[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH05289097A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPH05289097A
JPH05289097A JP8916592A JP8916592A JPH05289097A JP H05289097 A JPH05289097 A JP H05289097A JP 8916592 A JP8916592 A JP 8916592A JP 8916592 A JP8916592 A JP 8916592A JP H05289097 A JPH05289097 A JP H05289097A
Authority
JP
Japan
Prior art keywords
liquid crystal
panel
anisotropy
crystal display
compensating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8916592A
Other languages
Japanese (ja)
Inventor
Yuzo Hisatake
雄三 久武
Hitoshi Hado
仁 羽藤
Yoshihiro Kinoshita
喜宏 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8916592A priority Critical patent/JPH05289097A/en
Publication of JPH05289097A publication Critical patent/JPH05289097A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To obtain the liquid crystal display element of a black-and-white display, which scarcely has visual angle dependency, and also, has a satisfactory electro-optical characteristic such as sharp responsiveness, etc. CONSTITUTION:Between two pieces of substrates 4c, 4d with electrodes 4a, 4b, a positive nematic liquid crystal layer 4e of dielectric anisotropy is inserted and held, and on the surface of a substrate, the element has a tilt orientation in which a liquid crystal molecular major axis of the liquid crystal layer is arrayed in one direction, and on the surface of its upper and lower substrates, a straight line on the direction in which the liquid crystal molecular major axis is arrayed in opposed points is arrayed so as to have each intersecting point between planes having the surface of the upper and the lower substrates, and also, a driving liquid crystal panel in which a liquid crystal is not twisted, and a double refraction anisotropy compensating panel for compensating optically double refraction anisotropy in its plane direction are laminated optically and continuously.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液晶表示素子に係わ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device.

【0002】[0002]

【従来の技術】近年、液晶表示素子(以下LCDと略
称)はワードプロセッサ,パーソナルコンピューター、
投影形TV,小型TVなどに広く利用されている。中で
もラップトップコンピューターやワープロ用のディスプ
レーとしての成長は著しいものがある。このような用途
におけるLCDを構成する方法としては単純マトリクス
方式とアクティブマトリクス方式の2方式が考えられ
る。このうちアクティブマトリクス方式は視野角が広
い、応答速度が速い、コントラストが高いという特徴を
持っているが、価格が高いために大型の液晶パネルにお
いてはまだ一般化はしておらず、現在は単純マトリクス
方式が主に使われている。
2. Description of the Related Art In recent years, liquid crystal display devices (hereinafter abbreviated as LCDs) are used in word processors, personal computers,
Widely used for projection TVs, small TVs, etc. Among them, the growth as a display for laptop computers and word processors is remarkable. As a method of configuring an LCD for such an application, there are two methods, a simple matrix method and an active matrix method. Among them, the active matrix method has the features of wide viewing angle, fast response speed, and high contrast, but due to its high price, it has not been generalized in large liquid crystal panels and is currently simple. The matrix method is mainly used.

【0003】このうち単純マトリクス方式のLCDとし
て一般的に広く用いられている液晶の動作モードにはT
N(Twisted Nematic )とSTN(Super Twisted Nema
tic)があるが、TNは高デューティ駆動が困難であ
り、STNは高デューティー駆動はできるが、応答速度
が遅く、ハイプレティルトの配向(5°以上理想的には
10°以上)が必要であり、セルギャップの制御が厳しい
ことから新しい動作モードが求められていた。
Of these, the operating mode of the liquid crystal generally widely used as a simple matrix type LCD is T
N (Twisted Nematic) and STN (Super Twisted Nema)
TN), TN is difficult to drive with high duty, STN can drive with high duty, but the response speed is slow, and high pretilt orientation (ideally 5 ° or more is ideal.
(10 ° or more) is required, and a new operation mode is required because the cell gap is strictly controlled.

【0004】そこで近年、STNよりも高速応答可能な
垂直配向を用いた複屈折効果を利用した新しいモードが
VAN(H.HIRAI et.JAPAN DISPLAY ´89 P.184)等
の名称で盛んに研究されている。しかしながら、この方
式では、液晶分子を垂直に均一に配向させる技術が難し
く、表示むらを起こし易い。
Therefore, in recent years, a new mode utilizing the birefringence effect using vertical alignment which can respond faster than STN has been actively studied under the names such as VAN (H.HIRAI et. JAPAN DISPLAY '89 P.184). ing. However, with this method, it is difficult to vertically orient the liquid crystal molecules uniformly, and display unevenness is likely to occur.

【0005】一方、同じ複屈折効果を用いたLCDのう
ち、ツイスト角が0°のホモジニアス配向型LCDを2
枚液晶分子配列方向が直交するように配置し、クロスニ
コルに配置した偏光板の下において、干渉色を補償する
ことによって、良好な白黒表示を得ることが示されてい
る(斎藤 他:1990年春期応物予稿集30p−pd−7)。
このホモジニアス配向型LCDを2枚用いた液晶表示素
子は、明確で急峻な閾値を有していて、現行の配向技術
を有効に使うことができる、応答速度が速いといった特
徴を有していることから、大面積、高精彩の液晶ディス
プレーとしての応用が期待されている。
On the other hand, among LCDs using the same birefringence effect, a homogeneous alignment type LCD having a twist angle of 0 ° is used.
It has been shown that good black-and-white display can be obtained by compensating for interference colors under a polarizing plate arranged in a crossed nicols with the liquid crystal molecules arranged orthogonally to each other (Saito et al., 1990). Spring Response Proceedings 30p-pd-7).
The liquid crystal display element using two homogeneous alignment type LCDs has a clear and steep threshold value, and can be effectively used in the current alignment technology, and has a feature that the response speed is fast. Therefore, it is expected to be applied as a large-area, high-definition liquid crystal display.

【0006】しかしながら、このホモジニアス配向型L
CDを2枚用いた液晶表示素子は、見る方向や角度によ
ってコントラスト比が著しく変化するといった視角依存
の問題を持っている。
However, this homogeneous orientation type L
A liquid crystal display device using two CDs has a problem of viewing angle dependence that the contrast ratio remarkably changes depending on the viewing direction and angle.

