[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0368107B2 - - Google Patents

Info

Publication number
JPH0368107B2
JPH0368107B2 JP15278384A JP15278384A JPH0368107B2 JP H0368107 B2 JPH0368107 B2 JP H0368107B2 JP 15278384 A JP15278384 A JP 15278384A JP 15278384 A JP15278384 A JP 15278384A JP H0368107 B2 JPH0368107 B2 JP H0368107B2
Authority
JP
Japan
Prior art keywords
less
alloy
wear
temperature
cadmium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15278384A
Other languages
Japanese (ja)
Other versions
JPS6134160A (en
Inventor
Ryo Masumoto
Juetsu Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENKI JIKI ZAIRYO KENKYUSHO
Original Assignee
DENKI JIKI ZAIRYO KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENKI JIKI ZAIRYO KENKYUSHO filed Critical DENKI JIKI ZAIRYO KENKYUSHO
Priority to JP15278384A priority Critical patent/JPS6134160A/en
Publication of JPS6134160A publication Critical patent/JPS6134160A/en
Publication of JPH0368107B2 publication Critical patent/JPH0368107B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は交流磁界における磁気特性および耐摩
耗性がすぐれ、鍛造加工が容易で磁気記録再性ヘ
ツドに好適な高透磁率合金およびその製造法に関
するものである。 (従来の技術) テープレコーダーなどの磁気記録再生ヘツドは
交流磁界において作動するものであるから、これ
に用いられる磁性合金は高周波磁界における実効
透磁率が高いことが必要とされ、また磁気テープ
が接触して摺動するため耐摩耗性が良好であるこ
とが望まれている。現在、耐摩耗性にすぐれた磁
気ヘツド用磁性合金としてはセンダスト(Fe−
Si−Al系合金)およびフエライト(MnO−ZnO
−Fe2O3)がある。 (発明が解決しようとする問題点) しかしながら、これらの合金は非常に硬く脆い
ため、鍛造、圧延加工が不可能で、ヘツドコアの
製造には研削、研磨の方法が用いられており、従
つてその成品は高価である。またセンダストは飽
和磁束密度は大きいが薄板にできないので高周波
磁界における実効透磁率が比較的小さい。またフ
エライトは実効透磁率は大きいが、飽和磁束密度
が5000G以下で小さいのが欠点である。他方パー
マロイ(Ni−Fe系合金)は鍛造、圧延加工およ
び打抜きは容易で量産性にすぐれているが、軟く
摩耗しやすいのが大きな欠点である。 本発明者らはNi−Fe系合金の磁気特性および
耐摩耗性の改善について幾多研究を行つた結果、
Ni−Fe系合金のb族元素の亜鉛およびカドミ
ウムの1種および2種の合計0.001〜5%を添加
することにより目的を達成したのである。 (問題点を解決するための手段) 本発明の特徴とする所は下記の点にある。 第1発明 重量比にてニツケル30〜90%、亜鉛およびカド
ミウムの1種または2種の合計0.001〜5%、少
量の不純物と残部鉄からなり、飽和磁束密度
5000G以上を有することを特徴とする磁気記録再
生ヘツド用耐摩耗性高透磁率合金。 第2発明 重量比にてニツケル30〜90%、亜鉛およびカド
ミウムの1種または2種の合計0.001〜5%、少
量の不純物と残部鉄からなる合金を主成分とし
て、副成分として銅30%以下、タングステン、タ
ンタルのそれぞれ20%以下、ニオブ、マンガン、
クロムのそれぞれ15%以下、モリブデン、バナジ
ウム、金、コバルトのそれぞれ10%以下、チタ
ン、ケイ素、ゲルマニウム、ガリウム、インジウ
ム、タリウム、ストロンチウム、バリウム、白金
族元素のそれぞれ5%以下、アルミニウム、ジル
コニウム、ハフニウム、銀、希土類元素、ベリリ
ウム、錫、アンチモンのそれぞれ3%以下、ホウ
素、リンのそれぞれ2%以下の1種または2種以
上の合計0.01〜30%を含有してなり、飽和磁束密
度5000G以上を有することを特徴とする磁気記録
再生ヘツド用耐摩耗性高透磁率合金。 第3発明 重量比にてニツケル30〜90%、亜鉛およびカド
ミウムの1種または2種の合計0.001〜5%、少
量の不純物と残部鉄からなる合金を、600℃以上
融点以下の温度で非酸化性雰囲気あるいは真空中
において、少くとも1分間以上100時間以下の組
成に対応した適当時間加熱した後、600℃以上の
温度から100℃/秒〜1℃/時の組成に対応した
適当な速度で常温まで冷却することを特徴とする
磁気記録再生ヘツド用耐摩耗性高透磁率合金の製
造法。 第4発明 重量比にてニツケル30〜90%、亜鉛およびカド
ミウムの1種または2種の合計0.001〜5%、少
量の不純物と残部鉄からなる合金を、600℃以上
融点以下の温度で非酸化性雰囲気あるいは真空中
において、少くとも1分間以上100時間以下の組
成に対応した適当時間加熱した後、600℃以上の
温度から100℃/秒〜1℃/時の組成に対応した
適当な速度で常温まで冷却し、これをさらに600
℃以下の温度で非酸化性雰囲気中あるいは真空中
において1分間以上、組成に対応した適当時間加
熱し、冷却することを特徴とする磁気記録再生ヘ
ツド用耐摩耗性高透磁率合金の製造法。 (作用) 本発明の合金を造るには、まず主成分のニツケ
ル30〜90%、亜鉛およびカドミウムの1種または
2種の合計0.001〜5%および残部鉄の適当量を
非酸化性雰囲気中あるいは真空中において適当な
溶解炉を用いて溶解した後、適当な脱酸剤、脱硫
剤を少量添加してできるだけ不純物を取り除き、
そのままか、更にこれに銅30%以下、タングステ
ン、タンタルのそれぞれ20%以下、ニオブ、マン
ガン、クロムのそれぞれ15%以下、モリブデン、
バナジウム、金、コバルトのそれぞれ10%以下、
チタン、ケイ素、ゲルマニウム、ガリウム、イン
ジウム、タリウム、ストロンチウム、バリウム、
白金族元素のそれぞれ5%以下、アルミニウム、
ジルコニウム、ハフニウム、銀、希土類元素、ベ
リリウム、錫、アンチモンのそれぞれ3%以下、
ホウ素、リンのそれぞれ2%以下の1種または2
種以上の合計0.01〜30%の定量を添加して充分に
撹拌し、組成的に均一な溶融合金を造る。次にこ
れを適当な形および大きさの鋳型に注入して健全
な鋳塊を得、さらにこれを高温において鍛造熱間
圧延および冷間圧延などの成形加工を施して目的
の形状のもの、例えば厚さ0.1mmの薄板を造る。 次にその薄板から目的の形状、寸法のものを打
抜き、これを適当な非酸化性雰囲気(水素、アル
ゴン、窒素など)中あるいは真空中で再結晶温度
以上、すなわち約600℃以上、特に800℃以上融点
以下の温度に1分間以上加熱し、ついで組成に対
応した適当な速度、例えば100℃/秒〜1℃/時
で冷却する。合金の組成によつてはこれをさらに
約600℃以下の温度(規則格子−不規則格子変態
点以下の温度)、特に200〜600℃に1分間以上100
時間以下加熱し、冷却することにより飽和磁束密
度5000G以上を有し、耐摩耗性にすぐれた高透磁
率磁性合金を得ることができる。 上記の溶体化温度から規則−不規則格子変態点
(約600℃)以上の温度までの冷却は、急冷しても
徐冷しても得られる磁性には大した変りはない
が、この変態点以下の冷却速度は磁性に大きな影
響を及ぼす。すなわちこの変態点以上の温度より
100℃/秒〜1℃/時の組成に対応した適当な速
度で常温迄冷却することにより、地の規則度が適
度に調整され、すぐれた磁性が得られる。そして
上記の冷却速度の内100℃/秒に近い速度で急冷
すると、規則度が小さくなり、これ以上速く冷却
すると規則化が進まず、規則度はさらに小さくな
り磁性は劣化する。しかしその規則度の小さい合
金をその変態点以下の200℃〜600℃に再加熱し冷
却すると、規則化が進んで適度な規則度となり磁
性は向上する。他方、上記の変態点以上の温度か
ら、例えば1℃/時以下の速度で徐冷すると、規
則化は進みすぎ、磁性は低下する。 (実施例) 次に本発明の実施例について述べる。 実施例 1 合金番号17(組成Ni−79.0%、Zn−1.0%、Cd
−1.0%、残部Fe) 試料を造るには上記組成の合金材料の全重量
800gをアルミナ坩堝に入れ、アルゴン中で高周
波誘導炉によつて溶かした後、よく撹拌して均質
な溶融合金とした。ついでこれを直径25mm、高さ
170mmの孔をもつ鋳型に注入し、得られた鋳塊を
約1100℃で鍛造して厚さ約7mmの板とした。さら
に約600〜900℃の間で厚さ1mmまで熱間圧延し、
ついで常温で冷間圧延を施して0.1mmの薄板とし、
それから外径45mm、内径33mmの環状板および磁気
ヘツドのコアを打ち抜いた。つぎにこれらに第1
表に示す種々な熱処理を施し、環状板で磁気特性
を、またコアを用いて磁気ヘツドを製造し、表面
粗さ計で磁気テープ(CrO2)による200時間走行
後の摩耗量を測定して第1表のような結果を得
た。
(Field of Industrial Application) The present invention relates to a high magnetic permeability alloy that has excellent magnetic properties and wear resistance in an alternating magnetic field, is easy to forge, and is suitable for magnetic recording/reproducing heads, and a method for manufacturing the same. (Prior Art) Since magnetic recording/reproducing heads such as tape recorders operate in alternating magnetic fields, the magnetic alloys used therein are required to have high effective magnetic permeability in high-frequency magnetic fields, and the magnetic tape is It is desired that the wear resistance is good because it slides on the surface. Currently, Sendust (Fe-
(Si-Al alloy) and ferrite (MnO-ZnO
−Fe 2 O 3 ). (Problems to be Solved by the Invention) However, these alloys are extremely hard and brittle, making it impossible to forge or roll them. Grinding and polishing methods are used to manufacture head cores. The finished product is expensive. Sendust has a high saturation magnetic flux density, but cannot be made into a thin plate, so its effective permeability in a high-frequency magnetic field is relatively low. Furthermore, although ferrite has a high effective magnetic permeability, its drawback is that its saturation magnetic flux density is low at 5000G or less. On the other hand, permalloy (Ni-Fe alloy) is easy to forge, roll, and punch and has excellent mass productivity, but its major drawback is that it is soft and easily abraded. The present inventors conducted numerous studies on improving the magnetic properties and wear resistance of Ni-Fe alloys, and found that
This objective was achieved by adding a total of 0.001 to 5% of one or both of group B elements zinc and cadmium to the Ni-Fe alloy. (Means for Solving the Problems) The features of the present invention are as follows. First invention Consists of 30-90% nickel by weight, 0.001-5% in total of one or two of zinc and cadmium, a small amount of impurities and the balance iron, saturation magnetic flux density
A wear-resistant high permeability alloy for magnetic recording/reproducing heads characterized by having a strength of 5000G or more. 2nd invention The main component is an alloy consisting of 30 to 90% nickel by weight, a total of 0.001 to 5% of one or both of zinc and cadmium, a small amount of impurities and the balance iron, and 30% or less of copper as a subcomponent. , 20% or less of each of tungsten and tantalum, niobium, manganese,
