[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0375224A - Method for purifying aqueous solution of indium - Google Patents

Method for purifying aqueous solution of indium

Info

Publication number
JPH0375224A
JPH0375224A JP1206655A JP20665589A JPH0375224A JP H0375224 A JPH0375224 A JP H0375224A JP 1206655 A JP1206655 A JP 1206655A JP 20665589 A JP20665589 A JP 20665589A JP H0375224 A JPH0375224 A JP H0375224A
Authority
JP
Japan
Prior art keywords
aqueous solution
concentration
acid
tin
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1206655A
Other languages
Japanese (ja)
Inventor
Ryoji Yoshimura
吉村 了治
Nobuhiro Ogawa
小川 展弘
Takashi Mori
隆 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP1206655A priority Critical patent/JPH0375224A/en
Publication of JPH0375224A publication Critical patent/JPH0375224A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To readily enable purification of an aqueous solution of indium in a short time by adding counter ions of halogenostannate ions to an aqueous solution containing In and Sn coexisting with a strong acid group and halide ions. CONSTITUTION:Scraps, etc., of an In oxide sputtering target doped with Sn are dissolved in a concentrated HCl, etc., so as to provide >=0.5mmol/l proton concentration, a halogen concentration of >=50 times based on Sn and >=0.5mmol/l Sn concentration to afford an aqueous solution (A) containing In and Sn coexisting with a strong acid in >=1mmol/l HCl concentration and halogen ions. Counter ions (e.g. aqueous ammonia) (B) of a halogenostannate in an equimolar amount or more with the Sn in the component (A) is then added to the component (A) and reacted therewith at 5-60 deg.C to afford a reaction product (C), which is subsequently centrifuged, etc., to separate the halogenostannate (D). The resultant acidic aqueous solution of the In is then purified by an ion exchange method, etc., to produce a high-purity aqueous solution of the In.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はインジウムと錫を含む水溶液から有価物である
インジウムを回収する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for recovering indium, which is a valuable material, from an aqueous solution containing indium and tin.

[従来の技術] インジウム(1n〉と錫を含む水溶液としては、例えば
、錫をドープした酸化In(以下ITOと記載)スパッ
タリングターゲットのスクラップを酸に溶解したものが
挙げられる。
[Prior Art] Examples of aqueous solutions containing indium (1n) and tin include those obtained by dissolving scraps of tin-doped In oxide (hereinafter referred to as ITO) sputtering targets in acid.

現在、Inは、InP 5InAs等の金属間化合物や
ITO等の透明導電性薄膜として利用されており、今後
、益々Inの需要は伸長するものと期待される。
Currently, In is used in intermetallic compounds such as InP 5 InAs and transparent conductive thin films such as ITO, and the demand for In is expected to increase further in the future.

[従来の技術及び発明が解決しようとする課題〕[TO
等のターゲットの製造時の不良品、例えば、焼結体製造
時クラックが入ったもの、焼結密度が不充分なもの又、
ITOターゲットを用いた透明導電性薄膜製造工程で発
生するスクラップ等から有価物であるInの回収が期待
されており種々の方法が提案されているが未だ経済的な
方法が確立されていない状況にある。
[Prior art and problems to be solved by the invention] [TO
Defective products during the manufacture of targets such as those with cracks during the manufacture of sintered bodies, those with insufficient sintering density,
It is expected that In, a valuable resource, can be recovered from scrap generated in the process of manufacturing transparent conductive thin films using ITO targets, and various methods have been proposed, but an economical method has not yet been established. be.

一般に、Inと錫を含む水溶液から錫とInを分離する
方法としては、これらを含む水溶液のpHを12以上に
し、Inを水酸化物として沈殿させ、一方錫は水溶液中
に溶解させてこれらを固液分離する方法がある。しかし
、この方法では、生成するInの水酸化物が極めて濾過
性が悪く、濾過操作に長時間必要とするなど経済性の面
で問題がある。
Generally, the method for separating tin and In from an aqueous solution containing In and tin is to raise the pH of the aqueous solution containing them to 12 or higher and precipitate In as a hydroxide, while tin is dissolved in the aqueous solution to separate them. There is a method of solid-liquid separation. However, this method has problems in terms of economy, such as the generated In hydroxide having extremely poor filterability and requiring a long time for the filtration operation.

また、大型の装置を利用したイオン交換法、溶媒抽出法
等の方法もあるが、これらの方法は、生産効率を上昇さ
せるため化学精製による粗分離が必要であるなど工程が
繁雑となる。
There are also methods such as ion exchange and solvent extraction that use large-scale equipment, but these methods require rough separation through chemical purification in order to increase production efficiency, resulting in complicated processes.

[発明の目的コ 本発明は、従来技術のもつ前記課題を解決すべく為され
たものであって、Inと錫を含む水溶液から錫を分離し
、In水溶液を回収する方法を提供することを目的とす
る。
[Object of the Invention] The present invention has been made to solve the above-mentioned problems of the prior art, and aims to provide a method for separating tin from an aqueous solution containing In and tin and recovering the In aqueous solution. purpose.

[課題を解決するための手段] 本発明者らは、Inと錫を含む水溶液からこれらを分離
する方法を鋭意検討した結果、水溶液中で共存する錫を
ハロゲノ錫酸塩とすることにより、錫だけを選択的に分
離できる事を見出し本発明を完成した。即ち、本発明は
、強酸及びハロゲンイオンが共存するインジウムと錫を
含む水溶液に、ハロゲノ錫酸イオンの対イオンを添加し
、ハロゲノ錫酸塩を分離する事を特徴とするインジウム
水溶液の精製方法である。
[Means for Solving the Problems] As a result of intensive study on a method for separating In and tin from an aqueous solution containing them, the present inventors found that by converting tin coexisting in an aqueous solution into a halogenostannate, tin The present invention was completed by discovering that it is possible to selectively separate only the following. That is, the present invention is a method for purifying an indium aqueous solution, which is characterized by adding a counter ion of a halogenostannate ion to an aqueous solution containing indium and tin in which a strong acid and a halide ion coexist to separate the halogenostannate. be.

以下、本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

本発明の出発原料は1nと錫を含む水溶液であれば広く
採用できるが、ここでは、IToスクラップの塩酸冶解
液を用いた場合について説明する。
The starting material of the present invention can be widely used as long as it is an aqueous solution containing 1N and tin, but here, a case will be described in which a hydrochloric acid solution of ITo scrap is used.

ITOスクラップを酸に溶解する場合、用いる酸は塩酸
、硝酸、硫酸等の酸が考えられるが、塩酸を使用した場
合、最も速く溶解する事ができ好ましい。硝酸を用いる
場合は、錫をメタ錫酸として分離できるが、極めて溶解
速度が遅く、硫酸の場合も溶解速度は塩酸に劣る。また
、ITOスクラップの塩酸への溶解速度は、高温で行な
う場合顕著に速くなり5〜95℃で行なうのが好ましい
When dissolving ITO scrap in an acid, acids such as hydrochloric acid, nitric acid, and sulfuric acid can be considered, but it is preferable to use hydrochloric acid because it can be dissolved most quickly. When using nitric acid, tin can be separated as metastannic acid, but the dissolution rate is extremely slow, and when using sulfuric acid, the dissolution rate is also inferior to that of hydrochloric acid. Further, the rate of dissolution of ITO scrap into hydrochloric acid becomes significantly faster when the dissolution is carried out at a high temperature, so it is preferable to carry out the dissolution at a temperature of 5 to 95°C.