【0007】このコントラスト比の視角依存の問題は、
液晶に電圧を印加した状態(白)、及び電圧を印加して
いない状態(黒)双方の透過率の視角依存に起因する。
このうち、電圧を印加していない状態(黒)の透過率の
視角依存に関しては、その光学的な補償手段として、視
角によらず複屈折値が一定となるように、垂直配向ネマ
ティック液晶パネルを、前記ホモジニアス配向型LCD
を2枚用いた液晶表示素子に重ねる構成を採ることが提
案されている(吉田 他:1990年秋期応物予稿集27a−
k−10)。しかしながら、この補償手段では、液晶に電
圧を印加した状態(白)の透過率の視角依存について
は、光学的に補償しておらず、前記液晶表示素子の視角
依存を十分に光学補償するものではなかった。
The problem of the viewing angle dependence of the contrast ratio is
This is due to the viewing angle dependence of the transmittance in both the state where a voltage is applied to the liquid crystal (white) and the state where no voltage is applied (black).
Of these, regarding the viewing angle dependence of the transmittance when no voltage is applied (black), a vertically aligned nematic liquid crystal panel is used as an optical compensation means so that the birefringence value is constant regardless of the viewing angle. , The homogeneous alignment type LCD
It has been proposed to adopt a configuration in which a liquid crystal display device using two sheets is stacked (Yoshida et al.
k-10). However, this compensating means does not optically compensate the viewing angle dependence of the transmittance in the state (white) in which a voltage is applied to the liquid crystal, and does not sufficiently optically compensate the viewing angle dependence of the liquid crystal display element. There wasn't.

【0008】[0008]

【発明が解決しようとする課題】前述したように、従来
の構成では、コントラスト比の視角依存性を十分に光学
補償されていないため、見る方向や角度によってコント
ラスト比が変化するといった視角依存の問題が十分に解
決されていなかった。
As described above, in the conventional structure, since the viewing angle dependence of the contrast ratio is not sufficiently optically compensated, the viewing angle dependence problem that the contrast ratio changes depending on the viewing direction and angle. Was not solved enough.

【0009】[0009]

【課題を解決するための手段】本発明の液晶表示素子
は、2枚の電極付き基板間に誘電異方性が正のネマティ
ック液晶層を挟持し、前記基板表面上で前記液晶層の液
晶分子長軸が一方向に配列させるチルト配向を有してお
り、上下基板表面において、相対する点における前記液
晶分子長軸の配列する方向上の直線が、前記上下基板表
面を有する平面間で、互いに交わる点を有するように配
列しており、且つ、液晶がツイストしていない駆動用液
晶パネルと、その平面方向における複屈折異方性を光学
的に補償する複屈折異方性補償パネルとが、光学的に連
続的に積層されたことを特徴とする。また、駆動用液晶
パネルに、電圧無印加時における複屈折値が視角により
変化しにくくなるように、液晶分子を垂直配列させた視
角依存補償パネルを重ねたことを特徴とする。
A liquid crystal display device of the present invention comprises a nematic liquid crystal layer having a positive dielectric anisotropy sandwiched between two substrates with electrodes, and liquid crystal molecules of the liquid crystal layer on the surface of the substrate. The major axis has a tilt alignment that aligns in one direction, and on the upper and lower substrate surfaces, straight lines in the direction in which the liquid crystal molecule long axes are aligned at opposing points are mutually aligned between the planes having the upper and lower substrate surfaces. The driving liquid crystal panel, which is arranged so as to have intersecting points, and in which the liquid crystal is not twisted, and the birefringence anisotropy compensation panel for optically compensating the birefringence anisotropy in the plane direction thereof, It is characterized in that they are laminated optically continuously. In addition, a viewing angle dependent compensation panel in which liquid crystal molecules are vertically aligned is superimposed on the driving liquid crystal panel so that the birefringence value when no voltage is applied does not easily change depending on the viewing angle.

【0010】また、その補償パネルとして、前記液晶分
子を垂直配列させた補償パネル同様の光学的補償がなさ
れる屈折率異方性をもつ光学的異方性フィルムを用いた
ことを特徴とする。
Further, as the compensating panel, an optically anisotropic film having a refractive index anisotropy for optically compensating similarly to the compensating panel in which the liquid crystal molecules are vertically aligned is used.

【0011】さらに、前記平面方向における複屈折異方
性を光学的に補償する補償パネルとして、前記駆動用液
晶パネルとほぼ等しい液晶分子配列を持ち、その光学異
方性がほぼ等しい液晶パネルをその液晶分子配列が、駆
動用液晶パネルの液晶分子配列とほぼ直交するように重
ねることを特徴とする。
Further, as a compensating panel for optically compensating the birefringence anisotropy in the plane direction, a liquid crystal panel having a liquid crystal molecule arrangement substantially equal to that of the driving liquid crystal panel and having substantially the same optical anisotropy thereof is provided. It is characterized in that the liquid crystal molecule array is overlapped so as to be substantially orthogonal to the liquid crystal molecule array of the driving liquid crystal panel.

【0012】また、前記平面方向における複屈折異方性
を光学的に補償する補償パネルとして、前記駆動用液晶
パネルとほぼ等しい光学異方性を持つ光学的異方性フィ
ルムを、駆動用液晶パネルの平面方向における光学異方
性と逆の光学異方性となるように位置させることを特徴
とする。
As a compensation panel for optically compensating the birefringence anisotropy in the plane direction, an optically anisotropic film having an optical anisotropy substantially equal to that of the driving liquid crystal panel is used. It is characterized in that it is positioned so as to have an optical anisotropy opposite to the optical anisotropy in the plane direction of.

【0013】[0013]

【作用】本発明は上記目的を達成するものであり、以下
その達成原理および手法について説明する。
The present invention achieves the above object, and the principle and method for achieving the object will be described below.