15% or less of each of chromium, 10% or less of each of molybdenum, vanadium, gold, and cobalt, 5% or less of each of titanium, silicon, germanium, gallium, indium, thallium, strontium, barium, and platinum group elements, aluminum, zirconium, and hafnium , silver, rare earth elements, beryllium, tin, antimony, each of 3% or less, boron, phosphorous, each of 2% or less, in total of 0.01 to 30%, and has a saturation magnetic flux density of 5000G or more. A wear-resistant high permeability alloy for magnetic recording/reproducing heads, characterized by having: Third invention: An alloy consisting of 30 to 90% nickel by weight, a total of 0.001 to 5% of one or both of zinc and cadmium, a small amount of impurities, and the balance iron, is non-oxidized at a temperature of 600°C or higher and lower than the melting point. After heating for at least 1 minute to 100 hours in a neutral atmosphere or vacuum for an appropriate time corresponding to the composition, heat from a temperature of 600°C or higher at an appropriate rate of 100°C/sec to 1°C/hour depending on the composition. A method for manufacturing a wear-resistant high permeability alloy for magnetic recording/reproducing heads, which is characterized by cooling to room temperature. 4th Invention An alloy consisting of 30 to 90% nickel by weight, 0.001 to 5% in total of one or both of zinc and cadmium, a small amount of impurities, and the balance iron, is non-oxidized at a temperature of 600°C or higher and lower than the melting point. After heating for at least 1 minute to 100 hours in a neutral atmosphere or vacuum for an appropriate time corresponding to the composition, heat from a temperature of 600°C or higher at an appropriate rate of 100°C/sec to 1°C/hour depending on the composition. Cool to room temperature and heat for another 600 ml.
1. A method for producing a wear-resistant high permeability alloy for a magnetic recording/reproducing head, which comprises heating the alloy at a temperature of 0.degree. (Function) To produce the alloy of the present invention, first, 30 to 90% of nickel as the main component, a total of 0.001 to 5% of one or both of zinc and cadmium, and an appropriate amount of the balance iron in a non-oxidizing atmosphere or After melting in a vacuum using an appropriate melting furnace, add a small amount of an appropriate deoxidizing agent and desulfurizing agent to remove as much impurity as possible.
As it is, or in addition, 30% or less copper, 20% or less each of tungsten and tantalum, 15% or less each of niobium, manganese, and chromium, molybdenum,
10% or less each of vanadium, gold, and cobalt,
Titanium, silicon, germanium, gallium, indium, thallium, strontium, barium,
5% or less each of platinum group elements, aluminum,
3% or less each of zirconium, hafnium, silver, rare earth elements, beryllium, tin, and antimony,
One or two types of boron and phosphorus each with 2% or less
A total amount of 0.01 to 30% of the seeds or more is added and thoroughly stirred to create a compositionally uniform molten alloy. Next, this is poured into a mold of an appropriate shape and size to obtain a sound ingot, which is then subjected to forming processes such as forging hot rolling and cold rolling at high temperatures to obtain the desired shape, e.g. Build a thin plate with a thickness of 0.1mm. Next, punch out a piece of the desired shape and size from the thin plate, and heat it in a suitable non-oxidizing atmosphere (hydrogen, argon, nitrogen, etc.) or in vacuum at a temperature above the recrystallization temperature, that is, about 600°C or above, especially 800°C. It is heated to a temperature above the melting point or below for 1 minute or more, and then cooled at an appropriate rate depending on the composition, for example, 100° C./second to 1° C./hour. Depending on the composition of the alloy, this may be further heated to a temperature of about 600℃ or below (temperature below the ordered lattice-irregular lattice transformation point), especially 200 to 600℃ for 1 minute or more.
By heating for less than an hour and cooling, a high permeability magnetic alloy having a saturation magnetic flux density of 5000 G or more and excellent wear resistance can be obtained. Cooling from the above solution temperature to a temperature above the ordered-irregular lattice transformation point (approximately 600°C) shows that there is no significant difference in the magnetic properties obtained whether the cooling is rapid or gradual; The following cooling rates have a significant effect on magnetism. In other words, from the temperature above this transformation point
By cooling to room temperature at an appropriate rate corresponding to the composition of 100° C./sec to 1° C./hour, the regularity of the ground can be appropriately adjusted and excellent magnetism can be obtained. If the material is rapidly cooled at a rate close to 100° C./second among the above cooling rates, the degree of order decreases, and if it is cooled any faster, the degree of order does not proceed, and the degree of order decreases further, resulting in deterioration of magnetism. However, when an alloy with a low degree of order is reheated to 200 to 600 degrees Celsius, below its transformation point, and cooled, ordering progresses and the degree of order becomes moderate, improving magnetism. On the other hand, if it is slowly cooled from a temperature above the above-mentioned transformation point at a rate of, for example, 1° C./hour or less, ordering will proceed too much and the magnetism will decrease. (Example) Next, an example of the present invention will be described. Example 1 Alloy number 17 (composition Ni-79.0%, Zn-1.0%, Cd
-1.0%, balance Fe) To make a sample, the total weight of the alloy material with the above composition is required.
800 g of the alumina was placed in an alumina crucible and melted in an argon atmosphere using a high frequency induction furnace, followed by thorough stirring to obtain a homogeneous molten alloy. Next, make this 25mm in diameter and height
The ingot was poured into a mold with a 170 mm hole, and the resulting ingot was forged at approximately 1100°C to form a plate approximately 7 mm thick. Furthermore, it is hot rolled at approximately 600 to 900℃ to a thickness of 1 mm.
Then cold rolled at room temperature to make a 0.1mm thin plate.
Then, an annular plate with an outer diameter of 45 mm and an inner diameter of 33 mm and a magnetic head core were punched out. Next, add these to the first
After applying the various heat treatments shown in the table, the annular plate was used to measure the magnetic properties, and the core was used to manufacture a magnetic head, and a surface roughness meter was used to measure the amount of wear after 200 hours of running on magnetic tape (CrO 2 ). The results shown in Table 1 were obtained.