本発明では、このようなInと錫を含む水溶液から、錫
をハロゲノ錫酸塩として分離する。水溶液中の錫は、ハ
ロゲノ錫酸イオンとその対イオンの存在でハロゲノ錫酸
塩として生成させる事ができるが、その精製効率は、該
水溶液中の酸濃度、ハロゲンイオン濃度、ハロゲノ錫酸
塩の対イオンとなる陽イオンの濃度に依存する。Inと
錫を含む水溶液の酸濃度に相当するプロトン濃度は、0
.5mm。
In the present invention, tin is separated as a halogenostannate from such an aqueous solution containing In and tin. Tin in an aqueous solution can be produced as a halogenostannate in the presence of a halogenostannate ion and its counter ion, but the purification efficiency depends on the acid concentration in the aqueous solution, the halide ion concentration, and the concentration of halogenostannate. It depends on the concentration of the cation that serves as the counter ion. The proton concentration corresponding to the acid concentration of an aqueous solution containing In and tin is 0.
.. 5mm.

1/1以上が好ましく、更には3moJ!/j!以上が
特に好ましい。このプロトン濃度が低い場合は、ハロゲ
ンイオンの必要量、ハロゲノ錫酸塩の対イオンとなる陽
イオンの必要量が増大し、不経済であるばかりか、錫化
合物の生成量も減少し本発明の効果が減少する。更に、
前記プロトン濃度が低過ぎると溶液中の各種金属イオン
が水酸化物となると同時にinも水酸化物となるため、
錫の選択的分離が困難となり、又、生成物の濾過性を悪
くし、本発明の効果を著しく低下させる。プロトン濃度
を調整する酸の種類としては、特に限定しないが、塩酸
、硝酸、硫酸等の強酸が好ましく、更に、フッ酸、塩酸
、臭素酸等のハロゲンを含む酸が好ましい。ハロゲンを
含む酸を使用した場合、酸の濃度とハロゲンイオン濃度
を同時に調整できる。
Preferably 1/1 or more, more preferably 3moJ! /j! The above is particularly preferable. If this proton concentration is low, the required amount of halogen ions and the required amount of cations serving as counter ions of the halogenostannate are increased, which is not only uneconomical, but also reduces the amount of tin compounds produced, which makes it difficult to use in the present invention. effectiveness decreases. Furthermore,
If the proton concentration is too low, various metal ions in the solution will become hydroxides, and at the same time, in will also become hydroxides.
Selective separation of tin becomes difficult, and the filterability of the product becomes poor, significantly reducing the effectiveness of the present invention. The type of acid for adjusting the proton concentration is not particularly limited, but strong acids such as hydrochloric acid, nitric acid, and sulfuric acid are preferred, and halogen-containing acids such as hydrofluoric acid, hydrochloric acid, and bromic acid are more preferred. When using an acid containing a halogen, the acid concentration and the halogen ion concentration can be adjusted at the same time.

又、本発明に於いてハロゲノ錫酸塩を生成させる際、I
nと錫とを含む強酸性水溶液のハロゲンイオン濃度は、
ハロゲンイオンの種類にもよるが錫に対して50倍モル
以上が好ましく、特に、80倍モル以上が好ましい。こ
の際のハロゲンイオンの調整方法としてはハロゲンイオ
ンを含む酸、例えば塩酸等を添加して調整してもよいが
、塩化ナトリウム、塩化アンモニウム等のハロゲンイオ
ンを含む塩を添加して調整してもよい。
In addition, in the present invention, when producing halogenostannate, I
The halogen ion concentration of a strongly acidic aqueous solution containing n and tin is
Although it depends on the type of halogen ion, it is preferably at least 50 times molar relative to tin, particularly preferably at least 80 times molar. At this time, the halogen ions may be adjusted by adding an acid containing halogen ions, such as hydrochloric acid, or by adding a salt containing halogen ions such as sodium chloride or ammonium chloride. good.

このように本発明でInと錫を含む水溶液は、ハロゲン
イオンが存在し、強酸性下であることが必須条件である
ため、必然的に錫を含む溶液が塩酸水溶液、臭化水素酸
水溶液等のハロゲンイオンを含む強酸性溶液である場合
が最も経済的でかつ操作を簡略化でき好ましいが、錫を
含む硫酸水溶液等のハロゲンイオンを含まない強酸性水
溶液に、塩化アンモニウム等のハロゲンイオン源を添加
する事によっても上記必須条件を達成でき、又、ハロゲ
ンイオンと錫とを含む溶液に硫酸を添加する事によって
も達成できる。
In this way, the aqueous solution containing In and tin in the present invention must have halogen ions and be under strong acidity. A strongly acidic solution containing halogen ions is preferred because it is the most economical and can simplify the operation. The above essential conditions can also be achieved by adding sulfuric acid, or by adding sulfuric acid to a solution containing halogen ions and tin.

本発明における錫とは、Sn2+、Sn4+のいずれで
もよい。このどちらのイオンに対しても、本発明の効果
は顕著である。また、本発明で処理する水溶液の錫の濃
度は、0.5mmoi/ 1以上であることが好ましい
。この際、錫の濃度が低い場合は本発明の効果が減少す
る。
In the present invention, tin may be either Sn2+ or Sn4+. The effect of the present invention is remarkable for both of these ions. Further, the tin concentration of the aqueous solution treated in the present invention is preferably 0.5 mmoi/1 or more. At this time, if the tin concentration is low, the effect of the present invention will be reduced.

このようなinと錫を含む溶液の調整方法としては、例
えば、スクラップITOターゲットを濃塩酸に溶解する
場合、すでにハロゲンイオンが存在し、強酸性下にある
ため、塩酸濃度を1moJ!/J!以上、好ましくは3
IIIOili以上になるようにターゲットを溶解し、
ハロゲンイオン濃度と酸濃度を調整する方法等が挙げら
れる。
A method for preparing such a solution containing in and tin is, for example, when dissolving a scrap ITO target in concentrated hydrochloric acid, since halogen ions are already present and the environment is strongly acidic, the hydrochloric acid concentration should be reduced to 1 moJ! /J! Above, preferably 3
Dissolve the target so that it is more than IIIOili,
Examples include a method of adjusting the halogen ion concentration and acid concentration.

このような強酸及びハロゲンイオンが共存する1nと錫
を含む水溶液にハロゲノ錫酸イオンの対イオンを供給し
、ハロゲノ錫酸塩を生成させる。ノ\ロゲノ錫酸塩の対
イオンとなる陽イオンの添加量は、ハロゲンイオン濃度
、酸濃度にもよるが、錫に対してハロゲノ錫酸塩の対イ
オンが等モル以上になるように添加する事が好ましい。
A counter ion of a halogenostannate ion is supplied to an aqueous solution containing 1N and tin in which such a strong acid and a halide ion coexist to generate a halogenostannate. The amount of cations to be added that serve as counter ions for halogen stannate depends on the halogen ion concentration and acid concentration, but it should be added so that the counter ions of halogen stannate are at least equimolar to tin. Things are good.

