JPH10142638A - Liquid crystal display panel - Google Patents
Liquid crystal display panelInfo
- Publication number
- JPH10142638A JPH10142638A JP30008596A JP30008596A JPH10142638A JP H10142638 A JPH10142638 A JP H10142638A JP 30008596 A JP30008596 A JP 30008596A JP 30008596 A JP30008596 A JP 30008596A JP H10142638 A JPH10142638 A JP H10142638A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- orientation
- display panel
- alignment
- crystal display
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、ネマチック液晶
を用い、優れた視角特性をもつOCB方式の液晶表示パ
ネルに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an OCB type liquid crystal display panel using nematic liquid crystal and having excellent viewing angle characteristics.
【0002】[0002]
【従来の技術】ネマチック液晶を用いた表示パネル(表
示素子)は、液晶分子の配向によっていくつかのモード
がある。最も普及しているのは、捻れネマチック(T
N)モードであり、その他にホメオトロピック(垂直)
配向、またはホモジニアス(水平)配向の複屈折モード
やゲストホストモード等がある。TNモードはとくに、
一方の基板に画素電極毎に能動素子を設けたアクティブ
アマトリクス液晶表示パネルにおいて主流となってい
る。2. Description of the Related Art A display panel (display element) using a nematic liquid crystal has several modes depending on the orientation of liquid crystal molecules. The most popular is the twisted nematic (T
N) mode, and homeotropic (vertical)
There are birefringence mode and guest-host mode of orientation or homogeneous (horizontal) orientation. Especially in TN mode,
It is the mainstream in an active matrix liquid crystal display panel in which an active element is provided for each pixel electrode on one substrate.
【0003】TN液晶は、誘電異方性が正の液晶を、水
平配向処理した電極付き基板の間に挟んで、90度捻っ
た状態を安定状態とし、このとき液晶の配向に沿って偏
波面が90度回転し、液晶層を挟んで配置した偏光子と
検光子の透過軸を直交させていると、白表示となる(ノ
ーマリホワイトモード)。電圧印加により液晶分子が立
つと、入射偏光はそのまま液晶層を進むので、検光子に
より吸収されて黒表示となる。The TN liquid crystal is a state in which a liquid crystal having a positive dielectric anisotropy is sandwiched between substrates with electrodes subjected to horizontal alignment processing and twisted by 90 degrees to make a stable state. Is rotated by 90 degrees, and when the transmission axes of the polarizer and the analyzer arranged with the liquid crystal layer interposed therebetween are orthogonal to each other, white display is performed (normally white mode). When the liquid crystal molecules rise by application of a voltage, the incident polarized light travels through the liquid crystal layer as it is, so that it is absorbed by the analyzer and black display is performed.
【0004】水平配向処理は、通常、ポリイミドをラビ
ングすることにより達成されるが、このときラビング方
向に対応して数度程度の液晶のプレチルトが生じる。T
N液晶の捻れ方向は、この上下基板でのプレチルト方向
により基本的に決まる。つまり、液晶層がスプレイ歪み
を伴わないように配向することで捻れ方向が決定され
る。さらに、逆捻れ配向を防止し、捻れ方向を均一に揃
えるために、上下基板でのプレチルト方向と符合させ
て、液晶中に微量のカイラル物質(光学活性物質)を添
加して捻れ方向を決めている。液晶は一方の基板界面近
傍から反対側の基板界面近傍まで、ほぼ一様なプレチル
トをもって配向する。上下基板間に電圧を印加すると、
まず液晶層中央部の液晶分子が初期に与えられたプレチ
ルト方向に立ち上がり、液晶層全体がそれに追従する。[0004] The horizontal alignment process is usually achieved by rubbing polyimide, and at this time, a pretilt of the liquid crystal of about several degrees occurs corresponding to the rubbing direction. T
The twist direction of the N liquid crystal is basically determined by the pretilt directions of the upper and lower substrates. That is, the twisting direction is determined by aligning the liquid crystal layer without causing splay distortion. Furthermore, in order to prevent reverse twist orientation and to make the twist direction uniform, the twist direction is determined by adding a small amount of chiral substance (optically active substance) to the liquid crystal, matching the pretilt direction on the upper and lower substrates. I have. The liquid crystal is aligned with a substantially uniform pretilt from near the interface of one substrate to near the interface of the opposite substrate. When a voltage is applied between the upper and lower substrates,
First, the liquid crystal molecules at the center of the liquid crystal layer rise in the pretilt direction given initially, and the entire liquid crystal layer follows the rise.
【0005】したがって、液晶の立ち上がる向きはパネ
ル全体で同一であり、パネルを観察する方向によって液
晶層の屈折率変化の仕方が違うため、視角方向によって
光透過率が大きく変わる。このため、視角方向によって
コントラストの大幅な低下や色変化、階調反転などが発
生し、視角特性に非常に問題がある。とくにノーマリホ
ワイトモードでは、液晶層中央部の液晶分子の立ち上が
り方向(視角方向)から観察する場合とその逆の方向
(反視角方向)から観察する場合では、視角特性が大き
く異なる。正面から視角方向側では階調反転現象が激し
く、反視角方向側ではコントラスト低下が著しく、白浮
きが発生する。通常、視角方向は上下方向に設定される
ため、TNモードでは上下方向で視角特性が非対称とな
る。Therefore, the direction in which the liquid crystal rises is the same in the entire panel, and the manner in which the refractive index of the liquid crystal layer changes according to the direction in which the panel is viewed. Therefore, the light transmittance greatly changes depending on the viewing angle direction. For this reason, a significant reduction in contrast, color change, gradation inversion, and the like occur depending on the viewing angle direction, and there is a serious problem in viewing angle characteristics. In particular, in the normally white mode, the viewing angle characteristics are greatly different between the case of observing from the rising direction of the liquid crystal molecules at the center of the liquid crystal layer (viewing angle direction) and the case of observing from the opposite direction (the opposite viewing angle direction). The gradation inversion phenomenon is severe on the side of the viewing angle from the front, and the contrast is significantly reduced on the side of the opposite viewing angle, and whitening occurs. Normally, the viewing angle direction is set in the vertical direction, so that in the TN mode, the viewing angle characteristics are asymmetric in the vertical direction.
【0006】このようなTNモードの視角特性を改善す
るために、多くの方法が提案されている。例えば、「S
ID 94 DIGEST,927」に記載されてい
るように、液晶をベンド配向させ、これに光学位相補償
フィルムを組み合わせることにより、広い視野角を得る
OCB(Optically Compensated
Birefringence)方式がある。OCB方
式は、TN方式に比べて、応答速度が非常に速いという
特徴も有しており、非常に魅力的な方式である。Many methods have been proposed to improve the viewing angle characteristics of the TN mode. For example, "S
ID 94 DIGEST, 927 ", OCB (Optically Compensated) for obtaining a wide viewing angle by aligning a liquid crystal with a bend and combining it with an optical phase compensation film.
Birefringence) system. The OCB method has a feature that the response speed is much faster than the TN method, and is a very attractive method.
【0007】このOCB方式では、液晶を初期的にはス
プレイ配向させておき、使用時に液晶に電界を加えるこ
とにより、ベンド配向(またはπツイスト配向)へ配向
転移させる必要がある。つまり、電圧を加えることによ
り液晶が立ち上がると、スプレイ配向の歪みが増大し、
安定なベンド配向またはπツイスト配向への転移が起こ
る。この様子を観察すると、スプレイ配向の中にベンド
またはπツイスト配向をもつ所望の正常ドメインの核が
発生し、成長する様子が見られる。In the OCB method, it is necessary to initially align the liquid crystal in a splay state, and to apply an electric field to the liquid crystal during use to cause an alignment transition to a bend alignment (or π twist alignment). In other words, when the liquid crystal rises by applying a voltage, the distortion of the splay alignment increases,
A transition to a stable bend or π-twist orientation occurs. By observing this state, it can be seen that a nucleus of a desired normal domain having a bend or π twist orientation in the splay orientation is generated and grown.
【0008】[0008]
【発明が解決しようとする課題】しかしながら、本発明
者らの実験によれば、スプレイ配向からベンド配向また
はπツイスト配向への転移を発生させることは容易では
なく、10V以上の相当に高い電圧を必要とする。この
ような高い電圧を加えることは、一般には駆動電圧の制
約があるため困難である。However, according to the experiments of the present inventors, it is not easy to cause the transition from the splay orientation to the bend orientation or the π twist orientation, and a considerably high voltage of 10 V or more is required. I need. It is generally difficult to apply such a high voltage because of the restriction of the driving voltage.
【0009】また、電界印加により発生するベンド配向
またはπツイスト配向のドメインの核発生密度はかなり
低く、ドメインが全領域に広がるのには、相当の時間を
要する。さらに、全ての画素で転移を起こすことは非常
に困難であり、どうしても転移の起こらない画素が残っ
てしまう。配向転移が起こらず、スプレイ配向のままで
残った画素が存在すると、その画素は表示欠陥として認
識され、ディスプレイとしての表示品位を大きく低下さ
せる。Further, the nucleation density of the bend-oriented or π-twist-oriented domains generated by the application of an electric field is extremely low, and it takes a considerable time for the domains to spread over the entire region. Further, it is very difficult to cause a transition in all the pixels, and some pixels are left without any transition. If there is a pixel that does not undergo the alignment transition and remains in the splay alignment, the pixel is recognized as a display defect, and the display quality as a display is greatly reduced.