【表】【table】

【表】 実施例 2 合金番号66(組成Ni−79.0%、Zn−0.7%、Cd
−1.2%、Nb−7.0%、残部Fe) 試料を造るには上記組成の合金材料の全重量
800gをアルミナ坩堝に入れ、真空中で高周波誘
導電気炉によつて溶かした後よく撹拌して溶融合
金とした。製造工程は実施例1と同じである。試
料に種々の熱処理を施して第2表に示すような特
性が得られた。
[Table] Example 2 Alloy number 66 (composition Ni-79.0%, Zn-0.7%, Cd
-1.2%, Nb -7.0%, balance Fe) Total weight of alloy material with the above composition to make the sample.
800 g of the alumina was placed in an alumina crucible, melted in a vacuum using a high-frequency induction electric furnace, and stirred well to obtain a molten alloy. The manufacturing process is the same as in Example 1. The samples were subjected to various heat treatments and the properties shown in Table 2 were obtained.

【表】【table】

【表】 つぎに第3表には1150℃の真空中で2時間加熱
した後、600℃から種々な速度で常温まで冷却す
るか、あるいはこれをさらに600℃以下の温度で
再加熱して、常温で測定された代表的な合金の諸
特性が示してある。
[Table] Next, Table 3 shows that after heating in a vacuum at 1150℃ for 2 hours, cooling from 600℃ to room temperature at various speeds, or further heating at a temperature below 600℃, The properties of representative alloys measured at room temperature are shown.