この対イオンの添加量が少ない場合、ハロゲノ錫酸塩の
生成効率が悪くなり、必要以上に多過ぎると不経済でも
ある。この際の陽イオンの添加方法としては、水溶液中
で電解質として作用するものであれば良く、無機質物で
も有機質物でも良い。無機質物としては、アンモニア水
、水酸化ナトリウム、水酸化カリウム、水酸化カルシウ
ム、水酸化マグネシウム等の塩基、及びこれらの塩酸塩
、硝酸塩、硫酸塩等が挙げられる。有機質物としては、
メチルアミン、ジメチルアミン、エチルアミン、ピリジ
ン等の塩基及びこれらの塩酸塩等が挙げられる。
If the amount of this counterion added is small, the production efficiency of halogenostannate will be poor, and if it is too much than necessary, it will be uneconomical. The method for adding cations at this time may be any method as long as it acts as an electrolyte in an aqueous solution, and may be an inorganic or organic material. Examples of inorganic substances include bases such as aqueous ammonia, sodium hydroxide, potassium hydroxide, calcium hydroxide, and magnesium hydroxide, and their hydrochlorides, nitrates, and sulfates. As organic matter,
Examples include bases such as methylamine, dimethylamine, ethylamine, and pyridine, and their hydrochlorides.

本発明では、ハロゲノ錫酸塩はアンモニウム塩及び/又
はアミン類の塩として生成させる事が好ましく、この際
、溶液中へのナトリウムイオン、カルシウムイオン等の
無機金属イオンの混入が避けられ、本発明の効果も著し
い。しかし経済性を考えるとアンモニウム塩として生成
させる事が特に好ましい。水酸化ナトリウムのような塩
基を添加する場合は、溶液中のプロトン濃度が減少する
事になるため、プロトン濃度の調節に注意する必要があ
る。これらの添加方法としては粉状、スラリ、水溶液等
で添加する方法があるが、液量の増加が予想される場合
は粉状がよく、錫の分離生成効果も向上する。
In the present invention, it is preferable that the halogenostannate be produced as an ammonium salt and/or a salt of amines, and in this case, mixing of inorganic metal ions such as sodium ions and calcium ions into the solution can be avoided, and the present invention The effect is also significant. However, considering economic efficiency, it is particularly preferable to produce it as an ammonium salt. When adding a base such as sodium hydroxide, the proton concentration in the solution will decrease, so care must be taken to adjust the proton concentration. These can be added in the form of powder, slurry, aqueous solution, etc., but if an increase in liquid volume is expected, powder form is preferable and improves the effect of separating and producing tin.

このようにして、錫を選択的に生成させるが、この際の
反応温度は、特に制限はなく5〜60℃が好ましい。こ
の温度が高過ぎると生成物の溶解度が大きくなるためか
生成量が低下する。
In this way, tin is selectively produced, but the reaction temperature at this time is not particularly limited and is preferably 5 to 60°C. If this temperature is too high, the amount of product produced decreases, probably because the solubility of the product increases.

次に、得られたハロゲノ錫酸塩の生成物を含むスラリー
からハロゲノ錫酸塩を分離する。この分離には、通常の
装置、例えば、遠心分離器、ベルトフィルター、ドラム
フィルター等を用いる事が出来る。本発明ではこの際の
生成物の分離性は極めて良く、短時間で容易に固液分離
できる。ここで得られた分離生成物は、錫イオンにハロ
ゲンイオンが配位した陰イオン錯体が、添加した電解質
のアンモニウムイオン、ナトリウムイオン等を対イオン
として生成したハロゲノ錫酸塩、例えば、クロル錫酸ア
ンモニウム、ブロム錫酸アンモニウム、クロル錫酸ナト
リウム等である。これらの錫の塩は、水に対する溶解度
が大きく、一般には溶液の蒸発乾固等の方法ではじめて
得られるものと考えられていたが、本発明のように、ノ
\ロゲンイオン濃度、酸濃度、ハロゲノ錫酸イオンの対
イオンとなる陽イオンの濃度を調整する事によりを容易
に分離する事ができる。
The halogenostannate is then separated from the resulting slurry containing the halogenostannate product. For this separation, conventional equipment such as centrifuges, belt filters, drum filters, etc. can be used. In the present invention, the separation of the product at this time is extremely good, and solid-liquid separation can be easily performed in a short time. The separated product obtained here is a halogenostannate, such as chlorostannic acid, which is produced by an anion complex in which a halide ion is coordinated with a tin ion, using the added electrolyte ammonium ion, sodium ion, etc. as a counter ion. Ammonium, ammonium brostannate, sodium chlorostannate, etc. These tin salts have high solubility in water, and it was generally thought that they could only be obtained by methods such as evaporation of a solution to dryness. It can be easily separated by adjusting the concentration of cations that serve as counter ions to stannate ions.

このようにして、inと錫を含む水溶液から錫を分離し
たinの酸性水溶液を得る事ができる。しかし、この溶
液には、錫以外の不純物、例えば、鉄、カルシウム、ナ
トリウム、ジルコニウム等が混入している場合があり、
このような場合には、電解析出、イオン交換法、化学精
製等の方法で高純度のIn水溶液とすることができる。
In this way, an acidic aqueous solution of in, in which tin is separated from an aqueous solution containing in and tin, can be obtained. However, this solution may contain impurities other than tin, such as iron, calcium, sodium, and zirconium.
In such a case, a highly purified In aqueous solution can be obtained by methods such as electrolytic deposition, ion exchange, and chemical purification.

ここで、電解析出により溶液を精製する場合は、Inよ
り責な析出電位を持つ錫が本発明により除去されている
ので、Inの水溶液中にInより責な析出電位を持つ金
属が多量に混入していない限り、そのまま電解析出によ
りinを金属として回収する事ができる。この時、例え
ば、Inの水溶液の酸濃度が高い場合は、inの電解析
出と同時に水素発生が起こるため電流効率が低くなる。
Here, when the solution is purified by electrolytic deposition, since tin, which has a higher deposition potential than In, is removed by the present invention, a large amount of metal, which has a higher deposition potential than In, is removed from the In aqueous solution. As long as it is not mixed, in can be recovered as a metal by electrolytic deposition. At this time, for example, if the acid concentration of the In aqueous solution is high, hydrogen generation occurs simultaneously with the electrolytic deposition of In, resulting in a low current efficiency.

又、酸濃度が低過ぎると1nの水酸化物が生成するので
、本発明で処理したInを含む溶液をpHO〜3,5、
好ましくは1〜3.5に調整し、該溶液から電解法によ
りInを回収するのが好ましい。
In addition, if the acid concentration is too low, 1N hydroxide will be generated, so the solution containing In treated with the present invention should be adjusted to pH 3.5,
Preferably, the value is adjusted to 1 to 3.5, and In is recovered from the solution by electrolysis.

又、イオン交換法による精製の場合は、例えばエチレン
ジアミンテトラ酢酸(EDTA)等の溶離剤を使用して
分離する場合、Inと溶出順序が隣り合わせである錫が
本発明で除去されているため、容易にInを他の金属と
分離し、高純度Inを回収する事ができる。
In addition, in the case of purification by an ion exchange method, for example, when separating using an eluent such as ethylenediaminetetraacetic acid (EDTA), tin, which is adjacent to In in the elution order, is removed in the present invention, so it is easy to perform separation. It is possible to separate In from other metals and recover high-purity In.

又、化学精製で錫以外の金属不純物を除去し、インジウ
ムを回収する方法としては、蓚酸塩として回収する方法
、水酸化物として回収する方法、ギ酸塩等の有機酸塩と
して回収する方法等がある。
In addition, methods for recovering indium by removing metal impurities other than tin through chemical refining include methods for recovering indium as oxalate, methods for recovering as hydroxide, and methods for recovering indium as organic acid salts such as formate. be.