【0010】配向欠陥のない均一配向を実現するために
は、新たな手段の発明が必要であった。したがって、こ
の発明の目的は、スプレイ配向からベンド配向またはπ
ツイスト配向への転移を効率よく行い、配向欠陥のない
均一配向を実現することができる液晶表示パネルを提供
することである。In order to realize uniform alignment without alignment defects, the invention of new means is required. Therefore, an object of the present invention is to change the splay alignment to the bend alignment or π
An object of the present invention is to provide a liquid crystal display panel capable of efficiently performing transition to twist alignment and achieving uniform alignment without alignment defects.
【0011】[0011]
【課題を解決するための手段】請求項1記載の液晶表示
パネルは、電極を有する一対の基板と、この一対の基板
の間に介在されて電極間に電圧を印加することによりス
プレイ配向からπツイスト配向またはベンド配向に転移
する液晶と、スプレイ配向からπツイスト配向またはベ
ンド配向への転移を促進する核発生手段とを備えたもの
である。According to a first aspect of the present invention, there is provided a liquid crystal display panel comprising: a pair of substrates having electrodes; and a voltage interposed between the pair of substrates. The liquid crystal device includes a liquid crystal that transitions to a twist alignment or a bend alignment, and a nucleus generating unit that promotes the transition from the spray alignment to the π twist alignment or the bend alignment.
【0012】請求項1記載の液晶表示パネルによれば、
電極間に電圧を印加すると、スプレイ配向の歪みが増大
し、スプレイン配向の中にベンド配向またはπツイスト
配向をもつ正常ドメインの核が発生し、安定なベンド配
向またはπツイスト配向への転移が起こる。このとき、
核発生手段によりベンド配向またはπツイスト配向をも
つ正常ドメインの核が多く発生し成長し、短時間にドメ
インが全領域に広がる。このように、核発生手段によ
り、配向ドメインの核発生密度が高くなり、転移が効率
よく行なわれ、全体に配向欠陥のない均一配向が可能と
なる。したがって、高品位なOCB方式の液晶表示パネ
ルを得ることができる。According to the liquid crystal display panel of the first aspect,
When a voltage is applied between the electrodes, the distortion of the splay alignment increases, a nucleus of a normal domain having a bend orientation or a π twist orientation is generated in the sprain orientation, and a transition to a stable bend orientation or a π twist orientation occurs. . At this time,
Many nuclei of normal domains having bend orientation or π twist orientation are generated and grown by the nucleus generating means, and the domains are spread over the entire region in a short time. As described above, the nucleus generating means increases the nucleus generation density of the alignment domain, efficiently performs the transition, and enables uniform alignment without any alignment defects. Therefore, a high-quality OCB liquid crystal display panel can be obtained.
【0013】請求項2記載の液晶表示パネルは、請求項
1において、核発生手段が、一対の基板間の中央部の液
晶を基板面に対して略垂直配向させるものである。請求
項2記載の液晶表示パネルによれば、請求項1の効果の
ほか、基板間の中央部の液晶がハイブリッド配向とな
り、電界印加により発生するベンド配向またはπツイス
ト配向に近い配向状態を初期からとっていることにな
り、基板間に電界を印加することにより、ハイブリッド
配向部分がさらに安定化し、ベンド配向またはπツイス
ト配向のドメイン発生の核となって、この部分の配向が
周りに広がって行く。したがって、全体の配向転移がよ
り一層効率よく行なわれる。According to a second aspect of the present invention, in the liquid crystal display panel according to the first aspect, the nucleation means orients the liquid crystal at a central portion between the pair of substrates substantially perpendicularly to the substrate surface. According to the liquid crystal display panel of the second aspect, in addition to the effect of the first aspect, the liquid crystal in the central portion between the substrates has a hybrid alignment, and the alignment state near the bend alignment or the π twist alignment generated by the application of the electric field is initially set. By applying an electric field between the substrates, the hybrid orientation portion is further stabilized, and serves as a nucleus for generation of a bend orientation or π twist orientation domain, and the orientation of this portion spreads around. . Therefore, the whole orientation transition is performed more efficiently.
【0014】請求項3記載の液晶表示パネルは、請求項
2において、核発生手段が、一対の基板間のギャップよ
りも厚みが小さく、その表面が液晶を垂直配向させる性
質を有する粒子であり、一対の基板間に存在しているも
のである。請求項3記載の液晶表示パネルによれば、請
求項2の効果のほか、液晶内の全体に分散させやすく、
均一な配向が得やすい。According to a third aspect of the present invention, in the liquid crystal display panel according to the second aspect, the nucleus generating means is a particle having a thickness smaller than a gap between the pair of substrates and a surface of which has a property of vertically aligning the liquid crystal. It exists between a pair of substrates. According to the liquid crystal display panel of the third aspect, in addition to the effect of the second aspect, the liquid crystal display panel can be easily dispersed throughout the liquid crystal.
Uniform orientation is easily obtained.
【0015】請求項4記載の液晶表示パネルは、請求項
2において、核発生手段が、一対の基板間のギャップよ
りも粒径が小さく、その表面が液晶を垂直配向させる性
質を有する球状の粒子であり、一対の基板間に存在して
いるものである。請求項4記載の液晶表示パネルによれ
ば、請求項2の効果のほか、粒径の制御性が優れる。According to a fourth aspect of the present invention, in the liquid crystal display panel according to the second aspect, the nucleation means has a spherical particle having a particle diameter smaller than a gap between the pair of substrates and a surface of which has a property of vertically aligning the liquid crystal. And exists between the pair of substrates. According to the liquid crystal display panel of the fourth aspect, in addition to the effect of the second aspect, the controllability of the particle diameter is excellent.
【0016】請求項5記載の液晶表示パネルは、請求項
2において、核発生手段が、一対の基板間のギャップよ
りも厚みが小さく、その表面が液晶を垂直配向させる性
質を有する凸部であり、基板上に形成したものである。
請求項5記載の液晶表示パネルによれば、請求項2の効
果のほか、凸部の大きさを制御しやすい。According to a fifth aspect of the present invention, in the liquid crystal display panel according to the second aspect, the nucleation means is a convex portion having a thickness smaller than a gap between the pair of substrates and a surface of which has a property of vertically aligning the liquid crystal. , Formed on a substrate.
According to the liquid crystal display panel of the fifth aspect, in addition to the effect of the second aspect, the size of the convex portion can be easily controlled.
【0017】請求項6記載の液晶表示パネルは、請求項
2において、一対の基板の界面近傍での液晶のプレチル
ト角を、少なくとも3°以上としている。請求項6記載
の液晶表示パネルによれば、請求項2の効果のほか、ベ
ンド配向またはπツイスト配向のドメインの成長速度を
大きくできるとともに、配向を保持するための電界強度
は小さくすることができる。すなわち、スプレイ配向と
のエネルギー差を大きくして、ベンド配向またはπツイ
スト配向ドメインを成長しやすくすることができる。According to a sixth aspect of the present invention, in the liquid crystal display panel according to the second aspect, a pretilt angle of the liquid crystal near the interface between the pair of substrates is at least 3 ° or more. According to the liquid crystal display panel of the sixth aspect, in addition to the effect of the second aspect, the growth rate of the domain of the bend alignment or the π twist alignment can be increased, and the electric field strength for maintaining the alignment can be reduced. . That is, the energy difference from the splay alignment can be increased to facilitate the growth of the bend alignment or π twist alignment domain.
【0018】請求項7記載の液晶表示パネルは、請求項
2において、液晶の配向処理がラビングによって行われ
ているものである。請求項7記載の液晶表示パネルによ
れば、請求項2と同効果がある。請求項8記載の液晶表
示パネルは、請求項2において、一対の基板が配向膜を
有し、配向膜がポリイミドまたはポリアミック酸を含む
材料で形成されているものである。According to a seventh aspect of the present invention, in the liquid crystal display panel according to the second aspect, the alignment treatment of the liquid crystal is performed by rubbing. According to the liquid crystal display panel of the seventh aspect, the same effect as that of the second aspect is obtained. An eighth aspect of the present invention is the liquid crystal display panel according to the second aspect, wherein the pair of substrates has an alignment film, and the alignment film is formed of a material containing polyimide or polyamic acid.
【0019】請求項8記載の液晶表示パネルによれば、
請求項2の効果のほか、配向の安定性に優れる。請求項
9記載の液晶表示パネルは、請求項2において、電極が
画素ごとに構成され、アクティブマトリクスパネルを形
成するための能動素子を各画素毎に設けたものである。According to the liquid crystal display panel of the eighth aspect,
In addition to the effect of claim 2, the alignment stability is excellent. According to a ninth aspect of the present invention, in the liquid crystal display panel according to the second aspect, the electrodes are formed for each pixel, and an active element for forming an active matrix panel is provided for each pixel.
【0020】請求項9記載の液晶表示パネルによれば、
請求項2と同効果がある。請求項10記載の液晶表示パ
ネルは、請求項9において、全ての画素に対応して、少
なくとも1カ所以上の核発生手段を設けたものである。
請求項10記載の液晶表示パネルによれば、請求項9の
効果のほか、アクティブマトリクス液晶表示パネルの全
ての画素で、確実にスプレイ配向からベンド配向または
πツイスト配向への転移を起こさせ、配向不良による表
示欠陥をなくすることができる。According to the liquid crystal display panel of the ninth aspect,
This has the same effect as the second aspect. A liquid crystal display panel according to a tenth aspect is the liquid crystal display panel according to the ninth aspect, wherein at least one or more nucleus generating units are provided for all the pixels.
