arrival time from the arrival time estimation means and the inter-arrival time from the inter-vehicle distance estimation means. The vehicle follow-up running control device according to claim 4, which controls the vehicle.
【請求項6】前記追従走行制御手段は前記到達時間推定
手段からの到達時間と前記到達時車間距離推定手段から
の到達時車間距離により求めた追従制御に用いる目標ト
ルクデータに応じて自車両を制御する請求項4に記載の
車両用追従走行制御装置。
6. The following travel control means controls the own vehicle in accordance with target torque data used for following control obtained from the arrival time from the arrival time estimation means and the inter-arrival time from the arrival inter-vehicle distance estimation means. The vehicle follow-up running control device according to claim 4, which controls the vehicle.
JP917297A 1997-01-22 1997-01-22 Vehicle tracking control device and control method Pending JPH10205366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP917297A JPH10205366A (en) 1997-01-22 1997-01-22 Vehicle tracking control device and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP917297A JPH10205366A (en) 1997-01-22 1997-01-22 Vehicle tracking control device and control method

Publications (1)

Publication Number Publication Date
JPH10205366A true JPH10205366A (en) 1998-08-04

Family

ID=11713174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP917297A Pending JPH10205366A (en) 1997-01-22 1997-01-22 Vehicle tracking control device and control method

Country Status (1)

Country Link
JP (1) JPH10205366A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001122093A (en) * 1999-10-26 2001-05-08 Wabco Gmbh & Co Ohg Automatic space control method for vehicle
JP2002148336A (en) * 2000-11-15 2002-05-22 Fujitsu Ten Ltd Interruption prediction device
JP2005092665A (en) * 2003-09-19 2005-04-07 Fuji Heavy Ind Ltd Approach determination device and approach determination method
WO2006134934A1 (en) * 2005-06-13 2006-12-21 Kabushiki Kaisha Toyota Chuo Kenkyusho Obstacle avoidance control device and recording medium
JP2010228753A (en) * 2010-04-12 2010-10-14 Nissan Motor Co Ltd Automatic cruising device for vehicle
DE102014226462A1 (en) 2014-12-18 2016-06-23 Honda Motor Co., Ltd. ADAPTIVE DRIVING CONTROL SYSTEM WITH EXCEPTIONAL PREDICTION
US9481369B2 (en) 2006-11-27 2016-11-01 Denso Corporation Cruise control system for determining object as target for cruise control
JP2017128286A (en) * 2016-01-22 2017-07-27 トヨタ自動車株式会社 Vehicular travelling control device
JP2017154614A (en) * 2016-03-02 2017-09-07 トヨタ自動車株式会社 Vehicle travel control device
CN112441004A (en) * 2020-11-30 2021-03-05 重庆长安汽车股份有限公司 Longitudinal planning method and system for automatic driving lane changing, vehicle and storage medium
CN119527324A (en) * 2025-01-22 2025-02-28 浙江吉利控股集团有限公司 Vehicle control method, device, electronic device, vehicle and storage medium

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001122093A (en) * 1999-10-26 2001-05-08 Wabco Gmbh & Co Ohg Automatic space control method for vehicle
JP2002148336A (en) * 2000-11-15 2002-05-22 Fujitsu Ten Ltd Interruption prediction device
JP2005092665A (en) * 2003-09-19 2005-04-07 Fuji Heavy Ind Ltd Approach determination device and approach determination method
US7949469B2 (en) 2005-06-13 2011-05-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Obstacle avoidance control device and recording medium
JP2006347236A (en) * 2005-06-13 2006-12-28 Toyota Central Res & Dev Lab Inc Obstacle avoidance control device and obstacle avoidance control program
WO2006134934A1 (en) * 2005-06-13 2006-12-21 Kabushiki Kaisha Toyota Chuo Kenkyusho Obstacle avoidance control device and recording medium
US9481369B2 (en) 2006-11-27 2016-11-01 Denso Corporation Cruise control system for determining object as target for cruise control
JP2010228753A (en) * 2010-04-12 2010-10-14 Nissan Motor Co Ltd Automatic cruising device for vehicle
DE102014226462A1 (en) 2014-12-18 2016-06-23 Honda Motor Co., Ltd. ADAPTIVE DRIVING CONTROL SYSTEM WITH EXCEPTIONAL PREDICTION
DE102014226462B4 (en) * 2014-12-18 2017-09-21 Honda Motor Co., Ltd. ADAPTIVE DRIVING CONTROL SYSTEM WITH EXCEPTIONAL PREDICTION
JP2017128286A (en) * 2016-01-22 2017-07-27 トヨタ自動車株式会社 Vehicular travelling control device
JP2017154614A (en) * 2016-03-02 2017-09-07 トヨタ自動車株式会社 Vehicle travel control device
CN112441004A (en) * 2020-11-30 2021-03-05 重庆长安汽车股份有限公司 Longitudinal planning method and system for automatic driving lane changing, vehicle and storage medium
CN119527324A (en) * 2025-01-22 2025-02-28 浙江吉利控股集团有限公司 Vehicle control method, device, electronic device, vehicle and storage medium

Similar Documents

Publication Publication Date Title
US6116369A (en) Adaptive cruise control system
JP3233739B2 (en) Car driving control device
US6363311B1 (en) Running controller for automobile
CN107985310B (en) A method and system for adaptive cruise
JP3651259B2 (en) Preceding vehicle tracking control device
JPWO2020066331A1 (en) Vehicle control unit
EP1065087B1 (en) Automobile running control system for optimum inter-vehicle spacing
JP2002307975A (en) Running controller for vehicle
JP5157531B2 (en) Vehicle travel control system
JPH11321690A (en) Lane keep system
JP4747460B2 (en) Brake control device for vehicle
JPH10205366A (en) Vehicle tracking control device and control method
JP2017117192A (en) Driving assistance device
JPH08132931A (en) Vehicle drive controller
CN119502902B (en) An adaptive cruise anti-slope compensation and overtaking auxiliary control system and method
JPH11213299A (en) Vehicle traveling controller
JP3197114B2 (en) Travel control device for vehicles
JPH10338053A (en) Travel controller for vehicle
JP2002079846A (en) Preceding car follow-up control device
EP4321405A1 (en) Driving control method of vehicle and driving control device
JP2003312311A (en) Device and method for vehicle driving control
JP2002160547A (en) Vehicle controller for follow traveling
JP3648542B2 (en) Obstacle collision prevention system by providing information
JP2000225869A (en) Vehicle traveling control device
JP3770708B2 (en) A preceding vehicle lost determination method in an inter-vehicle distance control system