【表】【table】

【表】 つぎに本発明合金の亜鉛およびカドミウムの添
加効果について図面によつて詳細に述べる。第1
図には78.5%Ni−Fe−Zn合金についてZn添加量
と実効透磁率、飽和磁束密度および摩耗量との関
係を示し、第2図には79%Ni−Fe−7%Nb−Zn
合金についてZn添加量と実効透磁率、飽和磁束
密度および摩耗量との関係を示した。 第3図には78.5%Ni−Fe−Cd合金についてCd
添加量と実効透磁率、飽和磁束密度および摩耗量
との関係を示し、第4図には79%Ni−Fe−7%
Nb−Cd合金についてCd添加量と実効透磁率、飽
和磁束密度および摩耗量との関係を示した。 第5図は79.0%Ni−Fe−1.0%Zn−1.0%Cd合
金にCu、W、Ta、NbあるいはMnを添加した場
合の各元素の添加量と実効透磁率、飽和磁束密度
および摩耗量との関係を示す。 第6図は79.0%Ni−Fe−1.0%Zn−1.0%Cd合
金にCr、Mo、V、AuあるいはCoを添加した場
合の各元素の添加量と実効透磁率、飽和磁束密度
および摩耗量との関係を示す。 第7図は79.0%Ni−Fe−1.0%Zn−1.0%Cd合
金にTi、Si、Ge、Ga、In、Tl、Sr、Ba、Ptあ
るいはAlを添加した場合の各元素の添加量と実
効透磁率、飽和磁束密度および摩耗量との関係を
示す。 第8図は79.0%Ni−Fe−1.0%Zn−1.0%Cd合
金にZr、Hf、Ag、Ce、Be、Sn、Sb、Bあるい
はPを添加した場合の各元素の添加量と実効透磁
率、飽和磁束密度および摩耗量との関係を示す。 一般に亜鉛又はカドミウムの添加量の増加とと
もに実効透磁率は著しく増大し、摩耗量は減少す
る。しかし亜鉛およびカドミウムが5%以上では
加工が困難になり好ましくない。 本発明のこのような磁気特性の向上は溶解時に
おける亜鉛およびカドミウムの脱酸、脱硫効果に
よつて不純物が除去され、合金組織を清浄にする
とともに、亜鉛およびカドミウムの添加によつて
飽和磁歪および結晶磁気異方性エネルギーが小さ
くなり、磁化し易い状態に成るものと考えられ
る。さらにNi−Zn系、Fe−Zn系、Ni−Cd系お
よびFe−Cd系金属間化合物が微細に析出して磁
区を分割し磁壁を増加させるので、交流磁界にお
ける磁壁の移動速度を相対的に減少させ、そのた
め渦電流損失が小さくなり、大きな実効透磁率が
得られるものと考えられる。また本発明合金の耐
摩耗性の向上は、亜鉛又はカドミウムを添加する
と、Ni−Fe合金の地が固溶体硬化するとともに、
強固な金属間化合物が地に微細に析出し、さらに
耐食性が向上することによるものと考えられる。 さらに副成分として添加するCu、W、Nd、
Ta、Mn、Mo、V、Au、Co、Cr、Ti、Ge、
Ga、In、Tl、Sr、Ba、Al、Si、Zr、Hf、Ag、
希土類元素、白金族元素、Be、Sn、Sb、Bおよ
びP等は本発明合金の実効透磁率を高める効果が
あり、またCoは飽和磁束密度を高めるのに有効
である。さらにCu、W、Nb、Ta、V、Au、
Ti、Ge、Ga、In、Tl、Sr、Ba、Al、Si、Zr、
Hf、Ag、希土類元素、白金族元素、Be、Sn、
Sb、BおよびP等は本発明合金の耐摩耗性を改
善する効果が大きく、さらにSr、Ba、Nb、Ta、
Mn、Ti、Si、希土類元素は鍛造加工性を改善す
る効果が大きい。 次に本発明において合金の組成をニツケル30〜
90%、亜鉛又はカドミウムの1種または2種の合
計0.001〜5%および残部鉄と限定し、またこれ
に添加する元素を銅30%以下、タングステン、タ
ンタルのそれぞれ20%以下、ニオブ、マンガン、
クロムのそれぞれ15%以下、モリブデン、バナジ
ウム、金、コバルトのそれぞれ10%以下、チタ
ン、ケイ素、ゲルマニウム、ガリウム、インジウ
ム、タリウム、ストロンチウム、バリウム、白金
族元素のそれぞれ5%以下、アルミニウム、ジル
コニウム、ハフニウム、銀、希土類元素、ベリリ
ウム、錫、アンチモンのそれぞれ3%以下、ホウ
素、リンのそれぞれ2%以下の1種または2種以
上の合計0.01〜30%と限定した理由は、実施例、
第3表および図面で明らかなように、その組成範
囲の飽和磁束密度は5000G以上で、実効透磁率お
よび耐摩耗性にすぐれ、且つ加工性も良好である
が、組成がこの範囲をはずれると飽和磁束密度が
5000G以下となり、実効透磁率が低下し、摩耗が
大きくなり、且つ加工が困難となり、磁気記録再
生ヘツドの材料として不適当となるからである。
すなわち、亜鉛およびカドミウムが0.001%未満
では添加効果を小さく、5%を越えると鋳造加工
が困難となる。そしてこれに副成分として銅30%
以下、タングステン20%、ニオブ15%、タンタル
20%、マンガン15%、クロム15%、モリブデン10
%、バナジウム10%、金10%、チタン5%、ゲル
マニウム5%、ガリウム5%、インジウム5%、
タリウム5%、ストロンチウム5%、バリウム5
%、白金族元素5%のそれぞれを越え添加すると
飽和磁束密度が5000G以下となるからであり、ジ
ルコニウム3%、銅3%、ケイ素5%、アルミニ
ウム3%、ハフニウム3%、希土類元素3%、ベ
リリウム3%、錫3%、アンチモン3%、ホウ素
2%、リン2%のそれぞれを越えて添加すると鍛
造あるいは加工が困難となるからであり、Coを
10%を越え添加すると実効透磁率が小さくなるか
らである。 なお、第3表より明らかなように、Ni−Fe系
合金に副成分の何れかを入れると実効透磁率は更
に大きくなり、また、硬度も高くなり、耐摩耗性
が改善されるのでこれらの副成分の添加は同一効
果であり、同効成分と見做し得る。また、希土類
元素はスカンジウム、イツトリウムおよびランタ
ン系元素からなるものであるが、その副成分添加
効果は全く同一であり、白金族元素は白金、イリ
ジウム、ルテニウム、ロジウム、パラジウム、オ
スミウムからなるが、その効果も全く同一であ
る。 尚、炭素、窒素、酸素および硫黄は耐摩耗性を
改善し、Te、Se、Bi、CaおよびPbは快削性を改
善するので、磁気特性を損わない程度の各々0.1
%以下ならば有効であり、本発明合金に不純物と
して含有されても差支えない。 (発明の効果) 要するに本発明合金は飽和磁束密度が5000G以
上で実効透磁率が高く、耐摩耗性がすぐれ、且つ
加工性が良好なので磁気録音再生ヘツド用磁性合
金として好適であるばかりでなく、VTRおよび
電子計算機の磁気記録再生ヘツドならびに普通の
電気機器などに用いる磁性材料としても非常に好
適である。
[Table] Next, the effect of adding zinc and cadmium to the alloy of the present invention will be described in detail with reference to the drawings. 1st
Figure 2 shows the relationship between Zn addition amount, effective magnetic permeability, saturation magnetic flux density, and wear amount for 78.5%Ni-Fe-Zn alloy.
The relationship between the amount of Zn added and the effective magnetic permeability, saturation magnetic flux density, and wear amount of the alloy was shown. Figure 3 shows Cd for 78.5%Ni-Fe-Cd alloy.
The relationship between the addition amount, effective magnetic permeability, saturation magnetic flux density, and wear amount is shown in Figure 4.
The relationship between the amount of Cd added and the effective magnetic permeability, saturation magnetic flux density, and wear amount for Nb-Cd alloys was shown. Figure 5 shows the amount of each element added, effective magnetic permeability, saturation magnetic flux density and amount of wear when Cu, W, Ta, Nb or Mn is added to a 79.0%Ni-Fe-1.0%Zn-1.0%Cd alloy. shows the relationship between Figure 6 shows the amount of each element added, effective magnetic permeability, saturation magnetic flux density, and amount of wear when Cr, Mo, V, Au, or Co is added to a 79.0% Ni-Fe-1.0% Zn-1.0% Cd alloy. shows the relationship between Figure 7 shows the amount of each element added and the effective effect when Ti, Si, Ge, Ga, In, Tl, Sr, Ba, Pt or Al is added to a 79.0%Ni-Fe-1.0%Zn-1.0%Cd