According to the liquid crystal display panel of the tenth aspect, in addition to the effect of the ninth aspect, in all the pixels of the active matrix liquid crystal display panel, the transition from the splay alignment to the bend alignment or the π twist alignment is caused to occur, and the alignment is performed. Display defects due to defects can be eliminated.
【0021】請求項11記載の液晶表示パネルは、請求
項9において、発生したベンド配向またはπツイスト配
向のドメインが成長できるしきい値電界以上の一対の基
板方向に向かう縦電界を、画素間に発生させる手段を備
えたものである。請求項11記載の液晶表示パネルによ
れば、請求項9の効果のほか、全画素に核発生手段が存
在しない場合でも、全画素の配向転移が可能になる。According to the eleventh aspect of the present invention, in the liquid crystal display panel according to the ninth aspect, a vertical electric field directed between a pair of substrates that is equal to or higher than a threshold electric field at which a domain of the generated bend alignment or π twist alignment can grow is formed between pixels. It is provided with a generating means. According to the liquid crystal display panel of the eleventh aspect, in addition to the effect of the ninth aspect, the alignment transition of all the pixels can be performed even when the nucleus generating means does not exist in all the pixels.
【0022】請求項12記載の液晶表示パネルは、請求
項1において、液晶表示パネルに通常の表示状態で加え
られる駆動電界以上の大きな電界を加える手段を備えた
ものである。請求項12記載の液晶表示パネルによれ
ば、請求項1の効果のほか、より確実に配向転移を起こ
すことができる。According to a twelfth aspect of the present invention, there is provided a liquid crystal display panel according to the first aspect, further comprising means for applying a large electric field to the liquid crystal display panel, which is larger than a driving electric field applied in a normal display state. According to the liquid crystal display panel of the twelfth aspect, in addition to the effect of the first aspect, the alignment transition can be more reliably caused.
【0023】[0023]
【発明の実施の形態】この発明の第1の実施の形態の液
晶表示パネルを図1および図2により説明する。図1
(a)は、この発明の第1の実施の形態の液晶表示パネ
ルの断面模式図である。この液晶表示パネルは以下のよ
うに作製した。ITO51付きのガラス製の基板1,2
0の表面に、ポリイミド配向膜15を形成し、これらの
基板1,20を同方向にラビング処理(パラレルラビン
グ)し、直径6μmのスペーサビーズ11を介して、液
晶がスプレイ配向するように貼り合わせた。ギャップ形
成のためのスペーサ分散時に、直径6μmのスペーサビ
ーズ11と混合して、核発生手段である球状の粒子とし
て直径3μmのシリカビーズ12を分散した。シリカビ
ーズ12の分散密度は、約200個/mm2 とした。こ
のシリカビーズ12の表面は、疎水性基を有するシラン
カップリング剤処理を行って、その表面で液晶が垂直配
向するように処理している。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A liquid crystal display panel according to a first embodiment of the present invention will be described with reference to FIGS. FIG.
FIG. 1A is a schematic sectional view of a liquid crystal display panel according to a first embodiment of the present invention. This liquid crystal display panel was manufactured as follows. Glass substrates 1 and 2 with ITO 51
A polyimide alignment film 15 is formed on the surface of the substrate 0, and the substrates 1 and 20 are rubbed (parallel rubbed) in the same direction, and are bonded via spacer beads 11 having a diameter of 6 μm so that the liquid crystal is spray-aligned. Was. At the time of dispersing the spacers for forming the gap, the beads were mixed with spacer beads 11 having a diameter of 6 μm, and silica beads 12 having a diameter of 3 μm were dispersed as spherical particles as nucleation means. The dispersion density of the silica beads 12 was about 200 beads / mm 2 . The surface of the silica beads 12 is treated with a silane coupling agent having a hydrophobic group so that the liquid crystal is vertically aligned on the surface.
【0024】図1(b)は、図1(a)を拡大して、シ
リカビーズ12の付近の液晶分子13の配向状態を模式
的に示したものである。カイラル剤を添加していない屈
折率異方性Δn=0.134、誘電異方性Δε=9.5
のフッ素系ネマチック液晶14を注入し、液晶14の等
方相転移温度以上の温度で1時間アニール処理後、室温
に冷却した。この状態では、液晶は、スプレイ配向状態
となっていた。FIG. 1 (b) is an enlarged view of FIG. 1 (a), schematically showing the alignment state of the liquid crystal molecules 13 near the silica beads 12. The refractive index anisotropy Δn = 0.134 and the dielectric anisotropy Δε = 9.5 without adding a chiral agent.
Of the liquid crystal 14 was annealed at a temperature higher than the isotropic phase transition temperature of the liquid crystal 14 for 1 hour, and then cooled to room temperature. In this state, the liquid crystal was in a splay alignment state.
【0025】なお、液晶14のプレチルト角を調べるた
めに、同様の配向処理をしたプレチルト評価用セルを作
製した。その測定結果より、ここで用いた配向膜15と
液晶14の組み合わせで得られるプレチルト角は約5°
であることがわかった。この液晶表示パネルの画素電極
と共通電極間に5Vの電圧を加えると、当初のスプレイ
配向領域がπツイスト配向へと、数秒以内に転移した。In order to examine the pretilt angle of the liquid crystal 14, a pretilt evaluation cell having the same orientation treatment was prepared. From the measurement results, the pretilt angle obtained by the combination of the alignment film 15 and the liquid crystal 14 used here was about 5 °.
It turned out to be. When a voltage of 5 V was applied between the pixel electrode and the common electrode of this liquid crystal display panel, the initial splay alignment region was shifted to π twist alignment within several seconds.
【0026】偏光顕微鏡下で電圧印加時の配向転移の様
子を観察すると、表面で液晶を垂直配向処理した3μm
直径のシリカビーズ12の部分から効果的に、非常に多
数のπツイスト配向の核が発生し、成長していく過程が
観察された。図2はこの発明の液晶表示パネルの電圧無
印加時における液晶配向状態を模式的に示したものであ
る。上下の一対の基板1,20における液晶分子13の
配向方位は図2(a)に示すように基板1,20に略平
行で、基板界面付近でのプレチルトは液晶がスプレイ配
向するように付与される。このような配向状態の液晶表
示パネルの基板1,20間に電界を加えると、図2
(b)に示すように液晶が立ち上がり、スプレイ歪みが
非常に大きくなって、図2(c)に示すベンド配向また
はπツイスト配向への転移が起こる。液晶分子13がか
なり立ち上がった状態では、ベンド配向とπツイスト配
向は光学的に非常に近い状態となり、ほぼ等価なものと
みなすことができる。したがって、ベンド配向へ転移す
るかπツイスト配向へ転移するかは、大きな問題でな
い。本発明者らの実験結果によれば、実際には、πツイ
スト配向への転移が起こる場合が多いと考えている。Observation of the state of the alignment transition when a voltage is applied under a polarizing microscope shows that the surface of the liquid crystal has a 3 μm
An extremely large number of π-twisted nuclei were effectively generated and grown from the portion of the silica beads 12 having a diameter, which was observed. FIG. 2 schematically shows a liquid crystal alignment state of the liquid crystal display panel of the present invention when no voltage is applied. The orientation of the liquid crystal molecules 13 in the pair of upper and lower substrates 1 and 20 is substantially parallel to the substrates 1 and 20 as shown in FIG. 2A, and the pretilt near the substrate interface is provided so that the liquid crystal is spray-aligned. You. When an electric field is applied between the substrates 1 and 20 of the liquid crystal display panel in such an alignment state, FIG.
As shown in FIG. 2B, the liquid crystal rises, the splay distortion becomes extremely large, and the transition to the bend alignment or π twist alignment shown in FIG. 2C occurs. When the liquid crystal molecules 13 rise considerably, the bend alignment and the π twist alignment are optically very close to each other, and can be regarded as substantially equivalent. Therefore, it does not matter whether the transition is to the bend orientation or the π twist orientation. According to the experimental results of the present inventors, it is considered that the transition to the π twist orientation often occurs in practice.
【0027】この第1の実施の形態によれば、電極1,
20間に電圧を印加すると、スプレイ配向の歪みが増大
し、スプレイン配向の中にベンド配向またはπツイスト
配向をもつ正常ドメインの核が発生し、安定なベンド配
向またはπツイスト配向への転移が起こる。このとき、
核発生手段のシリカビーズ12によりベンド配向または
πツイスト配向をもつ正常ドメインの核が多く発生し成
長し、短時間にドメインが全領域に広がる。このよう
に、核発生手段のシリカビーズ12により、配向ドメイ
ンの核発生密度が高くなり、転移が効率よく行なわれ、
全体に配向欠陥のない均一配向が可能となる。したがっ
て、高品位なOCB方式の液晶表示パネルを得ることが
できる。According to the first embodiment, the electrodes 1 and
When a voltage is applied between the two, the distortion of the splay alignment increases, a nucleus of a normal domain having a bend orientation or a π twist orientation is generated in the sprain orientation, and a transition to a stable bend orientation or a π twist orientation occurs. . At this time,
Many nuclei of normal domains having a bend orientation or a π twist orientation are generated and grown by the silica beads 12 of the nucleus generating means, and the domains are spread over the entire region in a short time. As described above, the nucleation density of the orientation domain is increased by the silica beads 12 of the nucleation means, and the transition is performed efficiently,
Uniform alignment without alignment defects can be achieved as a whole. Therefore, a high-quality OCB liquid crystal display panel can be obtained.