【0014】図5に従来の技術によるホモジニアス配向
型LCDを2枚用いた液晶表示素子の駆動用液晶セルの
液晶分子長軸配列方向及び基板垂直方向を有する平面で
切った液晶分子配列を説明する断面図を示す。すなわ
ち、電極14aを有する上側基板14cと、電極14b
を有する下側基板14dの相対する点間の液晶層の液晶
分子14eの長軸の配列を示す。図において(a)が電
圧無印加時の分子配列であり、(b)が電圧印加時の分
子配列である。図5(a)のように液晶分子が同一のチ
ルト角α0 を持ち、いわゆるユニフォーム配列をなす。
この状態でツイストしていない分子配列をなす液晶セル
は、一般的にホモジニアスセルと呼ばれ、このセルに電
圧(例えば2v)を印加すると、図5(b)のようにチ
ルト角α1方向に液晶分子が傾く。従来例では、この液
晶分子の傾きによる屈折率の異方性の変化を利用して、
表示の明暗を得ている。
FIG. 5 illustrates an arrangement of liquid crystal molecules cut along a plane having a liquid crystal molecule long axis alignment direction and a substrate vertical direction of a driving liquid crystal cell of a liquid crystal display device using two homogeneous alignment type LCDs according to a conventional technique. A sectional view is shown. That is, the upper substrate 14c having the electrode 14a and the electrode 14b
3 shows the arrangement of the long axes of the liquid crystal molecules 14e of the liquid crystal layer between the opposite points of the lower substrate 14d having the position. In the figure, (a) shows the molecular arrangement when no voltage is applied, and (b) shows the molecular arrangement when no voltage is applied. As shown in FIG. 5A, the liquid crystal molecules have the same tilt angle α 0 and form a so-called uniform arrangement.
A liquid crystal cell having a twisted molecular arrangement in this state is generally called a homogeneous cell, and when a voltage (for example, 2 v) is applied to this cell, the liquid crystal cell is tilted in the tilt angle α1 direction as shown in FIG. 5B. The molecule tilts. In the conventional example, by utilizing the change in the anisotropy of the refractive index due to the tilt of the liquid crystal molecule,
The brightness of the display is getting.

【0015】液晶分子は、液晶分子の長軸方向と短軸方
向に異なる屈折率を有することは一般に知られている。
このような液晶分子に光が入射すると、この液晶分子の
屈折率異方性に応じた出射光が得られる。前記ホモジニ
アスセルのように液晶分子が液晶層の厚み方向に対して
一様な配列をなしている場合、セルとしての位相差の絶
対量は、前記屈折率異方性(Δn)に液晶層厚(d)に
乗じた値(Δn・d)で決まり、この値をリタデーショ
ン値Rと呼ぶ。
It is generally known that liquid crystal molecules have different refractive indexes in the major axis direction and the minor axis direction of the liquid crystal molecules.
When light is incident on such liquid crystal molecules, emitted light corresponding to the refractive index anisotropy of the liquid crystal molecules is obtained. When the liquid crystal molecules are arranged uniformly in the thickness direction of the liquid crystal layer as in the homogeneous cell, the absolute amount of retardation as a cell is determined by the refractive index anisotropy (Δn) and the liquid crystal layer thickness. It is determined by the value (Δn · d) multiplied by (d), and this value is called the retardation value R.

【0016】図6は、これら液晶表示素子の視角依存を
考える時の座標系を示す図である。一般的に前述したホ
モジニアス配向型LCDを2枚用いた液晶表示素子は、
駆動用液晶セルの液晶分子長軸lの配列方位と±45°の
方位に(基板面xyと平行になるように)検光子の吸収
軸xおよび偏光子の吸収軸yを配置する。これは、複屈
折効果を最大限利用するためである。
FIG. 6 is a diagram showing a coordinate system when considering the viewing angle dependence of these liquid crystal display elements. Generally, a liquid crystal display device using two pieces of the homogeneous alignment type LCD described above is
The absorption axis x of the analyzer and the absorption axis y of the polarizer are arranged in an orientation of ± 45 ° with respect to the alignment direction of the liquid crystal molecule long axis 1 of the driving liquid crystal cell (in parallel to the substrate surface xy). This is to make full use of the birefringence effect.

【0017】さて、図6においてセルの垂直方向zから
の傾き角θを観察角度(Veiwing Angle )とすると、図
5(b)における従来の液晶表示素子の駆動用液晶セル
の電圧印加時のリタデーション値は図7のRp のように
変化する。観察角度θにより、このようにリタデーショ
ン値Rが変化するのは、液晶分子の長軸の見かけ上の長
さが観察角度により変化することで説明がつき、以下、
本発明のように視角依存の改善を考慮する場合において
も同様の考えをすることができる。
Now, letting the inclination angle θ of the cell from the vertical direction z in FIG. 6 be the observation angle (Veiwing Angle), the retardation when a voltage is applied to the driving liquid crystal cell of the conventional liquid crystal display element in FIG. 5B. The value changes like Rp in FIG. The reason why the retardation value R thus changes depending on the observation angle θ can be explained by the fact that the apparent length of the long axis of the liquid crystal molecule changes depending on the observation angle.
The same idea can be applied when considering the improvement of the viewing angle dependency as in the present invention.

【0018】すなわち図4は、本発明の液晶表示素子の
駆動用液晶セルの図5同様の液晶分子配列を説明する断
面図である。図5同様に(a)が電圧無印加時であり、
(b)が電圧印加時(例えば2v)の分子配列を示すも
のである。一般的に、液晶分子の傾き角が液晶層厚み方
向に対して変化しており、液晶層の上半分と下半分で傾
く方向がおよそ逆になっているような分子配列をスプレ
イ配列と呼び、同図(a)のように液晶分子がツイスト
していないような場合の液晶表示素子をπセルと呼ぶ
(従来、このπセルは高電圧を印加して液晶を十分に垂
直に配列させた状態、及びその電圧より、やや低い電圧
にて、いわゆるベント配列にさせた状態の複屈折の変化
を利用して表示素子としての利用が提案されているが本
発明の動作原理はこれと異なり、図4の(a)と(b)
のように電圧無印加時及び、低電圧印加時の液晶分子の
わずかな傾き角の変化による複屈折の変化を利用したこ
とを動作原理としている)。
That is, FIG. 4 is a sectional view for explaining the liquid crystal molecule alignment of the driving liquid crystal cell of the liquid crystal display element of the present invention, which is similar to FIG. As in FIG. 5, (a) shows the case when no voltage is applied,
(B) shows the molecular arrangement when a voltage is applied (for example, 2v). Generally, the tilt angle of the liquid crystal molecules changes with respect to the thickness direction of the liquid crystal layer, and a molecular arrangement in which the tilt directions of the upper half and the lower half of the liquid crystal layer are approximately opposite to each other is called a splay alignment, A liquid crystal display element in the case where liquid crystal molecules are not twisted as shown in FIG. 7A is called a π cell (conventionally, in this π cell, a high voltage is applied and liquid crystals are sufficiently vertically aligned). , And a voltage slightly lower than that voltage, it has been proposed to use as a display element by utilizing a change in birefringence in a so-called bent arrangement, but the operating principle of the present invention is different from this. 4 (a) and (b)
As described above, the principle of operation is to utilize the change in birefringence due to a slight change in the tilt angle of liquid crystal molecules when no voltage is applied and when a low voltage is applied).