alloy. The relationship between magnetic permeability, saturation magnetic flux density, and amount of wear is shown. Figure 8 shows the amount of each element added and the effective magnetic permeability when Zr, Hf, Ag, Ce, Be, Sn, Sb, B or P is added to a 79.0%Ni-Fe-1.0%Zn-1.0%Cd alloy. , shows the relationship between saturation magnetic flux density and amount of wear. Generally, as the amount of zinc or cadmium added increases, the effective magnetic permeability increases significantly and the amount of wear decreases. However, if the zinc and cadmium content exceeds 5%, processing becomes difficult, which is not preferable. The improvement in magnetic properties of the present invention is due to the deoxidation and desulfurization effects of zinc and cadmium during melting, which remove impurities and clean the alloy structure, and the addition of zinc and cadmium improves saturation magnetostriction and It is thought that the magnetocrystalline anisotropy energy becomes smaller and the state becomes easier to magnetize. In addition, Ni-Zn, Fe-Zn, Ni-Cd, and Fe-Cd intermetallic compounds precipitate finely, dividing the magnetic domain and increasing the domain wall, so the relative movement speed of the domain wall in an alternating magnetic field is It is believed that this reduces the eddy current loss and provides a large effective magnetic permeability. Furthermore, the wear resistance of the alloy of the present invention is improved by solid solution hardening of the Ni-Fe alloy base when zinc or cadmium is added.
This is thought to be due to the fine precipitation of strong intermetallic compounds on the ground, further improving corrosion resistance. Furthermore, Cu, W, Nd, which are added as subcomponents,
Ta, Mn, Mo, V, Au, Co, Cr, Ti, Ge,
Ga, In, Tl, Sr, Ba, Al, Si, Zr, Hf, Ag,
Rare earth elements, platinum group elements, Be, Sn, Sb, B, P, etc. are effective in increasing the effective magnetic permeability of the alloy of the present invention, and Co is effective in increasing the saturation magnetic flux density. Furthermore, Cu, W, Nb, Ta, V, Au,
Ti, Ge, Ga, In, Tl, Sr, Ba, Al, Si, Zr,
Hf, Ag, rare earth elements, platinum group elements, Be, Sn,
Sb, B, P, etc. have a great effect on improving the wear resistance of the alloy of the present invention, and Sr, Ba, Nb, Ta, etc.
Mn, Ti, Si, and rare earth elements have a large effect on improving forging workability. Next, in the present invention, the composition of the alloy is changed from Nickel 30 to
90%, a total of 0.001 to 5% of one or two of zinc or cadmium, and the balance iron, and the elements added to this are limited to 30% or less copper, 20% or less each of tungsten and tantalum, niobium, manganese,
15% or less of each of chromium, 10% or less of each of molybdenum, vanadium, gold, and cobalt, 5% or less of each of titanium, silicon, germanium, gallium, indium, thallium, strontium, barium, and platinum group elements, aluminum, zirconium, and hafnium , silver, rare earth elements, beryllium, tin, antimony, each of 3% or less, boron, phosphorus, each of 2% or less, and the total of one or more types was limited to 0.01 to 30%.
As is clear from Table 3 and the drawings, the saturation magnetic flux density in this composition range is 5000G or more, which has excellent effective magnetic permeability and wear resistance, as well as good workability; however, when the composition falls outside this range, it saturates magnetic flux density
This is because if it becomes less than 5000G, the effective magnetic permeability decreases, wear increases, and machining becomes difficult, making it unsuitable as a material for magnetic recording/reproducing heads.
That is, if zinc and cadmium are less than 0.001%, the effect of addition is small, and if it exceeds 5%, casting becomes difficult. And this has 30% copper as a subcomponent.
Below, 20% tungsten, 15% niobium, tantalum
20%, manganese 15%, chromium 15%, molybdenum 10
%, vanadium 10%, gold 10%, titanium 5%, germanium 5%, gallium 5%, indium 5%,
Thallium 5%, Strontium 5%, Barium 5
This is because if more than 5% of platinum group elements are added, the saturation magnetic flux density becomes 5000G or less. This is because adding more than 3% beryllium, 3% tin, 3% antimony, 2% boron, and 2% phosphorus will make forging or processing difficult.