蓚酸塩としてInを回収する方法は、本発明で処理した
Inを含む酸性水溶液に酸又はアルカリを添加しp11
調整を行ない、蓚酸及び/又は蓚酸塩を添加し1nを蓚
酸塩として回収する方法である。この際のpH調整の最
適範囲は、Inの濃度、温度、添加する蓚酸及び/又は
蓚酸塩の量によるが、pHO〜2の範囲に調整する事が
好ましい。このpHが低過ぎるとIn蓚酸塩の溶解度が
大きくなり回収率が低下する。又このpHが高過ぎると
得られたIn蓚酸塩の中にIn以外の金属が多量に混入
し、精製効果が小さくなる。添加する酸の種類は特に限
定はなく、塩酸、硫酸、硝酸等の鉱酸が挙げられる。添
加するアルカリの種類にも制限はないが、アルカリ金属
の水酸化物、アルカリ土類金属の水酸化物、アンモニア
等が挙げられる。
A method for recovering In as oxalate is to add acid or alkali to an acidic aqueous solution containing In treated according to the present invention.
This is a method in which oxalic acid and/or oxalate is added after adjustment, and 1N is recovered as oxalate. The optimum range for pH adjustment at this time depends on the concentration of In, temperature, and the amount of oxalic acid and/or oxalate to be added, but it is preferable to adjust the pH to a range of ~2. If this pH is too low, the solubility of In oxalate increases and the recovery rate decreases. Moreover, if this pH is too high, a large amount of metals other than In will be mixed into the obtained In oxalate, reducing the purification effect. The type of acid to be added is not particularly limited, and examples include mineral acids such as hydrochloric acid, sulfuric acid, and nitric acid. There are no restrictions on the type of alkali to be added, but examples include alkali metal hydroxides, alkaline earth metal hydroxides, and ammonia.

本発明で処理したInを含む酸性水溶液から蓚酸塩とし
てInを生成させる際、蓚酸及び/又は蓚酸塩を添加す
るが、用いる蓚酸塩としてはアルカリ金属の塩、アルカ
リ土類金属の塩、アンモニウム塩等が挙げられるが、金
属イオンを含まない塩を用いることが高純度のinを回
収するためには好ましく、アンモニウム塩が特に好まし
い。蓚酸及び/又は蓚酸塩の添加量は温度、pHs I
n濃度、In以外の金属イオンの濃度等によるが、In
に対して0゜5〜2.5倍等量が好ましい。この量が少
ないとinの回収率が低下し、又多いとIn以外の金属
イオンが共に生成するので好ましくない。
When producing In as oxalate from the In-containing acidic aqueous solution treated in the present invention, oxalic acid and/or oxalate is added, and the oxalate used is an alkali metal salt, an alkaline earth metal salt, or an ammonium salt. However, in order to recover highly pure in, it is preferable to use a salt that does not contain metal ions, and ammonium salts are particularly preferable. The amount of oxalic acid and/or oxalate added depends on the temperature, pHs I
Although it depends on the n concentration, the concentration of metal ions other than In, etc.
The equivalent amount is preferably 0.5 to 2.5 times. If this amount is too small, the recovery rate of In will decrease, and if it is too large, metal ions other than In will also be produced, which is not preferable.

次に、得られたInの蓚酸塩を含むスラリーからInの
蓚酸塩を分離回収する。得られたInの蓚酸塩は純水、
希酸の水溶液又は希蓚酸水溶液を用いて洗浄し、Inの
蓚酸塩に付着したIn以外の金属塩を除去する事が好ま
しい。
Next, In oxalate is separated and recovered from the obtained slurry containing In oxalate. The obtained In oxalate is purified water,
It is preferable to wash with a dilute acid aqueous solution or a dilute oxalic acid aqueous solution to remove metal salts other than In attached to the In oxalate.

一方、水酸化物としてinを回収する場合は、本発明で
処理したInを含む酸性水溶液を還元剤の存在下、アル
カリでpH3〜5に中和し、Inを水酸化物として回収
する。この際、還元剤を存在させる事により、鉄、亜鉛
、テルル等の不純物金属イオンを還元し、これらの水酸
化物が生威しにくいpHにする事により、inの水酸化
物を選択的に生成させる事ができる。ここで添加するア
ルカリの種類には制限はないが、アルカリ金属の水酸化
物、アルカリ土類金属の水酸化物、アンモニア等が挙げ
られる。アンモニアを用いる場合、本発明で処理したI
nを含む酸性水溶液中にナトリウムイオンやカリウムイ
オン等の金属イオンが混入しないため、高純度のinを
回収する場合は特に好ましい。
On the other hand, when in is recovered as a hydroxide, an acidic aqueous solution containing In treated according to the present invention is neutralized to pH 3 to 5 with an alkali in the presence of a reducing agent, and In is recovered as a hydroxide. At this time, the presence of a reducing agent reduces impurity metal ions such as iron, zinc, tellurium, etc., and by adjusting the pH so that these hydroxides are difficult to grow, the hydroxides of in are selectively removed. It can be generated. The type of alkali added here is not limited, but examples include alkali metal hydroxides, alkaline earth metal hydroxides, ammonia, and the like. When using ammonia, I treated according to the present invention
Since metal ions such as sodium ions and potassium ions are not mixed into the acidic aqueous solution containing n, this method is particularly preferable when recovering high-purity in.

本発明で処理したInを含む酸性水溶液から水酸化物と
してInを生成させる際、還元剤例えば、ヒドラジン、
アスコルビン酸、亜硫酸ナトリウム、二酸化イオウ等を
使用するが、ナ゛トリウム、硫黄等を含まないヒドラジ
ンやアスコルビン酸が好ましい。還元剤の添加量は還元
剤の種類により異なるが、例えば不純物が鉄で、還元剤
がアスコルビン酸の場合、鉄に対して2倍モル添加すれ
ば十分である。このようにして鉄をPe”からFe2+
に変化させることにより、比較的溶解度の大きい水酸化
第一鉄とすることができる。
When producing In as a hydroxide from the acidic aqueous solution containing In treated in the present invention, reducing agents such as hydrazine,
Ascorbic acid, sodium sulfite, sulfur dioxide, etc. are used, but hydrazine and ascorbic acid, which do not contain sodium, sulfur, etc., are preferred. The amount of reducing agent added varies depending on the type of reducing agent, but for example, if the impurity is iron and the reducing agent is ascorbic acid, it is sufficient to add twice the amount of iron. In this way, iron is converted from Pe” to Fe2+
By changing to ferrous hydroxide, it is possible to obtain ferrous hydroxide with relatively high solubility.

本発明で処理したInを含む酸性水溶液の中和方法は、
特に限定しないが、酸の中和、及びInの水酸化物析出
のための中和とに分けて行なうことが好ましい。酸の中
和は高濃度のアルカリでも、低濃度のアルカリでも良い
が、液量の増加を防止し、生産効率を良くするには、高
濃度のアルカリを用いることが好ましい。ここで言う高
濃度のアルカリは特に限定はしないが、5規定以上の濃
度であることが好ましい。この酸の中和は、pHO〜3
の範囲で終了とする。前記酸の中和を終了した時点のp
HからI)H5までのアルカリの添加工程をInの水酸
化物析出のための中和という。
The method for neutralizing an acidic aqueous solution containing In treated according to the present invention is as follows:
Although not particularly limited, it is preferable to perform acid neutralization and neutralization for precipitation of In hydroxide separately. The acid may be neutralized using alkali at a high concentration or alkali at a low concentration, but in order to prevent an increase in the amount of liquid and improve production efficiency, it is preferable to use alkali at a high concentration. The high concentration of alkali mentioned here is not particularly limited, but it is preferably a concentration of 5N or more. Neutralization of this acid takes pH ~3
It shall end within the range of . p at the time when neutralization of the acid is completed
The step of adding alkali from H to I) H5 is called neutralization for precipitation of In hydroxide.