【0028】また核発生手段により、一対の基板1,2
0間の中央部の液晶を基板面に対して略垂直配向させる
ことにより、基板1,20間の中央部の液晶がハイブリ
ッド配向となり、電界印加により発生するベンド配向ま
たはπツイスト配向に近い配向状態を初期からとってい
ることになり、基板1,20間に電界を印加することに
より、ハイブリッド配向部分がさらに安定化し、ベンド
配向またはπツイスト配向のドメイン発生の核となっ
て、この部分の配向が周りに広がって行く。したがっ
て、全体の配向転移がより一層効率よく行なわれる。Further, the nucleus generating means makes the pair of substrates 1 and 2
The liquid crystal in the central portion between 0 and 0 is oriented substantially perpendicular to the substrate surface, so that the liquid crystal in the central portion between the substrates 1 and 20 has a hybrid orientation, and is in an alignment state close to bend alignment or π twist alignment generated by application of an electric field. By applying an electric field between the substrates 1 and 20, the hybrid alignment portion is further stabilized and becomes a nucleus of generation of a bend alignment or a π twist alignment domain. Spread around. Therefore, the whole orientation transition is performed more efficiently.
【0029】さらに、核発生手段としてのシリカビーズ
12が、一対の基板1,20間のギャップよりも粒径が
小さく、その表面が液晶14の液晶分子13を垂直配向
させる性質を有する粒子であり、一対の基板間に存在す
るので、液晶14内の全体に分散させやすく、均一な配
向が得やすく、また球状の粒子であるため、粒径の制御
性が優れる。Further, the silica beads 12 as nucleation means are particles having a particle diameter smaller than the gap between the pair of substrates 1 and 20 and having a surface whose liquid crystal molecules 13 of the liquid crystal 14 are vertically aligned. Since it exists between the pair of substrates, it is easy to be dispersed throughout the liquid crystal 14, uniform alignment is easily obtained, and since the particles are spherical, the controllability of the particle diameter is excellent.
【0030】第1の実施の形態の比較例をつぎに示す。
すなわち、表面を垂直配向処理した直径3μmのシリカ
ビーズ12を分散しなかった以外は、第1の実施の形態
と全く同様に形成した液晶表示セルに、5Vの電圧を印
加した。スプレイTN配向からπツイスト配向への転移
は起こったが、転移には数十秒を要した。また偏光顕微
鏡下で電圧印加時の配向転移の様子を観察すると、転移
の核発生は、ごく一部のスペーサビーズのみから起こっ
ており、非常に核発生効率が悪いことがわかった。A comparative example of the first embodiment will be described below.
That is, a voltage of 5 V was applied to a liquid crystal display cell formed in exactly the same manner as in the first embodiment except that the silica beads 12 having a diameter of 3 μm whose surface was vertically aligned were not dispersed. The transition from the spray TN orientation to the π twist orientation occurred, but the transition took several tens of seconds. In addition, when observing the state of orientation transition under voltage application under a polarizing microscope, it was found that nucleation of the transition occurred only from a small portion of the spacer beads, and the nucleation efficiency was extremely poor.
【0031】なお、ベンド配向またはπツイスト配向を
用いる液晶表示パネルの電圧−透過率特性は急峻性が良
くなく、時分割駆動には不向きであるが、各画素毎に能
動素子を設けたアクティブマトリクスパネルとして用い
ることが好ましい。また、第1の実施の形態では、一対
の基板1,20間のギャップよりも厚みが小さく、その
表面が液晶14を垂直配向させる性質を有する粒子とし
て球状のビーズを用いたが、この発明において、厚みが
ギャップ以下の粒子であり、ギャップ不良を引き起こさ
ないものであれば、立方体、長方体等の非球状の粒子で
も使用可能である。ただし、球状のビーズは、ギャップ
不良を引き起こす可能性が低く、分散性にも優れている
ため、とくに好ましい。The voltage-transmittance characteristic of a liquid crystal display panel using bend alignment or π twist alignment is not good in steepness and is not suitable for time-division driving. However, an active matrix in which an active element is provided for each pixel is provided. It is preferable to use it as a panel. Further, in the first embodiment, spherical beads are used as particles having a thickness smaller than the gap between the pair of substrates 1 and 20 and the surface of which has the property of vertically aligning the liquid crystal 14. Non-spherical particles such as cubic and rectangular particles can also be used as long as the particles have a thickness equal to or less than the gap and do not cause a gap defect. However, spherical beads are particularly preferable because they are unlikely to cause gap defects and have excellent dispersibility.
【0032】また粒子の厚み(粒径)は、基板1,20
間のギャップすなわちセルギャップ以下であれば良い
が、配向転移促進効果を高めるために、セルギャップの
半分程度とすることが好ましい。またこの発明の第1の
実施の形態に用いる配向膜材料としては、安定性にすぐ
れたポリイミドまたはポリアミック酸がとくに好ましい
が、配向膜15の材質はこれらに限定するものではな
い。配向処理はラビング処理によるのが一般的である
が、ラビング処理法に限定するものではなく、斜方蒸着
法や偏光UV光照射などによっても行うことが可能であ
る。The thickness (particle size) of the particles is
The gap may be equal to or smaller than the cell gap, that is, the cell gap. However, in order to enhance the effect of promoting the orientation transition, the gap is preferably set to about half of the cell gap. As the alignment film material used in the first embodiment of the present invention, polyimide or polyamic acid having excellent stability is particularly preferable, but the material of the alignment film 15 is not limited to these. The alignment treatment is generally performed by a rubbing treatment, but is not limited to the rubbing treatment method, and can be performed by an oblique evaporation method, polarized UV light irradiation, or the like.
【0033】この発明の第2の実施の形態を図3により
説明する。図3はこの発明の第2の実施の形態の液晶表
示パネルの液晶配向状態を模式的に示した断面図であ
る。液晶表示パネルは以下のように作製した。ITO5
1付きのガラス製の基板1,20の表面に、ポリイミド
配向膜15を形成し、これらの基板1,20を同方向に
ラビング処理(パラレルラビング)し、直径6μmのス
ペーサビーズ(図示せず)を介して、液晶分子13がス
プレイ配向するように貼り合わせた。第2の実施の形態
では、以下のようにして表面が垂直配向性の凸部41を
形成した。ポリイミド配向膜15上に液晶分子13を垂
直配向させる性質をもつアクリル系の膜を約3μmの厚
みに積層形成し、フォトリソグラフ工程により、一辺1
0μmの正方形状に形成した。この部分の表面では、液
晶分子13は垂直配向することになる。このような領域
を、9個/mm2 の密度で形成した。A second embodiment of the present invention will be described with reference to FIG. FIG. 3 is a sectional view schematically showing a liquid crystal alignment state of a liquid crystal display panel according to a second embodiment of the present invention. The liquid crystal display panel was manufactured as follows. ITO5
A polyimide alignment film 15 is formed on the surfaces of the glass substrates 1 and 20 with 1, and the substrates 1 and 20 are rubbed (parallel rubbed) in the same direction to form spacer beads (not shown) having a diameter of 6 μm. , So that the liquid crystal molecules 13 were splay-aligned. In the second embodiment, the convex portion 41 having a vertically oriented surface is formed as follows. An acrylic film having a property of vertically aligning the liquid crystal molecules 13 is formed on the polyimide alignment film 15 to a thickness of about 3 μm.
It was formed in a square shape of 0 μm. On the surface of this portion, the liquid crystal molecules 13 are vertically aligned. Such regions were formed at a density of 9 pieces / mm 2 .
【0034】カイラル剤を添加していない屈折率異方性
Δn=0.134、誘電異方性Δε=9.5のフッ素系
ネマチック液晶を基板1,20間に注入し、液晶14の
等方相転移温度以上の温度で1時間アニール処理後、室
温に冷却した。この状態では、液晶14はスプレイ配向
状態となっていた。なお、液晶14のプレチルトを調べ
るために、同様の配向処理をしたプレチルト評価用セル
を作製した。その測定結果より、ここで用いた配向膜1
5と液晶の組み合わせで得られるプレチルト角は約5°
であることがわかった。A nematic liquid crystal having a refractive index anisotropy Δn = 0.134 and a dielectric anisotropy Δε = 9.5 to which no chiral agent is added is injected between the substrates 1 and 20 and the liquid crystal 14 isotropically. After annealing for 1 hour at a temperature equal to or higher than the phase transition temperature, it was cooled to room temperature. In this state, the liquid crystal 14 was in the splay alignment state. In order to check the pretilt of the liquid crystal 14, a pretilt evaluation cell having the same orientation treatment was prepared. From the measurement results, the alignment film 1 used here was used.
The pretilt angle obtained by the combination of 5 and liquid crystal is about 5 °
It turned out to be.
【0035】この液晶表示パネルの画素電極と共通電極
間に5Vの電圧を加えると、当初のスプレイ配向領域が
πツイスト配向へと、数秒以内に転移した。偏光顕微鏡
下で電圧印加時の配向転移の様子を観察すると、垂直配
向性の凸部41から効果的に、核が発生し、成長してい
く過程が観察された。なお、凸部41の厚みは、基板
1,20間のギャップ以下であれば良いが、配向転移促
進効果を高めるために、セルギャップの半分程度とする
ことが好ましい。When a voltage of 5 V was applied between the pixel electrode and the common electrode of the liquid crystal display panel, the initial splay alignment region was shifted to π twist alignment within several seconds. When observing the state of the orientation transition at the time of applying a voltage under a polarizing microscope, a process in which nuclei are effectively generated and grown from the vertically oriented convex portions 41 was observed. The thickness of the protrusion 41 may be equal to or less than the gap between the substrates 1 and 20, but is preferably about half the cell gap in order to enhance the effect of promoting the orientation transition.