This is because adding more than 10% reduces the effective magnetic permeability. As is clear from Table 3, if any of the subcomponents is added to the Ni-Fe alloy, the effective magnetic permeability will further increase, the hardness will also increase, and the wear resistance will be improved. Addition of sub-ingredients has the same effect and can be regarded as the same effective ingredient. Rare earth elements consist of scandium, yttrium, and lanthanum-based elements, but the effect of adding their subcomponents is exactly the same, and platinum group elements consist of platinum, iridium, ruthenium, rhodium, palladium, and osmium, but The effect is exactly the same. In addition, carbon, nitrogen, oxygen, and sulfur improve wear resistance, and Te, Se, Bi, Ca, and Pb improve free machinability, so each should be added at 0.1 to an extent that does not impair magnetic properties.
% or less, it is effective, and there is no problem even if it is contained as an impurity in the alloy of the present invention. (Effects of the Invention) In short, the alloy of the present invention has a saturation magnetic flux density of 5000 G or more, high effective permeability, excellent wear resistance, and good workability, so it is not only suitable as a magnetic alloy for magnetic recording/playback heads, but also It is also very suitable as a magnetic material for use in magnetic recording/reproducing heads for VTRs and computers, as well as ordinary electrical equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は78.5%Ni−Fe−Zn合金の亜鉛量と実
効透磁率、飽和磁束密度および摩耗量との関係を
示す特性図、第2図は79%Ni−Fe−7%Nb−Zn
合金の亜鉛量と実効透磁率、飽和磁束密度および
摩耗量との関係を示す特性図、第3図は78.5%Ni
−Fe−Cd合金のカドミウム量と実効透磁率、飽
和磁束密度および摩耗量との関係を示す特性図、
第4図は79%Ni−Fe−7%Nb−Cd合金のカド
ミウム量と実効透磁率、飽和磁束密度および摩耗
量との関係を示す特性図、第5図は79.0%Ni−
Fe−1.0%Zn−1.0%Cd合金にCu、W、Ta、Nb
あるいはMnを添加した場合の各元素の添加量と
実効透磁率、飽和磁束密度および摩耗量との関係
を示す特性図、第6図は79.0%Ni−Fe−1.0%Zn
−1.0%Cd合金にCr、Mo、V、AuあるいはCoを
添加した場合の各元素の添加量と実効透磁率、飽
和磁束密度および摩耗量との関係を示す特性図、
第7図は79.0%Ni−Fe−1.0%Zn−1.0%Cd合金
にTi、Si、Ge、Ga、In、Tl、Sr、Ba、Ptある
いはAlを添加した場合の各元素の添加量と実効
透磁率、飽和磁束密度および摩耗量との関係を示
す特性図、第8図は79.0%Ni−Fe−1.0%Zn−1.0
%Cd合金にZr、Hf、Ag、Ce、Be、Sn、Sb、B
あるいはPを添加した場合の各元素の添加量と実
効透磁率、飽和磁束密度および摩耗量との関係を
示す特性図である。
Figure 1 is a characteristic diagram showing the relationship between zinc content, effective magnetic permeability, saturation magnetic flux density, and wear amount of 78.5%Ni-Fe-Zn alloy, and Figure 2 is 79%Ni-Fe-7%Nb-Zn.
Characteristic diagram showing the relationship between the amount of zinc in the alloy, effective magnetic permeability, saturation magnetic flux density, and amount of wear. Figure 3 is for 78.5%Ni.
-Characteristic diagram showing the relationship between the amount of cadmium in the Fe-Cd alloy, effective magnetic permeability, saturation magnetic flux density, and amount of wear,
Figure 4 is a characteristic diagram showing the relationship between the amount of cadmium, effective magnetic permeability, saturation magnetic flux density, and wear amount of 79%Ni-Fe-7%Nb-Cd alloy, and Figure 5 is a characteristic diagram showing the relationship between cadmium content, effective magnetic permeability, saturation magnetic flux density, and amount of wear for 79%Ni-Fe-79.0%Nb-Cd alloy.
Fe-1.0%Zn-1.0%Cd alloy with Cu, W, Ta, and Nb
Or a characteristic diagram showing the relationship between the amount of each element added, effective magnetic permeability, saturation magnetic flux density, and wear amount when Mn is added. Figure 6 is 79.0%Ni-Fe-1.0%Zn
A characteristic diagram showing the relationship between the amount of each element added and effective magnetic permeability, saturation magnetic flux density, and wear amount when Cr, Mo, V, Au, or Co is added to -1.0% Cd alloy,
Figure 7 shows the amount of each element added and the effective effect when Ti, Si, Ge, Ga, In, Tl, Sr, Ba, Pt or Al is added to a 79.0%Ni-Fe-1.0%Zn-1.0%Cd alloy. Characteristic diagram showing the relationship between magnetic permeability, saturation magnetic flux density and wear amount, Figure 8 is 79.0%Ni-Fe-1.0%Zn-1.0
%Cd alloy with Zr, Hf, Ag, Ce, Be, Sn, Sb, B
Alternatively, it is a characteristic diagram showing the relationship between the amount of each element added, effective magnetic permeability, saturation magnetic flux density, and amount of wear when P is added.