酸の中和の際、中和熱により液温の上昇が起こるため、
Inの水酸化物析出のための中和に移る前に、液温を下
げる事が好ましい。高温のままInの水酸化物析出のた
めの中和を行なうと生成したInの水酸化物がゲル状に
なり、濾過性を極めて悪くスル。したがって、Inの水
酸化物析出のための中和は、5〜60℃で行なう事が好
ましく、特に5〜35℃で行なう事が好ましい。
During acid neutralization, the temperature of the liquid increases due to the heat of neutralization.
It is preferable to lower the liquid temperature before proceeding to neutralization for precipitation of In hydroxide. If neutralization is performed to precipitate In hydroxide at a high temperature, the generated In hydroxide becomes gel-like, resulting in extremely poor filterability. Therefore, neutralization for precipitation of In hydroxide is preferably carried out at 5 to 60°C, particularly preferably at 5 to 35°C.

また、還元剤の添加は、酸の中和が終了し、Inの水酸
化物析出のための中和を行なう前が好ましい。還元剤を
添加してから、長時間経過すると、還元された金属イオ
ンが水溶液中の溶存酸素により酸化されるため、還完剤
添加の効果が減少する。
Further, it is preferable that the reducing agent is added after the neutralization of the acid is completed and before the neutralization for precipitation of In hydroxide is performed. If a long time elapses after adding the reducing agent, the reduced metal ions will be oxidized by dissolved oxygen in the aqueous solution, and the effect of adding the reducing agent will decrease.

還元剤を添加した後、再びアルカリを添加し、Inの水
酸化物の生成を行なう。アルカリの添加は、本発明で処
理したInを含む酸性水溶液のpHが3〜5の範囲にな
るようにする事が好ましい。pHが高過ぎると、鉄等の
不純物がinと共生成し、pHが低過ぎるとインジウム
の水酸化物生成効率が低くなる。添加するアルカリの濃
度は、低濃度が好ましく、5規定以下が好ましい。アル
カリの濃度が高過ぎると、生成するInの水酸化物中に
不純物が包含され得られるIn純度の低下を招く。
After adding the reducing agent, an alkali is added again to generate In hydroxide. It is preferable that the alkali be added so that the pH of the In-containing acidic aqueous solution treated according to the present invention is in the range of 3 to 5. If the pH is too high, impurities such as iron will co-produce with in, and if the pH is too low, the efficiency of indium hydroxide production will be low. The concentration of the alkali added is preferably low, and preferably 5N or less. If the alkali concentration is too high, impurities will be included in the In hydroxide produced, resulting in a decrease in the purity of the resulting In.

次に、得られたInの水酸化物を含むスラリーから1n
の水酸化物を分離回収する。この分離には、通常の装置
、例えば、遠心分離器、ベルトフィルター ドラムフィ
ルター等を用いる事ができる。
Next, from the obtained slurry containing In hydroxide, 1n
Separate and recover the hydroxide. For this separation, conventional equipment such as a centrifugal separator, belt filter, drum filter, etc. can be used.

Inの水酸化物の濾過性は極めて良く、短時間で容易に
固液分離できる。
The filterability of In hydroxide is extremely good, and it can be easily separated into solid and liquid in a short time.

得られたInの水酸化物は、純水、希酸の水溶液又はア
スコルビン酸等の還元剤を含む水溶液を用いて洗浄し、
Inの水酸化物に付着したIn以外の金属塩を除去する
ことが好ましい。
The obtained In hydroxide is washed using pure water, an aqueous solution of a dilute acid, or an aqueous solution containing a reducing agent such as ascorbic acid,
It is preferable to remove metal salts other than In attached to the In hydroxide.

このようにして得られたInの水酸化物は、乾燥、焼成
して酸化Inとする事もできる。又、更に高純度のIn
を回収するには、得られた水酸化物を酸に溶解して電解
析出法によりIn金属として回収しても良いし、イオン
交換法や溶媒抽出法によっても良い。
The In hydroxide thus obtained can be dried and fired to form In oxide. In addition, even higher purity In
In order to recover In metal, the obtained hydroxide may be dissolved in an acid and recovered as In metal by electrolytic deposition, or an ion exchange method or a solvent extraction method may be used.

例えば、In金属として回収する場合、まず、Inの水
酸化物を酸に溶解する。ここで使用する酸は、塩酸、硝
酸、硫酸等の無機酸でも良いし、ギ酸、クエン酸、酒石
酸等の有機酸でも良い。このようなInを含む酸水溶液
を電解液としてInを電解採取する。この電解液のpH
は高い程、水素発生を抑制する事ができ、電流効率を向
上させる事ができるが、pHが高過ぎるとinの加水分
解が起こる。この際の電解液のpHは、In以外の金属
イオン濃度にもよるが、O〜3.5が好ましい。又、電
解温度は室温から使用する電解液の沸点以下の範囲で行
なう事ができるが、一般に金属の酸に対する溶解速度は
温度が高いほど速いため、低い温度で電解を行なう方が
効率的である。好ましくは、室温から60℃の範囲で電
解を行なうのがよい。
For example, when recovering In metal, first, In hydroxide is dissolved in acid. The acid used here may be an inorganic acid such as hydrochloric acid, nitric acid, or sulfuric acid, or an organic acid such as formic acid, citric acid, or tartaric acid. In is electrolytically extracted using such an acid aqueous solution containing In as an electrolyte. The pH of this electrolyte
The higher the pH, the more hydrogen generation can be suppressed and the current efficiency can be improved, but if the pH is too high, hydrolysis of in will occur. The pH of the electrolytic solution at this time is preferably O to 3.5, although it depends on the concentration of metal ions other than In. In addition, electrolysis can be carried out at a temperature ranging from room temperature to below the boiling point of the electrolyte used, but generally speaking, the higher the temperature, the faster the dissolution rate of metals in acids, so it is more efficient to carry out electrolysis at a lower temperature. . Preferably, electrolysis is carried out at a temperature ranging from room temperature to 60°C.

Inの回収が行なわれる陰極はIn金属が好ましく、1
nが電着した陰極は、そのままインゴットとする事がで
きる。また、陽極は、電解液に侵されないものであれば
いずれも使用できるが、耐久性の面から、pt、黒鉛等
の使用が考えられる。しかし、電解槽がアニオン交換膜
で仕切られている場合、陽極から溶解した金属イオンの
影響を受けないため、陽極は、溶解性のものでもよい。
The cathode where In is recovered is preferably In metal, and 1
The cathode electrodeposited with n can be made into an ingot as it is. Further, any anode can be used as long as it is not corroded by the electrolyte, but from the viewpoint of durability, it is possible to use PT, graphite, or the like. However, when the electrolytic cell is partitioned by an anion exchange membrane, the anode may be a soluble one because it is not affected by metal ions dissolved from the anode.

しかし、電解液中の陰イオンは、アニオン交換膜を通過
して陽極から陰極へ移動するため、陽極室の電解液は陰
極室の電解液と同じ陰イオンである事が好ましい。たと
えば、陰極の電解液がギ酸1n溶液の場合は、陽極の電
解液はギ酸溶液やギ酸アンモニウム溶液である。また、
陰極の電解液が塩化Inの塩酸溶液の場合、陽極の電解
液は塩酸水溶液や塩化アンモニウム溶液、塩化ナトリウ
ム溶酸である。陽極の電解液がギ酸溶液の場合、陽極を
In金属にする事により、陰極室でインジウムの電解析
出回収を行ないながら、陽極室でinのギ酸溶液を生成
できる。このようにする事により1.電流を効率良く使
用する事ができ、陽極室で得られたInのギ酸溶液はI
TOターゲットの製造原料とする事ができる。
However, since the anions in the electrolyte pass through the anion exchange membrane and move from the anode to the cathode, it is preferable that the electrolyte in the anode compartment has the same anions as the electrolyte in the cathode compartment. For example, when the cathode electrolyte is a formic acid 1N solution, the anode electrolyte is a formic acid solution or an ammonium formate solution. Also,
When the cathode electrolyte is a hydrochloric acid solution of In chloride, the anode electrolyte is an aqueous hydrochloric acid solution, an ammonium chloride solution, or a sodium chloride solution. When the electrolyte at the anode is a formic acid solution, by using In metal as the anode, an In formic acid solution can be generated in the anode chamber while indium is electrolytically deposited and recovered in the cathode chamber. By doing this, 1. Current can be used efficiently, and the In formic acid solution obtained in the anode chamber is
It can be used as a raw material for producing TO targets.

[発明の効果コ 次に、本発明の効果を列記する。[Effects of invention Next, the effects of the present invention will be listed.

(1)従来、溶解度が大きく酸性溶液中で生成しにくい
とされていたハロゲノ錫酸塩を、生成条件を選ぶ事によ
り、容易に生成させる事ができる。
(1) Halogenostannates, which were conventionally thought to be difficult to produce in acidic solutions due to their high solubility, can be easily produced by selecting the production conditions.

(2)本発明は、強酸性領域で錫のみを分離でき、In
の共生成がないため、錫と有価物であるInの混合水溶
液からInの割合の大きい水溶液を容易に得る事ができ
る。
(2) The present invention can separate only tin in a strongly acidic region, and
Since there is no co-production of In, an aqueous solution with a large proportion of In can be easily obtained from a mixed aqueous solution of tin and In, which is a valuable material.

(3)ハロゲノ錫酸塩の生成物が結晶性であるため、濾
過性が極めてよく、濾過操作も容易で、操作が短時間で
済む。
(3) Since the halogenostannate product is crystalline, it has extremely good filterability, and the filtration operation is easy and takes only a short time.

(4)本発明で処理したIn水溶液と、イオン交換法、
電解析出法、化学精製法等を組合せることにより高純度
(99,9%以上)金属In及び/又はIn化合物を容
易に得る事ができる。
(4) In aqueous solution treated with the present invention and ion exchange method,
High purity (99.9% or more) metal In and/or In compounds can be easily obtained by combining electrolytic deposition, chemical refining, etc.

[実施例コ 以下本発明の実施例、比較例及び参考例を示すが、本発
明はこれらに限定されるものでない。
[Example] Examples, comparative examples, and reference examples of the present invention are shown below, but the present invention is not limited to these.

実施例1 撹拌機を備えた21のセパラブルフラスコに36%塩酸
水溶液tgとスクラップITOターゲット200gを入
れ、80℃で3時間撹拌しターゲットを溶解した。得ら
れた溶解液を濾過し、残留物を取除き、組成を分析した
結果、 塩酸濃度   :   6.5moJ / l11nイ
オン濃度 :   1.25filo 1 / Rスズ
イオン濃度:  102 mmoぶlオ鉄イオン濃度 
:   2 mmoJ! / 1ジルコニウムイオン濃
度: 1.1mmoj! / J!であった。
Example 1 A 36% hydrochloric acid aqueous solution tg and 200 g of a scrap ITO target were placed in a 21 separable flask equipped with a stirrer, and the mixture was stirred at 80° C. for 3 hours to dissolve the target. The resulting solution was filtered, the residue was removed, and the composition was analyzed. Hydrochloric acid concentration: 6.5 moJ / l11n ion concentration: 1.25 filo 1 / R Tin ion concentration: 102 mmoB iron ion concentration
: 2 mmoJ! / 1 Zirconium ion concentration: 1.1 mmoj! / J! Met.

このターゲット溶解液200IIl、gを撹拌機を備え
た300m1のセパラブルフラスコにとり、撹拌しなが
ら28%アンモニア水をlO+nJ添加し、ハロゲノ錫
酸塩の沈澱物を生成させ、1時間撹拌した。この時の水
溶液の温度は25℃であった。次に、該スラリーをNO
,5Cの濾紙で吸引濾過した。濾過性は非常によく、得
られた濾液をIPCにより分析したところ、 In濃度    :  1.2moぶ/オスズ濃度  
 :  10.8 tn mol / 1鉄イオン濃度
 :  1.9m但oR/ぶジルコニウムイオン濃度:
 1.I IIlmoJ / 、!!であった。
200 IIl.g of this target solution was placed in a 300 ml separable flask equipped with a stirrer, and while stirring, 10+nJ of 28% ammonia water was added to form a halogenostannate precipitate, followed by stirring for 1 hour. The temperature of the aqueous solution at this time was 25°C. Next, the slurry is NO.
, 5C filter paper. The filtration property was very good, and when the obtained filtrate was analyzed by IPC, In concentration: 1.2 mob/Ostin concentration
: 10.8 tn mol / 1 iron ion concentration : 1.9 m oR / zirconium ion concentration:
1. I IIlmoJ / ,! ! Met.

実施例2 実施例1のターゲット溶解液をLOOmJ!を撹拌機を
備えた200+J!のセパラブルフラスコにとり、撹拌
しながら14Nの水酸化ナトリウム水溶液を10m1添
加し、ハロゲノ錫酸塩の沈澱物を生成させ、1時間撹拌
した。この時の温度は25℃であった。
Example 2 The target solution of Example 1 was used as LOOmJ! 200+J with a stirrer! 10 ml of a 14N aqueous sodium hydroxide solution was added to the mixture in a separable flask with stirring to form a precipitate of halogenostannate, and the mixture was stirred for 1 hour. The temperature at this time was 25°C.

次に、該スラリーをNO,5Gの濾紙で吸引濾過した。Next, the slurry was suction filtered through NO, 5G filter paper.

濾過性は非常によく、得られた濾液をIPCにより分析
したところ、In濃度が1.1 moJ! / 1 、
スズ濃度が58 mmoj / J!であった。
The filterability was very good, and when the obtained filtrate was analyzed by IPC, the In concentration was 1.1 moJ! / 1,
The tin concentration is 58 mmoj/J! Met.

実施例3 実施例1のターゲット溶解液LooIII、eを撹拌機
を備えた200IIl、eのセパラブルフラスコにとり
、撹拌しながら塩化アンモニウム3.9gを添加し、ハ
ロゲノ錫酸塩の沈澱物を生成させ、1時間撹拌した。こ
の時の温度は25℃であった。次に、該スラリーをNO
,5Gの濾紙で吸引濾過した。濾過性は非常によく、得
られた濾液をIPCにより分析したところ、In濃度が
1.2 moi/ J! 、スズ濃度が15.1 mm
oJ! / 1であった。
Example 3 The target solution LooIII,e from Example 1 was placed in a 200III,e separable flask equipped with a stirrer, and 3.9 g of ammonium chloride was added while stirring to form a precipitate of halogenostannate. , and stirred for 1 hour. The temperature at this time was 25°C. Next, the slurry is NO.
, 5G filter paper. The filterability was very good, and when the obtained filtrate was analyzed by IPC, the In concentration was 1.2 moi/J! , tin concentration is 15.1 mm
oJ! / It was 1.

実施例4 実施例1のターゲット溶解液100m、eを撹拌機を備
えた200I!liのセパラブルフラスコにとり、撹拌
しながら硝酸アンモニウム5.8gを添加し、ハロゲノ
錫酸塩Ω沈澱物を生成させ、1時間撹拌した。この時の
温度は25℃であった。次に、該スラリーを、NO,5
Cの濾紙で吸引濾過した。濾過性は非常によく、得られ
た濾液をIPCにより分析したところ、In濃度が1.
2 tnol / 1 、スズ濃度が20.511II
IIOjl、eテアツタ。
Example 4 100 m, e of the target solution of Example 1 was added to 200 I! equipped with a stirrer! li separable flask, 5.8 g of ammonium nitrate was added with stirring to form a halogenostannate Ω precipitate, and the mixture was stirred for 1 hour. The temperature at this time was 25°C. Next, the slurry was mixed with NO.5
The mixture was suction-filtered using C filter paper. The filterability was very good, and when the obtained filtrate was analyzed by IPC, the In concentration was 1.
2 tnol/1, tin concentration is 20.511II
IIOjl, e teatuta.

比較例1 実施例1のターゲット溶解液100nlを撹拌機を備え
た200ra、i!のセパラブルフラスコにとり、撹拌
しながら28%アンモニア水を40 m A添加し、1
時間撹拌したがアンモニアの添加量が多過ぎ、水溶液が
強酸性下でなくなったため沈澱物は生成しなかった。
Comparative Example 1 100 nl of the target solution of Example 1 was heated to 200 ra with a stirrer, i! into a separable flask, add 40 mA of 28% ammonia water while stirring, and add 1
Although the mixture was stirred for several hours, the amount of ammonia added was too large and the aqueous solution disappeared under strong acidity, so no precipitate was formed.

比較例2 撹拌機を備えた11のセパラブルフラスコに12規定の
硫酸水溶液500IIIJ!とスクラップITOターゲ
ット100gを入れ、80℃で3時間撹拌し、ターゲッ
トを溶解した。得られた溶解液を濾過し、残留物を取除
き組成を分析した結果、 硫酸濃度   :  7.5 ioJ / 1inイオ
ン濃度 :  1.05moj / jスズイオン濃度
:  92 rmoj / jであった。
Comparative Example 2 12N sulfuric acid aqueous solution 500IIIJ was placed in 11 separable flasks equipped with a stirrer! and 100 g of scrap ITO target were added and stirred at 80° C. for 3 hours to dissolve the target. The obtained solution was filtered to remove the residue, and the composition was analyzed. The results were as follows: Sulfuric acid concentration: 7.5 ioJ/1in ion concentration: 1.05 moj/j Tin ion concentration: 92 rmoj/j.

このターゲット溶解液の100mJ!を撹拌機を備えた
200+nJのセパラブルフラスコにとり、撹拌しなが
ら28%アンモニア水を5  mfl添加し、1時間撹
拌したが、ハロゲンイオンが存在しないため、沈澱物は
生成しなかった。この時の水溶液の温度は25℃であっ
た。
100mJ of this target solution! was placed in a 200+nJ separable flask equipped with a stirrer, 5 mfl of 28% aqueous ammonia was added while stirring, and the mixture was stirred for 1 hour, but no precipitate was formed because no halogen ions were present. The temperature of the aqueous solution at this time was 25°C.

参考例1 実施例1で錫を分離した溶液100n+、eを、撹拌機
を備えた500rAiのセパラブルフラスコにとり、撹
拌しながら28%アンモニア水を添加し、溶液のpHを
2に調整し25℃まで放冷した。その後、アスコルビン
酸440 mgを添加し撹拌した後、2.8%アンモニ
ア水を添加してInの水酸化物を生成させた。
Reference Example 1 The solution 100n+,e from which tin was separated in Example 1 was placed in a 500 rAi separable flask equipped with a stirrer, and while stirring, 28% ammonia water was added, the pH of the solution was adjusted to 2, and the solution was heated at 25°C. It was left to cool until Thereafter, 440 mg of ascorbic acid was added and stirred, and then 2.8% aqueous ammonia was added to generate In hydroxide.

該スラリーのpHは4,2、温度は28℃であった。次
に、該スラリーをNO,5Cの濾紙で吸引濾過した。
The pH of the slurry was 4.2, and the temperature was 28°C. Next, the slurry was suction filtered through NO, 5C filter paper.

濾過性は非常によく得られたケーキを塩酸に溶解しIC
Pにより分析したところ、Inに対して錫が40oo 
ppm1鉄が110 ppm 、ジルコニウムが500
ppmであった。
The filterability was very good.The obtained cake was dissolved in hydrochloric acid and IC
When analyzed by P, tin is 40oooo compared to In.
ppm1 iron is 110 ppm, zirconium is 500 ppm
It was ppm.

参考例2 実施例1で錫を分離した溶液100+n1を、撹拌機を
備えた500mj!のセパラブルフラスコにとり、撹拌
しながら28%アンモニア水を添加し、溶液のpHを2
に調整し、25℃まで放冷した。その後、2゜8%アン
モニア水を添加してInの水酸化物を生成させた。該ス
ラリーのpHは4.2、温度は28℃であった。次に、
該スラリーをNO,5Cの濾紙で吸引濾過した。濾過性
は非常によく得られたケーキを塩酸に溶解しICPによ
り分析したところ、Inに対して錫が4000 ppm
、鉄が780ppm、ジルコニウムが300ppffl
であり還元剤の添加がなかったため実施例5に比べ鉄の
含有量が多かった。
Reference Example 2 100+n1 of the solution from which tin was separated in Example 1 was transferred to a 500mj! equipped with a stirrer. into a separable flask and add 28% ammonia water while stirring to adjust the pH of the solution to 2.
The mixture was cooled to 25°C. Thereafter, 2.8% ammonia water was added to generate In hydroxide. The pH of the slurry was 4.2 and the temperature was 28°C. next,
The slurry was suction filtered through NO, 5C filter paper. The filterability was very good. When the resulting cake was dissolved in hydrochloric acid and analyzed by ICP, it was found that tin was 4000 ppm relative to In.
, 780ppm of iron, 300ppffl of zirconium
Since no reducing agent was added, the iron content was higher than in Example 5.

参考例3 実施例1のターゲット溶解液toomjを、撹拌機を備
えた500mJのセパラブルフラスコにとり、撹拌しな
がら28%アンモニア水を添加し溶液のpHを2に調整
し25℃まで放冷した。その後、2.8%アンモニア水
を添加して1nの水酸化物を生成させた。
Reference Example 3 The target solution toomj of Example 1 was placed in a 500 mJ separable flask equipped with a stirrer, and while stirring, 28% ammonia water was added to adjust the pH of the solution to 2, and the solution was allowed to cool to 25°C. Thereafter, 2.8% aqueous ammonia was added to generate 1N hydroxide.

該スラリーのpl(は4.2、温度は28℃であった。The pl of the slurry was 4.2 and the temperature was 28°C.

次に、該スラリーをNo、5Cの濾紙で吸引濾過した。Next, the slurry was suction filtered using No. 5C filter paper.

得られたケーキを塩酸に溶解しICPにより分析したと
ころ、Inに対して錫が80200ppm、鉄が500
 ppm1ジルコニウムが300ppmであり、錫の分
離を行なっていないため、錫の含有量が極めて多かった
When the obtained cake was dissolved in hydrochloric acid and analyzed by ICP, it was found that tin was 80,200 ppm and iron was 500 ppm relative to In.
ppm1 zirconium was 300 ppm, and since tin was not separated, the tin content was extremely high.

参考例4 陽極も陰極も金属1nを電極とし、隔膜として東ソー株
式会社製のフッ素系アニオン交換膜5F−34を配した
電解槽において、陽極側の電解液を20%ギ酸水溶液、
陰極側の電解液を、実施例5と同様の操作を行なってI
nの水酸化物ケーキを生成させ、該ケーキを20%ギ酸
水溶液に溶解して得られたものを使用して電解を行なっ
た。
Reference Example 4 In an electrolytic cell in which both the anode and the cathode were metal 1N electrodes and a fluorine-based anion exchange membrane 5F-34 manufactured by Tosoh Corporation was arranged as a diaphragm, the electrolyte on the anode side was a 20% formic acid aqueous solution,
The electrolyte on the cathode side was treated in the same manner as in Example 5 to
A hydroxide cake of n was produced, and the cake was dissolved in a 20% formic acid aqueous solution, and the resulting product was used for electrolysis.

電解温度は25℃で、電流密度は20IIIAlcfl
12とした。電解中、極間電圧は安定しており、陽極側
の電流効率は105%、陰極側の電流効率は98%であ
った。陽極側の電流効率が1(IOX以上になるのは金
属1nの自然溶解の為である。
The electrolysis temperature was 25℃, and the current density was 20IIIAlcfl.
It was set to 12. During electrolysis, the voltage between the electrodes was stable, the current efficiency on the anode side was 105%, and the current efficiency on the cathode side was 98%. The reason why the current efficiency on the anode side is 1 (IOX or more) is due to the natural dissolution of metal 1n.

次に、陰極に析出した金属Inを塩酸に溶解し、不純物
の含有量をICPで調べたところ、Inに対して錫が3
401)pm 、鉄が10 ppm以下、ジルコニウム
が10 ppm以下であり、3NのIn金属の回収が可
能であった。一方、陽極室の電解液を加熱濃縮し、In
のギ酸塩を生成し、次いで、得られたInのギ酸塩を7
00℃、5時間焼成することにより平均粒径0.2μm
の酸化Inが得られた。
Next, the metal In deposited on the cathode was dissolved in hydrochloric acid and the impurity content was examined by ICP.
401) pm, iron was 10 ppm or less, zirconium was 10 ppm or less, and it was possible to recover 3N In metal. On the other hand, the electrolyte in the anode chamber is heated and concentrated, and In
of In formate and then convert the resulting In formate to 7
By firing at 00℃ for 5 hours, the average particle size is 0.2μm.
of In oxide was obtained.

Claims (1)

【特許請求の範囲】[Claims] 強酸及びハロゲンイオンが共存するインジウムと錫を含
む水溶液に、ハロゲノ錫酸イオンの対イオンを添加し、
ハロゲノ錫酸塩を分離する事を特徴とするインジウム水
溶液の精製方法。
A counter ion of a halogenostannate ion is added to an aqueous solution containing indium and tin in which a strong acid and a halogen ion coexist.
A method for purifying an aqueous indium solution characterized by separating halogenostannate.
JP1206655A 1989-08-11 1989-08-11 Method for purifying aqueous solution of indium Pending JPH0375224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1206655A JPH0375224A (en) 1989-08-11 1989-08-11 Method for purifying aqueous solution of indium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1206655A JPH0375224A (en) 1989-08-11 1989-08-11 Method for purifying aqueous solution of indium

Publications (1)

Publication Number Publication Date
JPH0375224A true JPH0375224A (en) 1991-03-29

Family

ID=16526947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1206655A Pending JPH0375224A (en) 1989-08-11 1989-08-11 Method for purifying aqueous solution of indium

Country Status (1)

Country Link
JP (1) JPH0375224A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5543031A (en) * 1994-08-19 1996-08-06 Nippon Mining & Metals Co., Ltd. Method for recovering indium by electrowinning and apparatus therefor
US6846470B2 (en) 2001-02-06 2005-01-25 Sumitomo Chemical Company, Limited Methods for producing indium-containing aqueous solutions containing reduced amounts of metal impurities
JP2005314786A (en) * 2004-03-31 2005-11-10 Mitsui Mining & Smelting Co Ltd Method for collecting indium
JP2006241479A (en) * 2005-02-28 2006-09-14 Mitsui Mining & Smelting Co Ltd Method for producing indium-containing metal
JP2008240090A (en) * 2007-03-28 2008-10-09 Dowa Metals & Mining Co Ltd Indium recovery method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5543031A (en) * 1994-08-19 1996-08-06 Nippon Mining & Metals Co., Ltd. Method for recovering indium by electrowinning and apparatus therefor
US6846470B2 (en) 2001-02-06 2005-01-25 Sumitomo Chemical Company, Limited Methods for producing indium-containing aqueous solutions containing reduced amounts of metal impurities
JP2005314786A (en) * 2004-03-31 2005-11-10 Mitsui Mining & Smelting Co Ltd Method for collecting indium
JP2006241479A (en) * 2005-02-28 2006-09-14 Mitsui Mining & Smelting Co Ltd Method for producing indium-containing metal
JP2008240090A (en) * 2007-03-28 2008-10-09 Dowa Metals & Mining Co Ltd Indium recovery method

Similar Documents

Publication Publication Date Title
JP4549501B2 (en) Indium recovery method
JPH0382720A (en) Method for recovering indium
CN110835683B (en) Method for selectively extracting lithium from waste lithium ion battery material
US4198231A (en) Recovery and separation of gadolinium and gallium
JP4519294B2 (en) Indium recovery method
JP2023103929A (en) Method for recovering lithium from waste lithium ion battery
CA1322855C (en) Process for refining gold and apparatus employed therefor
JP2008081822A (en) Method for recovering indium from indium-containing material
JPH0375224A (en) Method for purifying aqueous solution of indium
CN113755702A (en) Rhodium-iridium separation refining process
WO2024187627A1 (en) Oxalic acid refining method
JP4663053B2 (en) Indium recovery method
JP3933869B2 (en) Method for recovering indium hydroxide or indium
JP5447824B2 (en) A method for purifying a rhodium nitrite complex ion solution and a method for producing an ammonium salt thereof.
CN117897508A (en) Method for recovering lithium from waste lithium ion battery
JPH0362651B2 (en)
CN115725855A (en) Method for preparing high-purity cesium salt and high-purity rubidium salt
JPS63496A (en) Method for purifying gallium electrolytic solution
CN114959306B (en) Method for recycling lithium from lithium precipitation mother liquor by closed cycle method
WO2016194658A1 (en) Aqueous cobalt chloride solution purification method
JPH0375223A (en) Recovery of indium
CN113249593B (en) Two-stage process for removing calcium and magnesium from solutions containing nickel, cobalt, manganese and lithium
CN221832309U (en) Device for synthesizing lithium carbonate by lithium iron phosphate positive electrode powder hydrochloric acid method
JP3099335B2 (en) Method for dissolving and depositing indium metal
RU2732259C1 (en) Method of extracting hafnium and zirconium from fluoride secondary material containing hafnium and zirconium