【0036】この発明の第3の実施の形態を図4および
図5により説明する。図4および図5はこの発明の第3
の実施の形態の液晶表示パネルの1画素の平面図および
断面図である。実際のパネルは、対角26cmの縦64
0(×RGBトリオ)×横480の画素で構成されてい
る。図5は図4の一点鎖線部22の断面図である。下基
板1上には、ITOの画素電極2および、画素電極2を
駆動する能動素子である薄膜トランジスタ3が形成して
ある。上基板20上には、クロムからなるブラックマト
リクス遮光層4とカラーフィルタ5、ITOの共通電極
7を形成している。遮光層4は開口部以外をすべて覆っ
ている。それぞれの電極2,7上には可溶性のポリイミ
ドからなる配向膜15を塗布した。配向処理はラビング
によって行った。それぞれの基板1,20のラビング方
向は、下基板1のラビング方向を点線矢印Aで、上基板
20のラビング方向を実線矢印Bで示した。A third embodiment of the present invention will be described with reference to FIGS. 4 and 5 show a third embodiment of the present invention.
It is a top view and a sectional view of one pixel of a liquid crystal display panel of an embodiment. The actual panel is 64 cm long with a diagonal of 26 cm.
It is composed of 0 (× RGB trio) × 480 horizontal pixels. FIG. 5 is a sectional view of the dashed-dotted line portion 22 in FIG. On the lower substrate 1, a pixel electrode 2 of ITO and a thin film transistor 3 as an active element for driving the pixel electrode 2 are formed. On the upper substrate 20, a black matrix light shielding layer 4 made of chromium, a color filter 5, and a common electrode 7 of ITO are formed. The light shielding layer 4 covers all except the opening. On each of the electrodes 2 and 7, an alignment film 15 made of soluble polyimide was applied. The alignment treatment was performed by rubbing. As for the rubbing directions of the substrates 1 and 20, the rubbing direction of the lower substrate 1 is indicated by a dotted arrow A, and the rubbing direction of the upper substrate 20 is indicated by a solid arrow B.
【0037】直径8ミクロンの球形スペーサと混合し
て、直径4μmのビーズ31を分散した。8μmビーズ
と4μmビーズの分散密度は、それぞれ約200個/m
m2 と約400個/mm2 とした。4μmのビーズ31
の表面は、疎水性基を有するシランカップリング剤処理
を行って、その表面で液晶が垂直配向するように処理し
たものである。この分散密度では、RGB各1画素あた
りに平均10個以上の4μmビーズが存在する計算とな
り、実際ほぼ全ての画素で、4μmビーズの存在が確認
できた。なお、図4および図5では、8μm径のスペー
サビーズは省略してある。The beads 31 having a diameter of 4 μm were dispersed by mixing with a spherical spacer having a diameter of 8 μm. The dispersion density of the 8 μm beads and the 4 μm beads is about 200 beads / m2, respectively.
m 2 and about 400 pieces / mm 2 . 4 μm beads 31
Is treated with a silane coupling agent having a hydrophobic group so that the liquid crystal is vertically aligned on the surface. With this dispersion density, the calculation was such that an average of 10 or more 4 μm beads existed for each pixel of each of RGB, and the existence of 4 μm beads could be confirmed in almost all pixels. 4 and 5, the spacer beads having a diameter of 8 μm are omitted.
【0038】カイラル剤を添加していない屈折率異方性
Δn=0.134、誘電異方性Δε=9.5のフッ素系
ネマチック液晶を注入し、液晶14の等方相転移温度以
上の温度で1時間アニール処理後、室温に冷却した。こ
の状態では、液晶は、スプレイ配向状態となっていた。
なお液晶14のプレチルトを調べるために、同様の配向
処理をしたプレチルト評価用セルを作製した。その測定
結果より、ここで用いた配向膜15と液晶14の組み合
わせで得られるプレチルト角は約5°であることがわか
った。A nematic liquid crystal having a refractive index anisotropy Δn = 0.134 and a dielectric anisotropy Δε = 9.5 to which no chiral agent is added is injected, and the temperature is higher than the isotropic phase transition temperature of the liquid crystal 14. And then cooled to room temperature. In this state, the liquid crystal was in a splay alignment state.
In order to check the pretilt of the liquid crystal 14, a pretilt evaluation cell having the same alignment treatment was prepared. From the measurement results, it was found that the pretilt angle obtained with the combination of the alignment film 15 and the liquid crystal 14 used here was about 5 °.
【0039】この液晶表示パネルの画素電極2と共通電
極7間に5Vの電圧を加えると、当初存在していたスプ
レイ配向領域がπツイスト配向またはベンド配向へと転
移した。πツイスト配向かベンド配向かの区別は、明確
にはできなかった。偏光顕微鏡下で電圧印加時の配向転
移の様子を観察すると、4μmのビーズ31から効果的
にπツイスト配向の核が発生し、成長していく過程が観
察された。5Vの電圧を1分間加えた後に配向状態を調
べたところ、配向欠陥はほとんどなく、ほぼ全ての画素
でπツイスト配向またはベンド配向が得られた。無作為
に約1000画素をサンプリングして調べたところ、ス
プレイ配向が残存する配向欠陥の画素は0.7%であっ
た。これらの画素では、表面が垂直配向性の4μmのビ
ーズ31が存在しなかったために、配向転移が起こらな
かったと推定された。When a voltage of 5 V was applied between the pixel electrode 2 and the common electrode 7 of the liquid crystal display panel, the splay alignment region, which had originally existed, changed to the π twist alignment or the bend alignment. The distinction between the π twist orientation and the bend orientation could not be clarified. When observing the state of the orientation transition at the time of applying a voltage under a polarizing microscope, a process in which nuclei having a π twist orientation were effectively generated from the 4 μm beads 31 and grown were observed. When the alignment state was examined after applying a voltage of 5 V for 1 minute, almost no alignment defects were found, and π twist alignment or bend alignment was obtained in almost all pixels. When approximately 1000 pixels were randomly sampled and examined, 0.7% of the pixels had alignment defects in which splay alignment remained. In these pixels, it was presumed that the alignment transition did not occur because there was no 4 μm beads 31 whose surface was vertically oriented.
【0040】この第3の実施の形態の比較例2を以下に
示す。すなわち、表面が垂直配向性の4μmビーズを分
散しなかった以外は、第3の実施の形態と同様にして液
晶表示パネルを作製した。アニール後の液晶配向状態
は、第1の実施の形態と同様に、スプレイ配向となって
いた。この液晶表示パネルの画素電極2と共通電極7間
に5Vの電圧を加え、1分後に配向状態を調べたとこ
ろ、スプレイTN配向領域が多数残存していた。無作為
に約1000画素をサンプリングして調べたところ、配
向欠陥が存在する画素は54%に達した。A comparative example 2 of the third embodiment will be described below. That is, a liquid crystal display panel was manufactured in the same manner as in the third embodiment except that 4 μm beads having a vertically oriented surface were not dispersed. The liquid crystal alignment state after annealing was splay alignment, as in the first embodiment. When a voltage of 5 V was applied between the pixel electrode 2 and the common electrode 7 of this liquid crystal display panel, and one minute later, the alignment state was examined. As a result, a large number of spray TN alignment regions remained. When about 1000 pixels were randomly sampled and examined, 54% of the pixels had alignment defects.
【0041】この発明の第4の実施の形態を図6および
図7により説明する。図6および図7はこの発明の第4
の実施の形態の液晶表示パネルの1画素の平面図および
断面図である。実際のパネルは、対角26cmの縦64
0(×RGBトリオ)×横480の画素で構成されてい
る。図7は図6の一点鎖線部23の断面図である。下基
板1上には、ITOの画素電極2および、画素電極2を
駆動する薄膜トランジスタ3が形成してある。上基板2
0上には、クロムからなるブラックマトリクス遮光層4
とカラーフィルタ5、ITOの共通電極7を形成してい
る。遮光層4は開口部以外をすべて覆っている。そし
て、下基板1の配向膜15上には、表面が垂直配向性の
高さ3ミクロンで1辺10μmの正方形平面形状をもつ
凸部32を形成してある。A fourth embodiment of the present invention will be described with reference to FIGS. 6 and 7 show a fourth embodiment of the present invention.
It is a top view and a sectional view of one pixel of a liquid crystal display panel of an embodiment. The actual panel is 64 cm long with a diagonal of 26 cm.
It is composed of 0 (× RGB trio) × 480 horizontal pixels. FIG. 7 is a sectional view of the dashed-dotted line portion 23 in FIG. On the lower substrate 1, a pixel electrode 2 of ITO and a thin film transistor 3 for driving the pixel electrode 2 are formed. Upper substrate 2
0, a black matrix light-shielding layer 4 made of chromium
And a color filter 5 and a common electrode 7 of ITO. The light shielding layer 4 covers all except the opening. On the alignment film 15 of the lower substrate 1, a projection 32 having a square planar shape with a vertical orientation of 3 μm and a side length of 10 μm is formed.