Claims (1)

【特許請求の範囲】 1 重量比にてニツケル30〜90%、亜鉛およびカ
ドミウムの1種または2種の合計0.001〜5%、
少量の不純物と残部鉄からなり、飽和磁束密度
5000G以上を有することを特徴とする磁気記録再
生ヘツド用耐摩耗性高透磁率合金。 2 重量比にてニツケル30〜90%、亜鉛およびカ
ドミウムの1種または2種の合計0.001〜5%、
少量の不純物と残部鉄からなる合金を主成分と
し、副成分として銅30%以下、タングステン、タ
ンタルのそれぞれ20%以下、ニオブ、マンガン、
クロムのそれぞれ15%以下、モリブデン、バナジ
ウム、金、コバルトのそれぞれ10%以下、チタ
ン、ケイ素、ゲルマニウム、ガリウム、イソジウ
ム、タリウム、ストロンチウム、バリウム、白金
族元素のそれぞれ5%以下、アルミニウム、ジル
コニウム、ハフニウム、銀、希土類元素、ベリリ
ウム、錫、アンチモンのそれぞれ3%以下、ホウ
素、リンのそれぞれ2%以下の1種または2種以
上の合計0.01〜30%を含有してなり、飽和磁束密
度5000G以上を有することを特徴とする磁気記録
再生ヘツド用耐摩耗性高透磁率合金。 3 重量比にてニツケル30〜90%、亜鉛およびカ
ドミウムの1種または2種の合計0.001〜5%、
少量の不純物と残部鉄からなる合金を、600℃以
上融点以下の温度で非酸化性雰囲気あるいは真空
中において、少くとも1分間以上100時間以下の
組成に対応した適当時間加熱した後、600℃以上
の温度から100℃/秒〜1℃/時の組成に対応し
た適当な速度で常温まで冷却することを特徴とす
る磁気記録再生ヘツド用耐摩耗性高透磁率合金の
製造法。 4 重量比にてニツケル30〜90%、亜鉛およびカ
ドミウムの1種または2種の合計0.001〜5%、
少量の不純物と残部鉄からなる合金を、600℃以
上融点以下の温度で非酸化性雰囲気あるいは真空
中において、少くとも1分間以上100時間以下の
組成に対応した適当時間加熱した後、600℃以上
の温度から100℃/秒〜1℃/時の組成に対応し
た適当な速度で常温まで冷却し、これをさらに
600℃以下の温度で非酸化性雰囲気中あるいは真
空中において1分間以上、組成に対応した適当時
間加熱し、冷却することを特徴とする磁気記録再
生ヘツド用耐摩耗性高透磁率合金の製造法。
[Claims] 1. 30 to 90% nickel by weight, 0.001 to 5% in total of one or two of zinc and cadmium,
Consisting of a small amount of impurities and the remainder iron, the saturation magnetic flux density
A wear-resistant high permeability alloy for magnetic recording/reproducing heads characterized by having a strength of 5000G or more. 2. Nickel 30-90% by weight, total of one or two of zinc and cadmium 0.001-5%,
The main component is an alloy consisting of a small amount of impurities and the balance iron, and the secondary components are less than 30% copper, less than 20% each of tungsten and tantalum, niobium, manganese,
15% or less of each of chromium, 10% or less of each of molybdenum, vanadium, gold, and cobalt, 5% or less of each of titanium, silicon, germanium, gallium, isodium, thallium, strontium, barium, and platinum group elements, aluminum, zirconium, and hafnium , silver, rare earth elements, beryllium, tin, antimony, each of 3% or less, boron, phosphorous, each of 2% or less, in total of 0.01 to 30%, and has a saturation magnetic flux density of 5000G or more. A wear-resistant high permeability alloy for magnetic recording/reproducing heads, characterized by having: 3. Nickel 30-90% by weight, total of one or two of zinc and cadmium 0.001-5%,
After heating an alloy consisting of a small amount of impurities and the balance iron in a non-oxidizing atmosphere or in vacuum at a temperature of 600°C or higher and below the melting point for an appropriate time corresponding to the composition for at least 1 minute or more and 100 hours or less, 1. A method for producing a wear-resistant high permeability alloy for a magnetic recording/reproducing head, characterized in that the alloy is cooled from a temperature of 100° C./sec to 1° C./hour to room temperature at an appropriate rate corresponding to the composition. 4. Nickel 30-90% by weight, total of one or two of zinc and cadmium 0.001-5%,
After heating an alloy consisting of a small amount of impurities and the balance iron in a non-oxidizing atmosphere or in vacuum at a temperature of 600°C or higher and below the melting point for an appropriate time corresponding to the composition for at least 1 minute or more and 100 hours or less, From the temperature of
A method for producing a wear-resistant high permeability alloy for magnetic recording/reproducing heads, which comprises heating at a temperature of 600°C or less in a non-oxidizing atmosphere or vacuum for 1 minute or more for an appropriate time depending on the composition, and cooling. .
JP15278384A 1984-07-25 1984-07-25 Wear resistant and high magnetic permeability alloy for magnetic record regenerating head, its manufacture and magnetic record regenerating head Granted JPS6134160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15278384A JPS6134160A (en) 1984-07-25 1984-07-25 Wear resistant and high magnetic permeability alloy for magnetic record regenerating head, its manufacture and magnetic record regenerating head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15278384A JPS6134160A (en) 1984-07-25 1984-07-25 Wear resistant and high magnetic permeability alloy for magnetic record regenerating head, its manufacture and magnetic record regenerating head