【0019】図4の(b)を見てわかるように、従来の
液晶表示素子同様に電圧印加時のリタデーション値の変
化を考えると、液晶層の電極4aをもつ上側基板4c側
の上半分du では従来の液晶表示素子のリタデーション
値Rp の半分の値を取り、電極4bをもつ下側基板4d
側の下半分dd では、その逆の変化を示す。したがっ
て、上半分、下半分のリタデーション値Ru 、Rd は図
7のようになり、その総和である本発明の液晶表示素子
の駆動用液晶セルの観察角度に対するリタデーション値
Rの変化は、図7のRa のように変化する。
As can be seen from FIG. 4 (b), considering the change in retardation value when a voltage is applied as in the conventional liquid crystal display element, the upper half du of the upper substrate 4c side having the electrode 4a of the liquid crystal layer is du. Then, the value is half the retardation value Rp of the conventional liquid crystal display element, and the lower substrate 4d having the electrode 4b is used.
The lower half of the side, dd, shows the opposite change. Therefore, the retardation values Ru and Rd of the upper half and the lower half are as shown in FIG. 7, and the sum of the retardation values Ru and Rd is as shown in FIG. 7 with respect to the observation angle of the driving liquid crystal cell of the liquid crystal display device of the present invention. It changes like Ra.

【0020】このように、駆動用液晶セルの分子配列
を、いわゆるπセルのようにすることにより、リタデー
ション値の変化が小さく電圧印加時のリタデーション値
の視角依存性は従来のものより小さくなる。
As described above, by making the molecular arrangement of the driving liquid crystal cell to be a so-called π cell, the change in retardation value is small, and the viewing angle dependence of the retardation value when a voltage is applied becomes smaller than that of the conventional one.

【0021】さらに、電圧無印加時におけるリタデーシ
ョン値が観察角度により変化しにくくなるように、液晶
分子を垂直配列させた視角依存補償パネルを用いた場合
の電圧印加時、及び無印加時のリタデーション値の観察
角度依存性を考えると、従来の液晶表示素子では図11
のようになる。ここにRpnは補償パネルなしのリタデー
ション値、Rpcは補償パネルと組み合わせた場合のリタ
デーション値である。さらに参考として電圧印加時のリ
タデーション値Rp を示す。Rpnc は補償パネルと組み
合わせた場合で電圧無印加時のリタデーション値であ
る。
Further, the retardation value when a voltage is applied and when no voltage is applied when a viewing angle dependent compensation panel in which liquid crystal molecules are vertically aligned is used so that the retardation value when no voltage is applied is unlikely to change depending on the observation angle. Considering the viewing angle dependence of the conventional liquid crystal display device, as shown in FIG.
become that way. Here, Rpn is a retardation value without a compensation panel, and Rpc is a retardation value when combined with a compensation panel. For reference, the retardation value Rp when a voltage is applied is shown. Rpnc is a retardation value when no voltage is applied when combined with a compensation panel.

【0022】一方、本発明の液晶表示素子では図8のよ
うになる。ここに、Ranは電圧無印加時の、Ranc は視
角依存補償パネルを組み合わせた電圧無印加時の、Ra
は電圧印加時の、Ranは視角依存補償パネルを組み合わ
せた電圧印加時の各リタデーション値を示す。本発明の
液晶表示素子においても、従来例同様の補償効果が得ら
れることは従来例が光学的に補償される原理と同じであ
る。これらの図において、本発明の液晶表示素子のほう
が、電圧無印加時のリタデーション値の視角依存性が従
来例よりも対称形になっているのは、液晶分子配列が液
晶層の上半分du と下半分Dd で左右対称の形をしてい
ることによる。
On the other hand, the liquid crystal display device of the present invention has a structure as shown in FIG. Here, Ran is Ra when no voltage is applied, and Ranc is Ra when no voltage is applied in combination with the viewing angle dependent compensation panel.
Indicates a retardation value when voltage is applied, and Ran indicates each retardation value when voltage is applied in combination with a viewing angle dependent compensation panel. Also in the liquid crystal display device of the present invention, the same compensation effect as in the conventional example can be obtained, which is the same as the principle in which the conventional example is optically compensated. In these figures, in the liquid crystal display element of the present invention, the viewing angle dependence of the retardation value when no voltage is applied is more symmetrical than that in the conventional example, because the liquid crystal molecule arrangement is the upper half du of the liquid crystal layer. This is due to the symmetrical shape of the lower half Dd.

【0023】このように、本発明によれば従来の液晶表
示素子の電圧印加時の視角依存性を格段に改善した液晶
表示素子が得られる。
As described above, according to the present invention, it is possible to obtain a liquid crystal display device in which the viewing angle dependency of the conventional liquid crystal display device when a voltage is applied is significantly improved.

【0024】なお、前述したリタデーション値が観察角
度により変化しにくくなるように、液晶分子を垂直配列
させた補償パネルは、同様の効果を示す光学異方性フィ
ルム(例えば、同様の配列をした高分子液晶フィルム)
に置き換えても同様の効果がえられ、また、干渉色を補
償する平面方向における複屈折異方性を光学的に補償す
る補償パネルとして、前記駆動用液晶パネルとほぼ等し
い液晶分子配列を持ち、その光学異方性がほぼ等しい液
晶パネルもしくは、従来の技術同様にユニフォーム配列
である光学異方性が駆動用液晶パネルとほぼ等しい液晶
パネル、もしくは同様の効果をもたらす光学異方性フィ
ルム(例えば一軸性のリタデーションフィルム)を用い
れば表示色が白黒化することは明白である。
The compensating panel in which liquid crystal molecules are vertically arrayed so that the above-mentioned retardation value does not easily change depending on the observation angle is an optically anisotropic film (for example, a highly arrayed film having the same array) exhibiting the same effect. Molecular liquid crystal film)
The same effect can be obtained even if replaced with, and as a compensating panel for optically compensating the birefringence anisotropy in the plane direction for compensating the interference color, it has a liquid crystal molecule arrangement almost equal to that of the driving liquid crystal panel, A liquid crystal panel whose optical anisotropy is almost the same, or a liquid crystal panel whose uniform anisotropy is uniform as in the prior art, which is almost the same as that of the driving liquid crystal panel, or an optical anisotropic film which produces a similar effect (for example, a uniaxial film). It is clear that the display color is changed to black and white by using a retardation film having a sex property.

【0025】[0025]

【実施例】以下本発明の液晶表示素子の実施例を詳細に
説明する。
EXAMPLES Examples of the liquid crystal display device of the present invention will be described in detail below.

【0026】(実施例1)図1において上側偏光板1、
視角依存補償パネル2、複屈折異方性補償パネル3、駆
動用液晶パネル4、下側偏光板5をxyz座標のxy平
面に、かつ、z軸を法線とするように配置する。
Example 1 In FIG. 1, the upper polarizing plate 1,
The viewing angle dependent compensation panel 2, the birefringence anisotropy compensation panel 3, the driving liquid crystal panel 4, and the lower polarizing plate 5 are arranged on the xy plane of the xyz coordinates and with the z axis as the normal line.

【0027】駆動用液晶パネル4はそれぞれITOの透
明電極4a、4bを被着した透明ガラス基板4c、4d
を各電極が対面するように向い合せて、その間に正のネ
マティック液晶層4eが配置されるよう挟持した構造を
有する。
The driving liquid crystal panel 4 is made of transparent glass substrates 4c and 4d on which transparent electrodes 4a and 4b of ITO are adhered.
Are opposed to each other so that the positive nematic liquid crystal layer 4e is sandwiched therebetween.

【0028】上側基板4c側には高いプレチルトが得ら
れる配向膜として、SE−7210(日産化学(株)
製:プレチルト角=約5゜)を塗布し、もう一方の下側
基板4dには低いプレチルトが得られる配向膜としてオ
プトマ−AL−1051((株)日本合成ゴム製:プレ
チルト角=約1゜)を塗布し、図3(a)に示すように
上下基板ともに左方向に平行にベクトルをもつラビング
配向処理を、上側基板側は(4.1) 、下側基板側は(4.2)
で示すように施した後、セル化した。液晶層の液晶とし
て、ZLI−3276−100((株)メルクジャパン
製)をカイラル剤を添加しないものを用いた。液晶層厚
5μmにて、本実施例による駆動用液晶パネル4を得
た。このパネルの各電極4a、4bに駆動電源4fを接
続する。なお、ここで上下基板でプレチルトを等しくし
なかったのは、電圧印加時にリバ−スを発生しにくくす
るためである。
SE-7210 (Nissan Chemical Co., Ltd.) is used as an alignment film on the upper substrate 4c side to obtain a high pretilt.
(Manufactured by: pretilt angle = about 5 °), and the other lower substrate 4d is provided with an alignment film having a low pretilt as an alignment film Optoma-AL-1051 (manufactured by Nippon Synthetic Rubber Co., Ltd .: pretilt angle = about 1 °). ) Is applied to the upper and lower substrates, and the rubbing alignment treatment is performed with the vector parallel to the left direction as shown in FIG. 3A. (4.1) on the upper substrate side and (4.2) on the lower substrate side.
Then, the cells were formed into cells. As the liquid crystal of the liquid crystal layer, ZLI-3276-100 (manufactured by Merck Japan Co., Ltd.) without a chiral agent was used. A driving liquid crystal panel 4 according to this example was obtained with a liquid crystal layer thickness of 5 μm. A drive power supply 4f is connected to each of the electrodes 4a and 4b of this panel. Here, the reason why the pretilts of the upper and lower substrates are not made equal is to make it difficult to generate reverse when voltage is applied.

【0029】また、複屈折異方性補償パネル3は駆動用
液晶パネル4同様のセル構成にて、すなわち一対の基板
3a、3bに液晶層3cを挟んだ液晶セルを、図3
(b)に示すようにそのラビング方向、上側基板で(3.
1) 、下側基板で(3.2) を平行かつベクトルが左右方向
と180°逆にした構造とし、図1に示すように駆動用
液晶パネル4のラビング方向と直交するようx軸に沿わ
せて、前記駆動用液晶セルに工学的に連続して積層され
るように重ね合わせた。この補償パネル3は干渉色を補
償する平面方向における複屈折異方性を光学的に補償す
る。
The birefringence anisotropy compensating panel 3 has the same cell structure as the driving liquid crystal panel 4, that is, a liquid crystal cell in which a liquid crystal layer 3c is sandwiched between a pair of substrates 3a and 3b.
As shown in (b), in the rubbing direction, (3.
1) On the lower substrate, (3.2) has a structure in which the vector is parallel and the vector is 180 ° opposite to the left-right direction, and is aligned along the x-axis so as to be orthogonal to the rubbing direction of the driving liquid crystal panel 4 as shown in FIG. , The driving liquid crystal cells were stacked so as to be technologically continuously laminated. The compensation panel 3 optically compensates the birefringence anisotropy in the plane direction that compensates the interference color.

【0030】さらに、視角依存補償パネル2として前記
2枚の液晶セルの総和のリタデ−ション値と異方性が逆
であり、その値が等しい垂直配列型液晶素子を光軸(2.
1) がz軸に沿うように重ね合わせて、一対の偏光板
1、5をxy軸から各45°ずれたクロスニコルの偏光
板配置にて本発明の液晶表示素子10を得た。
Further, as the viewing angle dependence compensating panel 2, a vertical alignment type liquid crystal element having anisotropy opposite to the retardation value of the sum total of the two liquid crystal cells and having the same value is used as the optical axis (2.
The liquid crystal display element 10 of the present invention was obtained by stacking 1) along the z-axis and arranging a pair of polarizing plates 1 and 5 in a crossed Nicol polarizing plate arrangement which was shifted by 45 ° from the xy axes.