【0042】配向膜15は可溶性のポリイミドで形成
し、配向処理はラビングによって行った。それぞれの基
板1,20のラビング方向は、下基板1のラビング方向
を点線矢印Aで、上基板20のラビング方向を実線矢印
Bで示した。直径7ミクロンの球形スペーサを散布し
て、セル厚約7ミクロンの空セルを組み立てた。そし
て、カイラル剤を添加していない屈折率異方性Δn=
0.134、誘電異方性Δε=9.5のフッ素系ネマチ
ック液晶を注入し、液晶14の等方相転移温度以上の温
度で1時間アニール処理後、室温に冷却した。この状態
では、液晶14は、スプレイ配向状態となっていた。The alignment film 15 was formed of a soluble polyimide, and the alignment was performed by rubbing. As for the rubbing directions of the substrates 1 and 20, the rubbing direction of the lower substrate 1 is indicated by a dotted arrow A, and the rubbing direction of the upper substrate 20 is indicated by a solid arrow B. An empty cell having a cell thickness of about 7 microns was assembled by spraying a spherical spacer having a diameter of 7 microns. Then, the refractive index anisotropy Δn = without adding the chiral agent
A fluorine-based nematic liquid crystal having 0.134 and dielectric anisotropy Δε = 9.5 was injected, annealed at a temperature higher than the isotropic phase transition temperature of the liquid crystal 14 for 1 hour, and then cooled to room temperature. In this state, the liquid crystal 14 was in the splay alignment state.
【0043】なお液晶14のプレチルトを調べるため
に、同様の配向処理をしたプレチルト評価用セルを作製
した。その測定結果より、ここで用いた配向膜と液晶の
組み合わせで得られるプレチルト角は約5°であること
がわかった。この液晶表示パネルの画素電極2と共通電
極7間に5Vの電圧を加えると、当初存在していたスプ
レイ配向領域がπツイスト配向またはベンド配向へと転
移した。πツイスト配向かベンド配向かの区別は、明確
にはできなかった。In order to check the pretilt of the liquid crystal 14, a pretilt evaluation cell having the same orientation treatment was prepared. From the measurement results, it was found that the pretilt angle obtained by combining the alignment film and the liquid crystal used here was about 5 °. When a voltage of 5 V was applied between the pixel electrode 2 and the common electrode 7 of the liquid crystal display panel, the initially existing splay alignment region was changed to π twist alignment or bend alignment. The distinction between the π twist orientation and the bend orientation could not be clarified.
【0044】偏光顕微鏡下で電圧印加時の配向転移の様
子を観察すると、垂直配向性の凸部32から効果的にπ
ツイスト配向の核が発生し、成長していく過程が観察さ
れた。また5Vの電圧を1分間加えた後に配向状態を調
べたところ、配向欠陥はまったくなく、全ての画素でπ
ツイスト配向またはベンド配向が得られた。この第4の
実施の形態では垂直配向性の凸部32を下基板1の画素
電極2上に形成したが、上基板20の共通電極7上、ま
たは両方の基板1,20に形成しても同様な効果が得ら
れる。When observing the state of the orientation transition when a voltage is applied under a polarizing microscope, it can be seen that the π effectively disappears from the vertically oriented convex portions 32.
The process of generating and growing twist-oriented nuclei was observed. In addition, when the alignment state was examined after applying a voltage of 5 V for 1 minute, there was no alignment defect, and π
Twisted or bend orientation was obtained. In the fourth embodiment, the vertically oriented convex portions 32 are formed on the pixel electrodes 2 of the lower substrate 1, but may be formed on the common electrode 7 of the upper substrate 20 or on both substrates 1 and 20. Similar effects can be obtained.
【0045】この発明の第5の実施の形態を図8および
図9により説明する。図8および図9はこの発明の第5
の実施の形態の液晶表示パネルの1画素の平面図および
断面図である。実際のパネルは、対角26cmの縦64
0(×RGBトリオ)×横480の画素で構成されてい
る。図9は図8の一点鎖線部24の断面図である。この
第5の実施の形態では、ITOの画素電極2が、配線上
に形成した透明誘電体膜16上に形成されている。画素
電極2はソース配線の上に、ソース配線とオーバーラッ
プする形で構成されている。それ以外は第3の実施の形
態とまったく同様の構成で、表面が垂直配向性の直径4
μmのビーズ33を分散してある。A fifth embodiment of the present invention will be described with reference to FIGS. 8 and 9 show a fifth embodiment of the present invention.
It is a top view and a sectional view of one pixel of a liquid crystal display panel of an embodiment. The actual panel is 64 cm long with a diagonal of 26 cm.
It is composed of 0 (× RGB trio) × 480 horizontal pixels. FIG. 9 is a sectional view of the dashed-dotted line portion 24 in FIG. In the fifth embodiment, an ITO pixel electrode 2 is formed on a transparent dielectric film 16 formed on a wiring. The pixel electrode 2 is formed on the source wiring so as to overlap with the source wiring. Otherwise, the configuration is exactly the same as that of the third embodiment except that the surface has a vertical orientation of 4 mm.
μm beads 33 are dispersed.
【0046】この画素電極2−ソース配線をオーバーラ
ップする構成を有する手段により、ソース配線と画素電
極2間に発生する横電界が弱まり、液晶分子を立たせる
方向の縦電界を、発生したベンド配向またはπツイスト
配向のドメインが成長できるしきい値電界以上に大きく
することができる。この液晶表示パネルの画素電極2と
共通電極7間に5Vの電圧を加えると、当初存在してい
たスプレイ配向領域がπツイスト配向またはベンド配向
へと転移した。πツイスト配向かベンド配向かの区別
は、明確にはできなかった。By means having a configuration in which the pixel electrode 2 and the source line overlap each other, the horizontal electric field generated between the source line and the pixel electrode 2 is weakened, and the vertical electric field in the direction in which the liquid crystal molecules are made to rise is generated. Alternatively, it can be made larger than the threshold electric field at which a domain having a π twist orientation can grow. When a voltage of 5 V was applied between the pixel electrode 2 and the common electrode 7 of the liquid crystal display panel, the initially existing splay alignment region was changed to π twist alignment or bend alignment. The distinction between the π twist orientation and the bend orientation could not be clarified.
【0047】偏光顕微鏡下で電圧印加時の配向転移の様
子を観察すると、4μmのビーズ33から効果的にπツ
イスト配向の核が発生し、成長していく過程が観察され
た。また5Vの電圧を1分間加えた後に配向状態を調べ
たところ、配向欠陥はまったくなく、全ての画素でπツ
イスト配向またはベンド配向が得られた。なお、この第
5の実施の形態では、表面が垂直配向性の4μmビーズ
33が存在しない画素でも、ベンド配向またはπツイス
ト配向が得られた。これは、この第5の実施の形態で
は、ドメインが配線を越えて、隣の画素にまで成長でき
るためである。When observing the state of the orientation transition when a voltage was applied under a polarizing microscope, it was observed that nuclei having a π twist orientation were effectively generated from the 4 μm beads 33 and grown. When the alignment state was examined after applying a voltage of 5 V for 1 minute, no alignment defect was found, and π twist alignment or bend alignment was obtained in all the pixels. In the fifth embodiment, a bend alignment or a π twist alignment was obtained even in a pixel in which the 4 μm beads 33 having a vertically oriented surface did not exist. This is because in the fifth embodiment, the domain can grow to the next pixel beyond the wiring.
【0048】また、第5の実施の形態の液晶表示パネル
に初期的に20Vの電圧を1秒間印加すると、全画素の
配向転移が確認できた。このように、液晶に通常の表示
状態で加えられる駆動電圧(5V程度)すなわち電界よ
りも、大きな電圧(電界)を印加すると、配向転移が確
実に、短時間で可能であることが実証された。なお、ベ
ンド配向またはπツイスト配向は、あるしきい値以下の
電界強度では、再びスプレイ配向へ戻ってしまうため、
配向を保持するための一定の電界は、表示中常に加えて
おくことが好ましいのはいうまでもない。When a voltage of 20 V was initially applied to the liquid crystal display panel of the fifth embodiment for 1 second, alignment transition of all pixels could be confirmed. As described above, it has been demonstrated that when a driving voltage (approximately 5 V) applied to a liquid crystal in a normal display state, that is, a voltage (electric field) larger than an electric field, is applied, alignment transition can be reliably performed in a short time. . Note that the bend orientation or the π twist orientation returns to the splay orientation again at an electric field intensity below a certain threshold,
It is needless to say that it is preferable that a constant electric field for maintaining the orientation is always applied during the display.
【0049】また、プレチルト角が大きいほど、ベンド
配向またはπツイスト配向ドメインの成長速度は大き
く、配向を保持するための電界強度は小さくてよい。検
討の結果、液晶のプレチルト角は3゜以上が好適である
ことがわかった。とくに全ての領域で3°以上に設定す
るのが好ましい。また、この発明において、全ての画素
に対応して、少なくとも1箇所以上の核発生手段を設け
ているのが好ましい。The larger the pretilt angle, the higher the growth rate of the bend or π twist orientation domain, and the smaller the electric field strength for maintaining the orientation. As a result of the study, it was found that the pretilt angle of the liquid crystal was preferably 3 ° or more. In particular, it is preferable to set 3 ° or more in all the regions. Further, in the present invention, it is preferable that at least one or more nucleus generating means is provided for every pixel.
【0050】また、この発明に用いられる液晶材料は、
フッ素系の材料に限定するものではなく、シアノ系の液
晶など誘電率異方性が正の材料系であれば、使用が可能
である。しかし、アクティブマトリクス型液晶表示パネ
ル用には、電圧保持率が高く、信頼性に優れたフッ素系
の材料を主成分とする液晶組成物を用いることが、とく
に好ましい。The liquid crystal material used in the present invention is:
The material is not limited to a fluorine-based material, and any material having a positive dielectric anisotropy, such as a cyano-based liquid crystal, can be used. However, for an active matrix type liquid crystal display panel, it is particularly preferable to use a liquid crystal composition containing a fluorine-based material having a high voltage holding ratio and excellent reliability as a main component.