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1262699A Division JPH02153036A (en) 1989-10-07 1989-10-07 Wear-resistant high permeability alloy for magnetic recording/reproducing head and its manufacture and magnetic recording/reproducing head

Publications (2)

Publication Number Publication Date
JPS6134160A JPS6134160A (en) 1986-02-18
JPH0368107B2 true JPH0368107B2 (en) 1991-10-25

Family

ID=15548050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15278384A Granted JPS6134160A (en) 1984-07-25 1984-07-25 Wear resistant and high magnetic permeability alloy for magnetic record regenerating head, its manufacture and magnetic record regenerating head

Country Status (1)

Country Link
JP (1) JPS6134160A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153036A (en) * 1989-10-07 1990-06-12 Res Inst Electric Magnetic Alloys Wear-resistant high permeability alloy for magnetic recording/reproducing head and its manufacture and magnetic recording/reproducing head
JP5076514B2 (en) * 2007-01-23 2012-11-21 住友大阪セメント株式会社 Method for producing tabular nickel-iron-zinc alloy nanoparticles and tabular nickel-iron-zinc alloy nanoparticles
CN104357710B (en) * 2014-11-26 2016-08-17 张立红 A kind of nickel alloy and preparation method thereof

Also Published As

Publication number Publication date
JPS6134160A (en) 1986-02-18

Similar Documents

Publication Publication Date Title
US4710243A (en) Wear-resistant alloy of high permeability and method of producing the same
US5547520A (en) Wear-resistant high permeability magnetic alloy and method of manufacturing the same
JPS625972B2 (en)
JPS6133900B2 (en)
JPS59582B2 (en) Amorphous alloy for magnetic heads with low magnetostriction and high wear resistance and its manufacturing method
JPH0158261B2 (en)
KR100405929B1 (en) Abrasion resistant high transmittance alloy, its manufacturing method and magnetic recording playback head
JPS6212296B2 (en)
JPS5947017B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JPH0368107B2 (en)
JPH02153036A (en) Wear-resistant high permeability alloy for magnetic recording/reproducing head and its manufacture and magnetic recording/reproducing head
JPS5947018B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JPS58150119A (en) Alloy having high magnetic permeability for magnetic recording and reproducing head and its production, and magnetic recording and reproducing head
JPH032216B2 (en)
JPS6218619B2 (en)
JPH0645847B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPH02153052A (en) Manufacture of wear resistant high permeability alloy for magnetic recording/reproducing head and magnetic recording/reproducing head
JPH0310699B2 (en)
JPH0310700B2 (en)
JPH10259439A (en) Wear resistant high permeability alloy and magnetic recording and reproducing head
JPH0377644B2 (en)
JPH0645849B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPH0645846B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPH0525947B2 (en)
JPS6130405B2 (en)