【0031】図5は1/100デュ−ティ−にて時分割
駆動を行い、観察角度に対するコントラスト比の変化を
示し、本実施例で垂直配列型液晶素子を視角依存補償パ
ネルとして用いた場合は、図9の曲線CR1 のようにな
り、観察角度θを±60°以上に変化させても、コント
ラスト比に大きな変化が生じず良好な視角依存性が得ら
れた。
FIG. 5 shows the change of the contrast ratio with respect to the observation angle by time-division driving at 1/100 duty, and in the case where the vertical alignment type liquid crystal element is used as a viewing angle dependent compensation panel in this embodiment. The curve CR1 in FIG. 9 is obtained, and even if the observation angle θ is changed to ± 60 ° or more, the contrast ratio does not change significantly, and good viewing angle dependence is obtained.

【0032】本実施例の変形として視角依存補償パネル
を用いない場合でも図9のCRn1のように、上記実施例
とともに±60゜の視角で、コントラスト比2:1以上
の良好な視角依存性が得られた。
As a modification of this embodiment, even when the viewing angle compensation panel is not used, as in CRn1 in FIG. 9, a good viewing angle dependence of a contrast ratio of 2: 1 or more is obtained at a viewing angle of ± 60 ° together with the above embodiment. Was obtained.

【0033】(実施例2)実施例2を図2に示し、図1
と同一符号の部分は同様部分を示す。
(Embodiment 2) Embodiment 2 is shown in FIG.
Portions having the same reference numerals as those in FIG.

【0034】実施例1同様の駆動用液晶パネル4に、干
渉色を補償する平面方向における複屈折異方性を光学的
に補償する補償パネル30として駆動用液晶パネル同様
のセル構成にて作成した液晶パネルをそのラビング方
向、上側基板で(3.3) 、下側基板で(3.4) が駆動用液晶
パネル4のラビング方向(4.1)(4.2)に直交するように工
学的に連続して重ね合わせた。さらに、前記2枚の液晶
セルの総和のリタデ−ション値と異方性が逆であり、そ
の値が等しい垂直配列型液晶素子を視角依存補償パネル
2として重ね合わせて、クロスニコルの偏光板1、5配
置にて本実施例の液晶表示素子を得た。
A driving liquid crystal panel 4 similar to that of Example 1 was prepared in the same cell structure as the driving liquid crystal panel as a compensating panel 30 for optically compensating for birefringence anisotropy in the plane direction for compensating interference colors. The liquid crystal panels were engineered continuously so that the rubbing direction, (3.3) on the upper substrate and (3.4) on the lower substrate were orthogonal to the rubbing directions (4.1) and (4.2) of the driving liquid crystal panel 4. .. Further, a vertical alignment type liquid crystal element having anisotropy opposite to the retardation value of the total sum of the two liquid crystal cells and having the same value is stacked as a viewing angle dependent compensation panel 2 to form a crossed Nicols polarizing plate 1. The liquid crystal display element of this example was obtained with 5 arrangements.

【0035】図10は1/100デュ−ティ−にて時分
割駆動を行い、観察角度に対するコントラスト比の変化
を示すもので、本実施例の垂直配列型液晶素子を補償パ
ネル2として用いた場合は、図10のCR2 のように、
変形例として垂直配列型液晶素子を用いない場合でも図
10のCRn2のようになり、ともに実施例1よりもさら
に優れた良好な視角依存性が得られた。
FIG. 10 shows the change of the contrast ratio with respect to the observation angle by time-division driving at 1/100 duty. When the vertical alignment type liquid crystal element of this embodiment is used as the compensation panel 2. Is like CR2 in Figure 10,
As a modified example, CRn2 in FIG. 10 is obtained even when the vertical alignment type liquid crystal element is not used, and both have excellent viewing angle dependence superior to that of the first embodiment.

【0036】(比較例1)実施例1における駆動用液晶
パネルのラビング方向を図3(b)に示すように、平行
かつベクトルを逆にした以外、実施例1同様のセル構成
にて、従来の技術による液晶表示素子を得た。実施例1
同様に、1/100デュ−ティ−にて時分割駆動を行
い、観察角度に対するコントラスト比の変化を測定した
ところ、図12のようになった。垂直配列型液晶素子を
視角依存補償パネルとして用いた場合においても、CR
p に示すように+方向では30゜以上で、コントラスト
比が2:1以下となり、また、垂直配列型液晶素子を補
償パネルとして用いない場合は、CRpnのようになり±
20゜でコントラスト比が2:1以下となり、ともに良
好な視角依存は得られなかった。
Comparative Example 1 A conventional liquid crystal panel having the same cell configuration as that of Example 1 except that the rubbing directions of the driving liquid crystal panel in Example 1 are parallel and the vectors are reversed as shown in FIG. 3B. The liquid crystal display element by the technology of was obtained. Example 1
Similarly, when time-division driving was performed at 1/100 duty and the change in contrast ratio with respect to the observation angle was measured, the result was as shown in FIG. Even when a vertically aligned liquid crystal element is used as a viewing angle dependent compensation panel, CR
As shown in p, the contrast ratio is 2: 1 or less at 30 ° or more in the + direction, and when the vertical alignment type liquid crystal element is not used as a compensation panel, it becomes like CRpn ±.
At 20 °, the contrast ratio became 2: 1 or less, and neither good viewing angle dependency was obtained.

【0037】(実施例3)干渉色を補償する平面方向に
おける複屈折異方性を光学的に補償する補償パネルとし
てリタデ−ション値が、駆動用液晶セルと等しいリタデ
−ションフィルムを用いる以外、図2の実施例2同様の
セル構成にて、本発明の液晶表示素子を得た。実施例2
同様、1/100デュ−ティ−にて時分割駆動を行い、
観察角度に対するコントラスト比の変化を測定したとこ
ろ、ほぼ、図10同様の結果が得られた。
Example 3 A retardation film having a retardation value equal to that of a driving liquid crystal cell was used as a compensation panel for optically compensating birefringence anisotropy in the plane direction for compensating interference colors. A liquid crystal display device of the present invention was obtained with the same cell configuration as in Example 2 of FIG. Example 2
Similarly, time division drive is performed at 1/100 duty,
When the change in contrast ratio with respect to the observation angle was measured, almost the same results as in FIG. 10 were obtained.

【0038】(実施例4)視角依存の補償パネルとし
て、実施例2と同様の補償効果が得られる垂直配列をし
た高分子液晶フィルムを用いる以外、図2の実施例2同
様のセル構成にて、本発明の液晶表示素子を得た。実施
例1同様、1/100デュ−ティ−にて時分割駆動を行
い、観察角度に対するコントラスト比の変化を測定した
ところ、ほぼ、図10同様の結果が得られた。
(Embodiment 4) The same cell configuration as that of Embodiment 2 of FIG. 2 is used except that a vertically aligned polymer liquid crystal film that can obtain the same compensation effect as that of Embodiment 2 is used as a compensating panel depending on the viewing angle. A liquid crystal display device of the present invention was obtained. As in Example 1, time-division driving was performed at a 1/100 duty, and changes in the contrast ratio with respect to the observation angle were measured. As a result, almost the same results as in FIG. 10 were obtained.

【0039】[0039]

【発明の効果】本発明によれば、視角依存性の極めて少
ない、しかも急峻な応答性など良好な電気光学特性を有
する、白黒表示の液晶表示素子が得られる。
According to the present invention, it is possible to obtain a black and white liquid crystal display device having extremely small viewing angle dependency and excellent electro-optical characteristics such as steep response.

【0040】なお、実施例等においては、単純マトリク
ス駆動についてのみ説明したが、TFT等のスイッチン
グ素子を設けたアクティブマトリクス駆動を用いても同
様の効果が得られ、また、カラ−フィルタ−等を用いて
のカラ−表示に応用しても同様の効果が得られることは
いうまでもない。
In the embodiments and the like, only the simple matrix driving is explained, but the same effect can be obtained by using the active matrix driving provided with the switching elements such as TFTs, and the color filter or the like is used. Needless to say, the same effect can be obtained by applying it to the color display.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の液晶表示素子の構成を示す
図。
FIG. 1 is a diagram showing a configuration of a liquid crystal display element according to an embodiment of the present invention.

【図2】本発明の他の実施例の液晶表示素子の構成を示
す図。
FIG. 2 is a diagram showing a configuration of a liquid crystal display element according to another embodiment of the present invention.

【図3】本発明の実施例の液晶表示素子の基板ラビング
方向を説明する平面図で、(a)は駆動用液晶パネルの
ラビング方向、(b)は複屈折異方性補償パネルのラビ
ング方向を示す。
3A and 3B are plan views illustrating a substrate rubbing direction of a liquid crystal display device according to an embodiment of the present invention. FIG. 3A is a rubbing direction of a driving liquid crystal panel, and FIG. 3B is a rubbing direction of a birefringence anisotropy compensation panel. Indicates.

【図4】本発明の液晶表示素子の液晶分子配列を説明す
る図。
FIG. 4 is a diagram illustrating a liquid crystal molecule alignment of the liquid crystal display element of the present invention.

【図5】従来の技術による液晶表示素子の液晶分子配列
を説明する図。
FIG. 5 is a diagram illustrating a liquid crystal molecule alignment of a liquid crystal display element according to a conventional technique.

【図6】液晶表示素子の観察角度を定義する図。FIG. 6 is a diagram for defining an observation angle of a liquid crystal display element.

【図7】本発明の液晶表示素子、及び従来の技術による
液晶表示素子の駆動用液晶セルの電圧印加時の観察角度
にたいするリタデ−ション値の変化を示す図。
FIG. 7 is a diagram showing changes in retardation value with respect to an observation angle when a voltage is applied to a driving liquid crystal cell of the liquid crystal display device of the present invention and a conventional liquid crystal display device.

【図8】は、本発明の液晶表示素子の視角依存性を補償
する補償パネルを用いた場合と用いない場合の電圧無印
加時、及び電圧印加時の観察角度にたいするリタデ−シ
ョン値の変化を示す曲線図。
FIG. 8 shows changes in retardation value with respect to an observation angle when a voltage is not applied and when a voltage is applied, with and without a compensation panel for compensating the viewing angle dependence of the liquid crystal display device of the present invention. FIG.

【図9】本発明の液晶表示素子による観察角度に対する
コントラスト比の変化を測定した結果の一例を示す曲線
図。
FIG. 9 is a curve diagram showing an example of a result of measuring a change in contrast ratio with respect to an observation angle by the liquid crystal display element of the present invention.

【図10】本発明の液晶表示素子による観察角度に対す
るコントラスト比の変化を測定した結果の一例を示す曲
線図。
FIG. 10 is a curve diagram showing an example of a result of measuring a change in contrast ratio with respect to an observation angle by the liquid crystal display device of the present invention.

【図11】は、従来の技術による液晶表示素子、及び従
来の技術による液晶表示素子の駆動用液晶セルの電圧印
加時の観察角度にたいするリタデ−ション値の変化を示
す図。
FIG. 11 is a diagram showing a change in retardation value with respect to an observation angle when a voltage is applied to a liquid crystal display element according to the related art and a driving liquid crystal cell of the liquid crystal display element according to the related art.

【図12】は、従来の技術による液晶表示素子による観
察角度に対するコントラスト比の変化を測定した結果の
一例を示す曲線図。
FIG. 12 is a curve diagram showing an example of a result of measuring a change in contrast ratio with respect to an observation angle by a liquid crystal display element according to a conventional technique.

【符号の説明】[Explanation of symbols]

1、5…偏光板、 2…視角依存補償パネル、3…複屈
折異方性補償パネル、 4…駆動用液晶パネル、4a、
4b…電極、 4c、4d…基板、 4e…液晶層
1, 5 ... Polarizing plate, 2 ... Viewing angle dependent compensation panel, 3 ... Birefringence anisotropy compensation panel, 4 ... Driving liquid crystal panel, 4a,
4b ... Electrodes, 4c, 4d ... Substrate, 4e ... Liquid crystal layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 2枚の電極付き基板間に誘電異方性が正
のネマティック液晶層を挟持し、前記基板表面上で液晶
層の液晶分子長軸が一方向に配列するチルト配向を有し
ており、上下基板表面において、相対する点における前
記液晶分子長軸の配列する方向上の直線が、前記上下基
板表面を有する平面間で、互いに交わる点を有するよう
に配列しており、且つ、液晶がツイストしていない駆動
用液晶パネルと、その平面方向における複屈折異方性を
光学的に補償する複屈折異方性補償パネルとが光学的に
連続的に積層されたことを特徴とする液晶表示素子。
1. A nematic liquid crystal layer having a positive dielectric anisotropy is sandwiched between two substrates with electrodes, and has a tilt alignment in which liquid crystal molecule long axes of the liquid crystal layer are aligned in one direction on the surface of the substrate. That is, on the upper and lower substrate surfaces, straight lines in the direction in which the liquid crystal molecule long axes are arranged at opposing points are arranged so as to have points intersecting each other between the planes having the upper and lower substrate surfaces, and It is characterized in that a driving liquid crystal panel in which liquid crystal is not twisted and a birefringence anisotropy compensation panel for optically compensating the birefringence anisotropy in the plane direction thereof are optically continuously laminated. Liquid crystal display device.
【請求項2】 駆動用液晶パネルに液晶分子を垂直配列
させた視角依存補償パネルを重ねてなり、前記駆動用液
晶パネルの電圧無印加時における複屈折値が視角により
変化しにくくなるようにしたことを特徴とする請求項1
記載の液晶表示素子。
2. A driving-use liquid crystal panel is overlaid with a viewing-angle dependent compensating panel in which liquid crystal molecules are vertically aligned so that the birefringence value of the driving liquid-crystal panel when voltage is not applied does not easily change depending on the viewing angle. Claim 1 characterized by the above.
The liquid crystal display element described.
【請求項3】 視角依存補償パネルとして屈折率異方性
をもつ光学的異方性フィルムを用いたことを特徴とする
請求項2記載の液晶表示素子。
3. The liquid crystal display device according to claim 2, wherein an optically anisotropic film having a refractive index anisotropy is used as the viewing angle dependent compensation panel.
【請求項4】 平面方向における複屈折異方性を光学的
に補償する複屈折異方性補償パネルとして、駆動用液晶
パネルとほぼ等しい液晶分子配列を持ち、その光学異方
性がほぼ等しい液晶パネルをその液晶分子配列が、駆動
用液晶パネルの液晶分子配列とほぼ直交するように重ね
たことを特徴とする請求項1の液晶表示素子。
4. A birefringence anisotropy compensating panel for optically compensating for birefringence anisotropy in a plane direction, which has a liquid crystal molecule alignment substantially equal to that of a driving liquid crystal panel and has substantially the same optical anisotropy. 2. The liquid crystal display device according to claim 1, wherein the panels are stacked so that the liquid crystal molecule arrangement thereof is substantially orthogonal to the liquid crystal molecule arrangement of the driving liquid crystal panel.
【請求項5】 平面方向における複屈折異方性を光学的
に補償する複屈折異方性補償パネルとして、駆動用液晶
パネルとほぼ等しい光学異方性を持つ光学的異方性フィ
ルムを、駆動用液晶パネルの平面方向における光学異方
性と逆の光学異方性となるように位置させることを特徴
とする請求項1の液晶表示素子。
5. A birefringence anisotropy compensating panel for optically compensating birefringence anisotropy in the plane direction, which comprises driving an optically anisotropic film having an optical anisotropy substantially equal to that of a driving liquid crystal panel. The liquid crystal display device according to claim 1, wherein the liquid crystal display device is positioned so as to have an optical anisotropy opposite to the optical anisotropy in the plane direction of the liquid crystal panel.
JP8916592A 1992-04-10 1992-04-10 Liquid crystal display element Pending JPH05289097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8916592A JPH05289097A (en) 1992-04-10 1992-04-10 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8916592A JPH05289097A (en) 1992-04-10 1992-04-10 Liquid crystal display element

Publications (1)

Publication Number Publication Date
JPH05289097A true JPH05289097A (en) 1993-11-05

Family

ID=13963204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8916592A Pending JPH05289097A (en) 1992-04-10 1992-04-10 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPH05289097A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313909A (en) * 1995-05-23 1996-11-29 Fujitsu Ltd Liquid crystal display panel
US6650386B1 (en) 1998-06-29 2003-11-18 Sharp Kabushiki Kaisha Nematic liquid crystal display device with multi-domain pixels and compensation with nc>na>nb
JP2010032787A (en) * 2008-07-29 2010-02-12 Toshiba Mobile Display Co Ltd Liquid crystal display

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313909A (en) * 1995-05-23 1996-11-29 Fujitsu Ltd Liquid crystal display panel
US6650386B1 (en) 1998-06-29 2003-11-18 Sharp Kabushiki Kaisha Nematic liquid crystal display device with multi-domain pixels and compensation with nc>na>nb
US7327424B2 (en) 1998-06-29 2008-02-05 Sharp Kabushiki Kaisha Nematic liquid crystal display device with multi-domain pixels and six phase difference compensators
JP2010032787A (en) * 2008-07-29 2010-02-12 Toshiba Mobile Display Co Ltd Liquid crystal display

Similar Documents

Publication Publication Date Title
JP3322197B2 (en) Liquid crystal display
JPH09160042A (en) Liquid crystal display element
JP2921813B2 (en) Electrode structure of liquid crystal display
KR20010072055A (en) Improving the angle of view of a lcd screen by novel birefringent film stacking
JP3183647B2 (en) Parallel alignment liquid crystal display
JP2856942B2 (en) Liquid crystal display element and optically anisotropic element
JPH05289097A (en) Liquid crystal display element
JPH01219720A (en) Liquid crystal electrooptic element
JP3207374B2 (en) Liquid crystal display device
JPH1026766A (en) Liquid crystal display device
JPH08101381A (en) Liquid crystal display element
JP3628094B2 (en) Liquid crystal display element and optical anisotropic element
JPH03134622A (en) Liquid crystal electrooptical element
JP3643439B2 (en) Liquid crystal display element
JP4063919B2 (en) LCD panel
JPH09203895A (en) Liquid crystal display element and optical anisotropic element
JP3896135B2 (en) Liquid crystal display element and optical anisotropic element
JP4266209B2 (en) Liquid crystal display element and optical anisotropic element
KR100951128B1 (en) Liquid crystal display device
JP2000347188A (en) Liquid crystal display device
KR100506420B1 (en) Liquid Crystal Display Device Using C-plate
JPH07175058A (en) Liquid crystal display element
JP2002236297A (en) Liquid crystal display device
JP2825903B2 (en) Liquid crystal display device
Lee et al. Multi‐Domainlike, Homeotropic Nematic Liquid Crystal Display