【0051】[0051]
【発明の効果】請求項1記載の液晶表示パネルによれ
ば、電極間に電圧を印加すると、スプレイ配向の歪みが
増大し、スプレイン配向の中にベンド配向またはπツイ
スト配向をもつ正常ドメインの核が発生し、安定なベン
ド配向またはπツイスト配向への転移が起こる。このと
き、核発生手段によりベンド配向またはπツイスト配向
をもつ正常ドメインの核が多く発生し成長し、短時間に
ドメインが全領域に広がる。このように、核発生手段に
より、配向ドメインの核発生密度が高くなり、転移が効
率よく行なわれ、全体に配向欠陥のない均一配向が可能
となる。したがって、高品位なOCB方式の液晶表示パ
ネルを得ることができる。According to the liquid crystal display panel of the first aspect, when a voltage is applied between the electrodes, the distortion of the splay alignment increases, and the nucleus of the normal domain having a bend alignment or a π twist alignment in the sprain alignment. Occurs, and a transition to stable bend orientation or π twist orientation occurs. At this time, many nuclei of normal domains having bend orientation or π twist orientation are generated and grown by the nucleus generating means, and the domains are spread over the entire region in a short time. As described above, the nucleus generating means increases the nucleus generation density of the alignment domain, efficiently performs the transition, and enables uniform alignment without any alignment defects. Therefore, a high-quality OCB liquid crystal display panel can be obtained.
【0052】請求項2記載の液晶表示パネルによれば、
請求項1の効果のほか、基板間の中央部の液晶がハイブ
リッド配向となり、電界印加により発生するベンド配向
またはπツイスト配向に近い配向状態を初期からとって
いることになり、基板間に電界を印加することにより、
ハイブリッド配向部分がさらに安定化し、ベンド配向ま
たはπツイスト配向のドメイン発生の核となって、この
部分の配向が周りに広がって行く。したがって、全体の
配向転移がより一層効率よく行なわれる。According to the liquid crystal display panel of the second aspect,
In addition to the effect of the first aspect, the liquid crystal in the central portion between the substrates has a hybrid orientation, and the liquid crystal has an alignment state close to bend alignment or π twist alignment generated by application of an electric field from an initial stage. By applying
The hybrid orientation portion is further stabilized, and serves as a nucleus for generation of a bend orientation or π twist orientation domain, and the orientation of this portion spreads around. Therefore, the whole orientation transition is performed more efficiently.
【0053】請求項3記載の液晶表示パネルによれば、
請求項2の効果のほか、液晶内の全体に分散させやす
く、均一な配向が得やすい。請求項4記載の液晶表示パ
ネルによれば、請求項2の効果のほか、粒径の制御性が
優れる。請求項5記載の液晶表示パネルによれば、請求
項2の効果のほか、凸部の大きさを制御しやすい。According to the liquid crystal display panel of the third aspect,
In addition to the effect of the second aspect, it is easy to disperse the entire liquid crystal and uniform alignment is easily obtained. According to the liquid crystal display panel of the fourth aspect, in addition to the effect of the second aspect, the controllability of the particle diameter is excellent. According to the liquid crystal display panel of the fifth aspect, in addition to the effect of the second aspect, the size of the convex portion can be easily controlled.
【0054】請求項6記載の液晶表示パネルによれば、
請求項2の効果のほか、ベンド配向またはπツイスト配
向のドメインの成長速度を大きくできるとともに、配向
を保持するための電界強度は小さくすることができる。
すなわち、スプレイ配向とのエネルギー差を大きくし
て、ベンド配向またはπツイスト配向ドメインを成長し
やすくすることができる。According to the liquid crystal display panel of the sixth aspect,
In addition to the effect of the second aspect, the growth rate of the domain of the bend orientation or the π twist orientation can be increased, and the electric field strength for maintaining the orientation can be decreased.
That is, the energy difference from the splay alignment can be increased to facilitate the growth of the bend alignment or π twist alignment domain.
【0055】請求項7記載の液晶表示パネルによれば、
請求項2と同効果がある。請求項8記載の液晶表示パネ
ルによれば、請求項2の効果のほか、配向の安定性に優
れる。請求項9記載の液晶表示パネルによれば、請求項
2と同効果がある。請求項10記載の液晶表示パネルに
よれば、請求項9の効果のほか、アクティブマトリクス
液晶表示パネルの全ての画素で、確実にスプレイ配向か
らベンド配向またはπツイスト配向への転移を起こさ
せ、配向不良による表示欠陥をなくすることができる。According to the liquid crystal display panel of the seventh aspect,
This has the same effect as the second aspect. According to the liquid crystal display panel of the eighth aspect, in addition to the effect of the second aspect, the alignment stability is excellent. According to the liquid crystal display panel of the ninth aspect, the same effect as that of the second aspect is obtained. According to the liquid crystal display panel of the tenth aspect, in addition to the effect of the ninth aspect, in all the pixels of the active matrix liquid crystal display panel, the transition from the splay alignment to the bend alignment or the π twist alignment is caused to occur, and the alignment is performed. Display defects due to defects can be eliminated.
【0056】請求項11記載の液晶表示パネルによれ
ば、請求項9の効果のほか、全画素に核発生手段が存在
しない場合でも、全画素の配向転移が可能になる。請求
項12記載の液晶表示パネルによれば、請求項1の効果
のほか、より確実に配向転移を起こすことができる。According to the liquid crystal display panel of the eleventh aspect, in addition to the effect of the ninth aspect, even if the nucleus generating means does not exist in all the pixels, the alignment transition of all the pixels can be performed. According to the liquid crystal display panel of the twelfth aspect, in addition to the effect of the first aspect, the alignment transition can be more reliably caused.
【図1】この発明の第1の実施の形態の液晶表示パネル
を示し、(a)はその断面模式図、(b)は液晶表示パ
ネルの液晶配向状態を模式的に示した断面図である。1A and 1B show a liquid crystal display panel according to a first embodiment of the present invention, wherein FIG. 1A is a schematic cross-sectional view thereof, and FIG. 1B is a cross-sectional view schematically showing a liquid crystal alignment state of the liquid crystal display panel. .
【図2】第1の実施の形態に基づくスプレイ配向からベ
ンド配向への転移をあらわす模式図である。FIG. 2 is a schematic diagram showing a transition from a splay alignment to a bend alignment based on the first embodiment.
【図3】第2の実施の形態の液晶表示パネルの液晶配向
状態を模式的に示した断面図である。FIG. 3 is a cross-sectional view schematically illustrating a liquid crystal alignment state of a liquid crystal display panel according to a second embodiment.
【図4】第3の実施の形態の液晶表示パネルの部分拡大
平面図である。FIG. 4 is a partially enlarged plan view of a liquid crystal display panel according to a third embodiment.
【図5】図4における一点鎖線22に沿った矢印方向の
断面図である。FIG. 5 is a cross-sectional view taken along an alternate long and short dash line 22 in FIG.
【図6】第4の実施の形態の液晶表示パネルの部分拡大
平面図である。FIG. 6 is a partially enlarged plan view of a liquid crystal display panel according to a fourth embodiment.
【図7】図6における一点鎖線23に沿った矢印方向の
断面図である。FIG. 7 is a cross-sectional view taken along a dashed line 23 in FIG.
【図8】第5の実施の形態の液晶表示パネルの部分拡大
平面図である。FIG. 8 is a partially enlarged plan view of a liquid crystal display panel according to a fifth embodiment.
【図9】図8における一点鎖線24に沿った矢印方向の
断面図である。FIG. 9 is a cross-sectional view taken along a dashed line 24 in FIG.
1 下基板 2 画素電極 3 薄膜トランジスタ 5 カラーフィルタ 7 共通電極 12 核発生手段である表面が垂直配向性のビーズ 13 液晶分子 14 液晶 15 配向膜 20 上基板 31 表面が垂直配向性のビーズ 32 表面が垂直配向性の凸部 33 表面が垂直配向性のビーズ 41 表面が垂直配向性の凸部 DESCRIPTION OF SYMBOLS 1 Lower substrate 2 Pixel electrode 3 Thin film transistor 5 Color filter 7 Common electrode 12 Beads with nucleus generating means whose surface is vertically aligned 13 Liquid crystal molecules 14 Liquid crystal 15 Alignment film 20 Upper substrate 31 Beads whose surface is vertically aligned 32 Surface is vertical Orientation convexity 33 Surface-beads with vertical orientation 41 Surface with vertical orientational protrusions
Claims (12)
基板の間に介在されて前記電極間に電圧を印加すること
によりスプレイ配向からπツイスト配向またはベンド配
向に転移する液晶と、前記スプレイ配向からπツイスト
配向またはベンド配向への転移を促進する核発生手段と
を備えた液晶表示パネル。1. A pair of substrates having electrodes, a liquid crystal interposed between the pair of substrates and transitioning from a splay alignment to a π twist alignment or a bend alignment by applying a voltage between the electrodes; A liquid crystal display panel having nucleation means for promoting a transition from orientation to π twist orientation or bend orientation.
液晶を基板面に対して略垂直配向するものである請求項
1記載の液晶表示パネル。2. The liquid crystal display panel according to claim 1, wherein the nucleus generating means aligns the liquid crystal at the center between the pair of substrates substantially perpendicularly to the substrate surface.
よりも厚みが小さく、その表面が液晶を垂直配向させる
性質を有する粒子であり、前記一対の基板間に存在して
いる請求項2記載の液晶表示パネル。3. The nucleus generating means is a particle having a thickness smaller than a gap between a pair of substrates and a surface of which has a property of vertically aligning liquid crystal, and is present between the pair of substrates. Liquid crystal display panel as described.
よりも粒径が小さく、その表面が液晶を垂直配向させる
性質を有する球状の粒子であり、前記一対の基板間に存
在している請求項2記載の液晶表示パネル。4. The nucleus generating means is a spherical particle having a particle diameter smaller than a gap between a pair of substrates and a surface of which has a property of vertically aligning liquid crystal, and is present between the pair of substrates. The liquid crystal display panel according to claim 2.
よりも厚みが小さく、その表面が液晶を垂直配向させる
性質を有する凸部であり、前記基板上に形成した請求項
2記載の液晶表示パネル。5. The liquid crystal according to claim 2, wherein the nucleation means is a convex portion having a thickness smaller than a gap between the pair of substrates and a surface having a property of vertically aligning the liquid crystal, and formed on the substrate. Display panel.
ルト角が、少なくとも3°以上である請求項2記載の液
晶表示パネル。6. The liquid crystal display panel according to claim 2, wherein a pretilt angle of the liquid crystal near an interface between the pair of substrates is at least 3 °.
れている請求項2記載の液晶表示パネル。7. The liquid crystal display panel according to claim 2, wherein the alignment treatment of the liquid crystal is performed by rubbing.
がポリイミドまたはポリアミック酸を含む材料で形成さ
れている請求項2記載の液晶表示パネル。8. The liquid crystal display panel according to claim 2, wherein the pair of substrates has an alignment film, and the alignment film is formed of a material containing polyimide or polyamic acid.
マトリクスパネルを形成するための能動素子を各画素毎
に設けている請求項2記載の液晶表示パネル。9. The liquid crystal display panel according to claim 2, wherein the electrode is formed for each pixel, and an active element for forming an active matrix panel is provided for each pixel.
カ所以上の核発生手段を設けた請求項9記載の液晶表示
パネル。10. At least one pixel corresponding to all pixels
10. The liquid crystal display panel according to claim 9, further comprising nucleation means at more than three places.
配向のドメインが成長できるしきい値電界以上の一対の
基板の対向方向に向かう縦電界を、画素間に発生させる
手段を有する請求項9に記載の液晶表示パネル。11. A device according to claim 9, further comprising means for generating a vertical electric field between the pixels in a direction opposite to a pair of substrates, which is equal to or larger than a threshold electric field at which a domain of the generated bend orientation or π twist orientation can grow. Liquid crystal display panel.
動電界以上の大きな電界を電極に加える手段を有する請
求項1記載の液晶表示パネル。12. The liquid crystal display panel according to claim 1, further comprising means for applying a large electric field to the electrodes, which is higher than a driving electric field applied to the liquid crystal in a normal display state.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30008596A JP3600700B2 (en) | 1996-11-12 | 1996-11-12 | LCD panel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30008596A JP3600700B2 (en) | 1996-11-12 | 1996-11-12 | LCD panel |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004230820A Division JP2004310139A (en) | 2004-08-06 | 2004-08-06 | Liquid crystal display panel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10142638A true JPH10142638A (en) | 1998-05-29 |
JP3600700B2 JP3600700B2 (en) | 2004-12-15 |
Family
ID=17880531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30008596A Expired - Fee Related JP3600700B2 (en) | 1996-11-12 | 1996-11-12 | LCD panel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3600700B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6116065A (en) * | 1998-08-13 | 2000-09-12 | Winner Aviation Corporation | Anti-theft device for aircraft |
JP2002131754A (en) * | 2000-10-20 | 2002-05-09 | Chisso Corp | Liquid crystal aligning agent varnish, liquid crystal alignment layer and liquid crystal display element |
US6515725B1 (en) | 1999-07-29 | 2003-02-04 | Matsushita Electric Industrial Co., Ltd. | Liquid crystal display device and method for manufacturing the same |
US6833893B2 (en) | 1999-12-24 | 2004-12-21 | Nec Lcd Technologies, Ltd. | Optically compensated bend type liquid crystal display device |
US6859246B2 (en) | 2001-06-20 | 2005-02-22 | Nec Lcd Technologies, Ltd. | OCB type liquid crystal display having transition nucleus area from splay alignment to bend alignment |
US6873377B2 (en) | 2001-09-11 | 2005-03-29 | Nec Corporation | Liquid crystal display device |
JP2006154821A (en) * | 2004-11-26 | 2006-06-15 | Samsung Sdi Co Ltd | Liquid crystal display device and method of fabricating the same |
JP2008175838A (en) * | 2007-01-16 | 2008-07-31 | Tohoku Univ | Liquid crystal display device |
JP2009098652A (en) * | 2007-09-26 | 2009-05-07 | Toshiba Matsushita Display Technology Co Ltd | Liquid crystal display device |
-
1996
- 1996-11-12 JP JP30008596A patent/JP3600700B2/en not_active Expired - Fee Related
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6116065A (en) * | 1998-08-13 | 2000-09-12 | Winner Aviation Corporation | Anti-theft device for aircraft |
US6515725B1 (en) | 1999-07-29 | 2003-02-04 | Matsushita Electric Industrial Co., Ltd. | Liquid crystal display device and method for manufacturing the same |
US6710832B2 (en) | 1999-07-29 | 2004-03-23 | Matsushita Electric Industrial Co., Ltd. | Liquid crystal display and method of manufacture |
US6801284B2 (en) | 1999-07-29 | 2004-10-05 | Matsushita Electric Industrial Co., Ltd. | Liquid crystal display and method of manufacture |
JP2008171006A (en) * | 1999-07-29 | 2008-07-24 | Toshiba Matsushita Display Technology Co Ltd | Liquid crystal display device |
JP2008176321A (en) * | 1999-07-29 | 2008-07-31 | Toshiba Matsushita Display Technology Co Ltd | Driving method of liquid crystal display device |
US6833893B2 (en) | 1999-12-24 | 2004-12-21 | Nec Lcd Technologies, Ltd. | Optically compensated bend type liquid crystal display device |
JP4629850B2 (en) * | 2000-10-20 | 2011-02-09 | チッソ株式会社 | Liquid crystal alignment agent varnish, liquid crystal alignment film, and liquid crystal display element |
JP2002131754A (en) * | 2000-10-20 | 2002-05-09 | Chisso Corp | Liquid crystal aligning agent varnish, liquid crystal alignment layer and liquid crystal display element |
US6859246B2 (en) | 2001-06-20 | 2005-02-22 | Nec Lcd Technologies, Ltd. | OCB type liquid crystal display having transition nucleus area from splay alignment to bend alignment |
US6873377B2 (en) | 2001-09-11 | 2005-03-29 | Nec Corporation | Liquid crystal display device |
JP2006154821A (en) * | 2004-11-26 | 2006-06-15 | Samsung Sdi Co Ltd | Liquid crystal display device and method of fabricating the same |
JP4535388B2 (en) * | 2004-11-26 | 2010-09-01 | 三星モバイルディスプレイ株式會社 | Liquid crystal display device and manufacturing method thereof |
US8537319B2 (en) | 2004-11-26 | 2013-09-17 | Samsung Display Co., Ltd. | Liquid crystal display and method for fabricating the same |
JP2008175838A (en) * | 2007-01-16 | 2008-07-31 | Tohoku Univ | Liquid crystal display device |
JP2009098652A (en) * | 2007-09-26 | 2009-05-07 | Toshiba Matsushita Display Technology Co Ltd | Liquid crystal display device |
Also Published As
Publication number | Publication date |
---|---|
JP3600700B2 (en) | 2004-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100824840B1 (en) | Display element and display device | |
JP3417218B2 (en) | LCD panel | |
KR100241815B1 (en) | Liquid crystal electronic optical apparatus | |
JPH117018A (en) | Liquid crystal display device and its manufacture | |
JP3600700B2 (en) | LCD panel | |
JPH0367219A (en) | Liquid crystal display element | |
JPH0829812A (en) | Liquid crystal display device | |
JP3031812B2 (en) | Liquid crystal display | |
JP3110289B2 (en) | LCD panel | |
JP2004310139A (en) | Liquid crystal display panel | |
JP3404467B2 (en) | Liquid crystal display | |
JP3586447B2 (en) | LCD panel | |
JPH09222604A (en) | Liquid crystal display panel | |
JP4938044B2 (en) | Display element and display device | |
JP3853166B2 (en) | LCD panel | |
JPH0756148A (en) | Liquid crystal display element | |
JP3055416B2 (en) | Liquid crystal element, liquid crystal display panel and method of manufacturing the same | |
JPH0792458A (en) | Liquid crystal display element | |
JP2753206B2 (en) | Guest-host type liquid crystal display | |
JP3730320B2 (en) | LCD panel | |
JPH09160022A (en) | Liquid crystal electro-optical device | |
JP3356561B2 (en) | Liquid crystal display | |
JP2945273B2 (en) | Liquid crystal display panel and method of manufacturing the same | |
JPH05107563A (en) | Liquid crystal display element | |
JPH05289097A (en) | Liquid crystal display element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040615 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040806 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040826 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040914 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040917 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070924 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080924 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080924 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090924 Year of fee payment: 5 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090924 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090924 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100924 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100924 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110924 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120924 Year of fee payment: 8 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120924 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120924 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120924 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130924 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |