[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6130405B2 - - Google Patents

Info

Publication number
JPS6130405B2
JPS6130405B2 JP51100490A JP10049076A JPS6130405B2 JP S6130405 B2 JPS6130405 B2 JP S6130405B2 JP 51100490 A JP51100490 A JP 51100490A JP 10049076 A JP10049076 A JP 10049076A JP S6130405 B2 JPS6130405 B2 JP S6130405B2
Authority
JP
Japan
Prior art keywords
permeability
alloy
magnetic
wear
wear resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51100490A
Other languages
Japanese (ja)
Other versions
JPS5326994A (en
Inventor
Ryo Masumoto
Juetsu Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENKI JIKI ZAIRYO KENKYUSHO
Original Assignee
DENKI JIKI ZAIRYO KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENKI JIKI ZAIRYO KENKYUSHO filed Critical DENKI JIKI ZAIRYO KENKYUSHO
Priority to JP10049076A priority Critical patent/JPS5326994A/en
Publication of JPS5326994A publication Critical patent/JPS5326994A/en
Publication of JPS6130405B2 publication Critical patent/JPS6130405B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はFe,NbおよびNiよりなる耐摩耗性高
透磁率合金およびFe,Nb,Niを主成分とし、副
帯分としてCr,Mo,W,V,Ta,Mn,Ge,
Co,Cu,Ti,Zr,Al,Si,Sn,Sb,希土類元素
の1種あるいは2種以上を含有する耐摩耗性高透
磁率合金に関するもので、その目的とするところ
は、鍛造、加工が容易で、透磁率が大きく、
{110}<112>の再結晶集合組織を有して耐摩耗性
が良好な磁性合金を得るにある。更に本発明はこ
れら耐摩耗性高透磁率合金よりなる磁気記録再生
ヘツドに関するものである。 現在、磁気記録再生ヘツド用磁性材料として高
透磁率を有し、成形加工が良好なパーマロイ
(Ni―Fe系合金)が一般に使用されているが、磁
気テープの走行による磁気ヘツドの摩耗が激し
く、その改善が重要課題とされている。 本発明者らは、Nb3.1〜14%を含有するNi―Fe
―Nb系合金は硬度が高く、したがつて耐摩耗性
のすぐれた高透磁率合金であることから、磁気記
録再生ヘツド用磁性合金として好適であることを
見出し、これを以前に特許出願(特公昭47―
29690号、特開昭47―25697号)した。一般に耐摩
耗性は硬度が高い程良好であると考えられるが、
同時に加工性が損われるので、硬度を高めること
は量産性の観点から好ましくない。一般に摩耗現
象は結晶の方位によつて差異があり、結晶異方性
が存在することが知られている。 本発明はこの摩耗の結晶異方性を積極的に活用
する目的で、耐摩耗性のすぐれた集合組織を形成
せしめることによつて、加工性を損わずにさらに
耐摩耗性の向上を図ることが可能であると考えな
されたものである。 このようなことから、本発明者らは更にNb3.1
〜14%を含むNi―Fe―Nb系合金について耐摩耗
性をより一層向上せしめるためにさらに研究を行
つた結果、加工率50%以上を施した後900℃以上
の温度で加熱し、{110}<112>の再結晶集合組織
を形成せしめることよつて、極めて耐摩耗性のす
ぐれた高透磁率合金が得られることを見い出し
た。 すなわち本発明は重量比にてFe5〜25.5%、
Nb3.1〜14%および残部Niからなるか、あるいは
これを主成分とし、副成分としてCr,No,W,
V,Ge,CoおよびCuをそれぞれ7%以下、Ta,
Mnをそれぞれ15%以下、Ti,Zr,Al,Si,Sn,
Sb,希土類元素をそれぞれ5%以下の1種ある
いは2種以上に合計0.01〜15%と少量の不純物と
からなり、鍛造加工が容易で初透磁率3000以上、
最大透磁率5000以上の高透磁率で、{110}<112>
の再結晶集合組織を有して耐摩耗性が良好な磁気
記録再生ヘツド等に使用する耐摩耗性高透磁率性
合金を提供するものである。 尚、本発明の好ましい合金はFe5〜25.5%、
Nb3.1〜14%および残部Niからなる主成分に副成
分としてCr,Mo,W,V,Ta,Mn,Ge,Coお
よびCuをそれぞれ7%以下、Zr,Sn,Sb,希土
類元素、Ti,Al,Siをそれぞれ3%の1種ある
いは2種以上の合計0.01〜15%を含有する。 ここに「希土類元素」と称するはY,Scおよ
びランタノイド(La,Ce,Pr,Nd,Pm,Sm,
Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu)を
包含することを意味する。 本発明の合金を造るには、Fe5〜25.5%、
Nb3.1〜14%および残部Niの適当量を空気中、好
ましくは非酸化性雰囲気中あるいは真空中におい
て適当な溶解炉を用いて溶解した後、マンガン、
珪素、アルミニウム、チタン、ボロン、カルシウ
ム合金、マグネシウム合金、ベリリウム合金、そ
の他の脱酸脱硫剤を少量添加してできるだけ不純
物を取り除く。或は又、これにCr,Mo,W,
V,Ge,Co,Cuの7%以下、Ta,Mnの15%以
下、Ti,Zr,Al,Sn,Sb,希土類元素の5%以
下の1種あるいは2種以上の合計0.01〜15%以下
の定量を更に添加する。かくして得た混合物を充
分に撹拌して組成物に均一な溶融合金を造る。 次にこれを適当な形および大きさの鋳型に注入
して健全な鋳塊を得、さらにこれに高温において
鍛造あるいは熱間加工を施して適当な形状のも
の、例えば棒あるいは板となし、必要ならば500
℃以上の温度で焼鈍する。次いでこれに冷間圧延
などの方法によつて加工率50%以上の冷間加工を
施し、目的の形状のもの、例えば厚さ0.1mmの薄
板を造る。次にその薄板から例えば外径45mm、内
径33mmの環状板を打抜き、これを水素中その他の
適当な非酸化性雰囲気中あるいは真空中で900℃
以上融点以下の温度で適当時間加熱し、ついで組
成に対応した適当な速度で冷却するかあるいはこ
れをさらに約600℃以下の温度で適当時間再加熱
し、冷却する。このようにして初透磁率3000以
上、最大透磁率5000以上を有し、且つ{110}<
112>の再結晶集合組織を有した耐摩耗性高透磁
率合金が得られる。 尚、上記の冷間加工は熱処理後における外部応
力による磁気特性の劣化(例えば磁気ヘツドの製
造時におけるラミネートおよび樹脂のモールドに
よる劣化)を少くするのに効果があり、また上記
の水素中において施す熱処理は、初透磁率、最大
透磁率および交流磁界における実効透磁率を高め
るのに卓効がある。 次に本発明を図面につき説明する。 第1図はNi約79.5%を含むNi―Fe―Nb系合金
について加工率90%の冷間圧延の後1100℃で加熱
した場合の再結晶集合組織および諸特性とNb量
との関係を示したものである。Nb0%のNi―Fe系
合金は冷間延加工すると{110}<112>+{112}<
111>の加工集合組織を生じるが、これを加熱す
ると{100}<001>の再結晶集合組織が発達す
る。しかし、これにNbを添加すると積層欠陥エ
ネルギーは低下し、{110}<112>の再結晶集合組
織が発達し、それとともに摩耗量は著るしく減少
する。また第2図は79.5%Ni―11.5%Fe―9%
Nb合金について、1100℃で加熱した場合の再結
晶集合組織および諸特性と冷間加工率との関係を
示したもので、冷間加工率の増加は{110}<112
>の再結晶集合組織の発達をもたらし、耐摩耗性
を著るしく向上させる。 第3図は79.5%Ni―11.5%Fe―9%Nb合金を
冷間加工率90%で圧延した後の加熱温度と再結晶
集合組織および緒特性との関係を示したもので、
加熱温度の上昇とともに{112}<111>成分が減
少し、900℃以上ではほぼ{110}<112>が発達
し、耐摩耗性は900℃以上の加熱において著るし
く向上することを示している。このような
{110}<112>再結晶集合組織と耐摩耗性の向上と
の関連について考察すると、Ni―Fe―Nb系合金
単結晶は<110>方位に大きな一軸磁気異方性を
示すことから、Nb原子が{110}の特定面に選択
的に配列するものと推察され、したがつて
{110}<112>の再結晶集合組織が形成されること
によつて、耐摩耗性の改善が有効に行われるもの
と考えられる。 本発明において、冷間加工は{110}<112>+
{112}<111>の集合組織を形成し、これを基とし
て{110}<112>の再結晶集合組織を発達させる
ために必要で、第1図および第2図に見られるよ
うにNb3.1%以上において、特に加工率50%以上
の冷間加工を施した場合に{110}<112>の再結
晶集合組織の発達が顕著で、耐摩耗性は著るしく
向上し、その透磁率も高い。また上記の冷間加工
に次いで行われる加熱は、組織の均一化、加工歪
の除去とともに、{110}<112>の再結晶集合組織
を発達させ、高い透磁率とすぐれた耐摩耗性を得
るために必要であるが、第3図に見られるように
特に900℃以上の加熱によつて透磁率および耐摩
耗性は顕著に向上する。 尚、上記の加熱において、水素中其他適当な非
酸化性雰囲気中或は真空中における微量な酸素の
含有は、本発明合金の磁気特性および耐摩耗性に
何等影響しないばかりでなく、組成によつてはこ
れ等の特性を向上することもある。 又、上記の加工率50%以上の冷間加工と、次い
で行われる900℃以上融点以下の加熱を繰り返し
行うことは、{110}<112>の再結晶集合組織の集
積度を高め、耐摩耗性を向上させるために有効で
ある。 次に本発明を実施例につき説明する。 実施例 1 合金番号14(組成Ni=79.5%、Fe=11.5%、
Nb=9%)の合金の製造 原料として99.8%純度の電解ニツケル、99.9%
純度の電解鉄および99.8%純度のニオブを用い
た。試料を造るには、原料を全量800gでアルミ
ナ坩堝に入れ、真空中で高周波誘導電気炉によつ
て溶かした後、よく撹拌して均質な溶融合金し
た。次にこれを直径25mm、高さ170mmの孔をもつ
鋳型に注入し、得られた鋳塊を約1000℃で鍛造し
て厚さ約7mmの板とした。さらに約900℃〜1000
℃の間で適当な厚さまで熱間圧延し、ついで常温
で種々な加工率で冷間圧延を施して0.1mmの薄板
とし、それから外径45mm、内径38mmの環状板を打
ち抜いた。 つぎにこれに種々な熱処理を施して、磁気特性
および磁気ヘツドのコアとして使用した場合のγ
―Fe2O3磁気テープによる300時間走行後の摩耗
量の測定を行い、第1表のような特性を得た。
The present invention is a wear-resistant high permeability alloy consisting of Fe, Nb, and Ni, with Fe, Nb, and Ni as main components, and sub-components of Cr, Mo, W, V, Ta, Mn, Ge,
This relates to wear-resistant high permeability alloys containing one or more of Co, Cu, Ti, Zr, Al, Si, Sn, Sb, and rare earth elements, and its purpose is to facilitate forging and processing. Easy to use, high permeability,
The object of the present invention is to obtain a magnetic alloy having a recrystallized texture of {110}<112> and having good wear resistance. Furthermore, the present invention relates to a magnetic recording/reproducing head made of these wear-resistant high permeability alloys. Currently, permalloy (Ni-Fe alloy), which has high magnetic permeability and is easily molded, is commonly used as a magnetic material for magnetic recording/reproducing heads, but the magnetic head is subject to severe wear due to the running of the magnetic tape. Improving this is considered an important issue. The present inventors proposed a Ni-Fe film containing 3.1 to 14% Nb.
- Since Nb-based alloys have high hardness and are therefore highly wear-resistant and have high magnetic permeability, we have discovered that they are suitable as magnetic alloys for magnetic recording/reproducing heads, and have previously filed a patent application for this. Kosho 47-
No. 29690, Japanese Unexamined Patent Publication No. 47-25697). Generally speaking, the higher the hardness, the better the wear resistance.
At the same time, workability is impaired, so increasing the hardness is not preferable from the viewpoint of mass productivity. It is generally known that wear phenomena differ depending on crystal orientation, and that crystal anisotropy exists. The present invention aims to further improve wear resistance without impairing workability by forming a texture with excellent wear resistance in order to actively utilize this crystal anisotropy of wear. It was thought that this was possible. Based on this, the present inventors further determined that Nb3.1
As a result of further research in order to further improve the wear resistance of Ni-Fe-Nb alloys containing up to 14%, we found that after applying a processing rate of 50% or more, we heated them at a temperature of 900℃ or higher. } It has been discovered that by forming a recrystallized texture of <112>, a high magnetic permeability alloy with extremely excellent wear resistance can be obtained. That is, in the present invention, Fe5 to 25.5% by weight,
Consisting of 3.1 to 14% Nb and the balance Ni, or with this as the main component and subcomponents of Cr, No, W,
V, Ge, Co and Cu are each 7% or less, Ta,
Mn up to 15% each, Ti, Zr, Al, Si, Sn,
Consisting of one or more types of Sb and rare earth elements of 5% or less each, and a total of 0.01 to 15% and a small amount of impurities, it is easy to forge and has an initial magnetic permeability of 3000 or more.
High magnetic permeability with a maximum permeability of 5000 or more, {110}<112>
The object of the present invention is to provide a wear-resistant, high magnetic permeability alloy that has a recrystallized texture and has good wear resistance and is used in magnetic recording/reproducing heads and the like. In addition, the preferred alloy of the present invention has Fe5 to 25.5%,
The main component is 3.1 to 14% Nb and the balance is Ni, and the subcomponents are Cr, Mo, W, V, Ta, Mn, Ge, Co, and Cu, each up to 7%, Zr, Sn, Sb, rare earth elements, and Ti. , Al, and Si in a total of 0.01 to 15% of one or more of 3% each. Here, "rare earth elements" refer to Y, Sc, and lanthanoids (La, Ce, Pr, Nd, Pm, Sm,
Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). To make the alloy of the present invention, Fe5~25.5%,
After melting an appropriate amount of Nb3.1 to 14% and the balance Ni in air, preferably in a non-oxidizing atmosphere or in vacuum using a suitable melting furnace, manganese,
Add small amounts of silicon, aluminum, titanium, boron, calcium alloys, magnesium alloys, beryllium alloys, and other deoxidizing and desulfurizing agents to remove impurities as much as possible. Alternatively, Cr, Mo, W,
7% or less of V, Ge, Co, Cu, 15% or less of Ta, Mn, 5% or less of Ti, Zr, Al, Sn, Sb, rare earth elements, the total of one or more of 0.01 to 15% or less Add a further quantity of . The mixture thus obtained is thoroughly agitated to create a uniform molten alloy composition. Next, this is poured into a mold of an appropriate shape and size to obtain a sound ingot, which is then forged or hot-worked at a high temperature to form an appropriate shape, such as a bar or plate, to form the required shape. then 500
Anneal at temperatures above ℃. Next, this is subjected to cold working at a processing rate of 50% or more by a method such as cold rolling to produce a thin plate of the desired shape, for example, a thin plate with a thickness of 0.1 mm. Next, an annular plate with an outer diameter of 45 mm and an inner diameter of 33 mm, for example, is punched out from the thin plate and heated at 900°C in hydrogen or other suitable non-oxidizing atmosphere or in vacuum.
The mixture is heated at a temperature below the melting point for an appropriate period of time, and then cooled at an appropriate rate depending on the composition, or further heated at a temperature of about 600° C. or below for an appropriate period of time, and then cooled. In this way, it has an initial magnetic permeability of 3000 or more, a maximum magnetic permeability of 5000 or more, and {110}<
A wear-resistant high permeability alloy with a recrystallized texture of >112 is obtained. The above-mentioned cold working is effective in reducing deterioration of magnetic properties due to external stress after heat treatment (for example, deterioration due to lamination and resin molding during the manufacture of magnetic heads), and the above-mentioned cold working in hydrogen Heat treatment is very effective in increasing the initial permeability, maximum permeability, and effective permeability in an alternating magnetic field. The invention will now be explained with reference to the drawings. Figure 1 shows the relationship between the recrystallized texture and properties of a Ni-Fe-Nb alloy containing about 79.5% Ni when heated at 1100°C after cold rolling at a working rate of 90% and the amount of Nb. It is something that When a Ni-Fe alloy containing 0% Nb is cold rolled, {110}<112>+{112}<
A processing texture of {111> is produced, but when this is heated, a recrystallization texture of {100}<001> develops. However, when Nb is added to this, the stacking fault energy decreases, a {110}<112> recrystallized texture develops, and the amount of wear decreases significantly. Figure 2 shows 79.5%Ni-11.5%Fe-9%
This shows the relationship between the recrystallized texture and various properties and cold working rate when Nb alloy is heated at 1100℃, and the increase in cold working rate is {110}<112
> resulting in the development of a recrystallized texture, significantly improving wear resistance. Figure 3 shows the relationship between the heating temperature, recrystallization texture and texture properties after rolling a 79.5%Ni-11.5%Fe-9%Nb alloy at a cold working rate of 90%.
The {112}<111> component decreases as the heating temperature increases, and {110}<112> almost develops at temperatures above 900°C, indicating that wear resistance significantly improves when heated above 900°C. There is. Considering the relationship between {110}<112> recrystallization texture and improvement in wear resistance, we find that Ni-Fe-Nb alloy single crystals exhibit large uniaxial magnetic anisotropy in the <110> direction. From this, it is inferred that Nb atoms are selectively arranged on a specific {110} plane, and therefore, a recrystallized texture of {110}<112> is formed, which improves wear resistance. It is considered that this will be carried out effectively. In the present invention, cold working is {110}<112>+
It is necessary to form a {112}<111> texture and develop a {110}<112> recrystallization texture based on this, and as seen in Figures 1 and 2, Nb3. At 1% or more, the development of {110} <112> recrystallized texture is remarkable, especially when cold working is performed at a working rate of 50% or more, and the wear resistance is significantly improved, and the magnetic permeability is It's also expensive. In addition, the heating performed after the cold working described above not only homogenizes the structure and removes processing distortion, but also develops a {110}<112> recrystallized texture, resulting in high magnetic permeability and excellent wear resistance. However, as shown in FIG. 3, magnetic permeability and wear resistance are significantly improved by heating to 900° C. or higher. In addition, in the above heating, the inclusion of a trace amount of oxygen in hydrogen or other suitable non-oxidizing atmosphere or in vacuum not only has no effect on the magnetic properties and wear resistance of the alloy of the present invention, but also varies depending on the composition. In some cases, these characteristics may be improved. In addition, repeating the cold working at a processing rate of 50% or more and the subsequent heating above 900°C and below the melting point increases the degree of accumulation of the {110}<112> recrystallized texture and improves wear resistance. It is effective for improving sex. Next, the invention will be explained with reference to examples. Example 1 Alloy number 14 (composition Ni = 79.5%, Fe = 11.5%,
Production of alloy of Nb=9%) 99.8% pure electrolytic nickel as raw material, 99.9%
Purity electrolytic iron and 99.8% purity niobium were used. To prepare the sample, a total of 800 g of raw materials were placed in an alumina crucible, melted in a high-frequency induction electric furnace in a vacuum, and then thoroughly stirred to form a homogeneous molten alloy. Next, this was poured into a mold with a hole of 25 mm in diameter and 170 mm in height, and the resulting ingot was forged at about 1000°C to form a plate with a thickness of about 7 mm. Further about 900℃~1000℃
The material was hot-rolled at a temperature of 0.3°C to an appropriate thickness, then cold-rolled at room temperature at various processing rates to obtain a thin plate of 0.1 mm, which was then punched into an annular plate with an outer diameter of 45 mm and an inner diameter of 38 mm. This is then subjected to various heat treatments to improve its magnetic properties and γ when used as the core of a magnetic head.
-We measured the amount of wear after running for 300 hours using Fe 2 O 3 magnetic tape, and obtained the characteristics shown in Table 1.

【表】【table】

【表】 実施例 2 合金番号77(組成Ni=79.3%、Fe=10.3%、
Nb=8.1%、Ge=2.3%)の合金の製造 原料は実施例1と同じ純度のニツケル、鉄およ
び99.8%純度のニオブ、ゲルマニウムを用いた。
試料の製造法は実施例1と同じである。試料に種
種の熱処理を施して磁気特性および磁気ヘツドの
コアとして使用した場合のγ―Fe2O3磁気テープ
による300時間走行後の摩耗量の測定を行い、第
2表に示すような特性が得られた。 なお代表的な合金の特性は第3表に示す通りで
ある。
[Table] Example 2 Alloy number 77 (composition Ni = 79.3%, Fe = 10.3%,
Production of alloy with Nb = 8.1%, Ge = 2.3% The raw materials used were nickel and iron with the same purity as in Example 1, and niobium and germanium with 99.8% purity.
The method of manufacturing the sample was the same as in Example 1. We performed various heat treatments on the samples and measured their magnetic properties and the amount of wear after running for 300 hours using γ-Fe 2 O 3 magnetic tape when used as the core of a magnetic head, and found that the properties shown in Table 2 are as follows. Obtained. The characteristics of typical alloys are shown in Table 3.

【表】【table】

【表】 上記各実施例、第3表および図面からわかるよ
うにNi―Fe―NbあるいはこれにCr,Mo,W,
V,Ta,Mn,Ge,Co,Cu,Ti,Zr,Al,Si,
Sn,Sb,希土類元素の何れか1種または2種以
上を添加した本発明合金は加工率50%以上の冷間
圧延を施した後900℃以上融点以下で加熱するこ
とにより{110}<112>の再結晶集合組織を形成
し、これをさらに組成に適した冷却速度で冷却す
るかあるいは600℃以下の温度で再加熱すること
により、初透磁率3000以上、最大透磁率5000以上
で保磁力が小さく、耐摩耗性のすぐれた高耐摩耗
性高透磁率合金になる。 なお各実施例、第3表および図面に掲げた合金
には比較的純度の高い金属Nb,Cr,Mo,W,
Mn,V,Ti,Al,Siおよび希土類元素等を用い
たが、これらの代りに経済的に有利な一般市販の
フエロ合金およびミツシユメタルを用いても溶解
の際、脱酸、脱硫を充分に行えば、これら金属を
単独で用いる場合とほぼ同様な磁気特性、耐摩耗
性および加工性が得られる。 上記のように本発明合金は加工が容易で、耐摩
耗性にすぐれ、高い透磁率、低保磁力を有してい
るので、磁気記録再生ヘツドのコアおよびケース
用磁性合金として好適であるばかりでなく、耐摩
耗性および高透磁率を必要とする一般の電磁器機
の磁性材料としても好適である。 次に本発明において合金の組成をFe5〜25.5
%、Nb3.1〜14%および残部Niと限定し、これに
副成分として添加する元素をCr,Mo,W,V,
Ge,Coを7%以下、Te,Mnを15%以下、Ti,
Zr,Al,Si,Sn,Sb,希土類元素を5%以下の
1種又は2種以上の合計で0.01〜15%と限定した
理由は各実施例、第3表および図面で明らかなよ
うに、この組成範囲の初透磁率は3000以上、最大
透磁率は5000以上で、{110}<112>の再結晶集合
組織を有し、耐摩耗性が30ミクロン以下とすぐれ
ているが、この組成範囲をはずれると磁気特性あ
るいは耐摩耗性が劣化するからである。 すなわちNb3.1以下では{110}<112>の再結
晶集合組織が充分発達しないので耐摩耗性が比較
的悪く、Nb14%以上では硬度が高くなり、鍛造
加工の量産性が劣り、また初透磁率3000以下、最
大透磁率5000以下になるからである。 そしてFe5〜25.5%、Nb3.1〜14%および残部
Niの組成範囲の合金は初透磁率3000以上、最大
透磁率5000以上で、耐摩耗性がすぐれ、且つ加工
性が良好であるが、一般にこれにさらにCr,
Mo,W,V,Ta,Mn,Ge,Cu等を添加すると
透磁率を高める効果があり、V,Ta,Co,Ti,
Zr,Al,Si,Sn,Sb,希土類元素等を添加する
と耐摩耗性を向上する効果があり、Mn,Ge,Co
を添加すると鍛造、加工を良好にする効果があ
る。 尚、用途に応じて本発明合金の切削加工を必要
とする場合には、本発明の磁気特性、耐摩耗性を
損わない程度のPb,P,Te,S,Ca,Seの少量
を添加しても差し支えない。
[Table] As can be seen from the above examples, Table 3, and drawings, Ni-Fe-Nb or Cr, Mo, W,
V, Ta, Mn, Ge, Co, Cu, Ti, Zr, Al, Si,
The alloy of the present invention containing one or more of Sn, Sb, and rare earth elements can be cold-rolled at a processing rate of 50% or more, and then heated at a temperature above 900°C and below the melting point to yield {110}<112 By forming a recrystallized texture of This makes it a highly abrasion resistant, high magnetic permeability alloy with a small surface area and excellent abrasion resistance. The alloys listed in each example, Table 3, and drawings include relatively pure metals Nb, Cr, Mo, W,
Mn, V, Ti, Al, Si, rare earth elements, etc. were used, but even if economically advantageous commercially available ferro alloys and Mitsushi metals were used instead of these, sufficient deoxidation and desulfurization could be achieved during melting. For example, almost the same magnetic properties, wear resistance, and workability can be obtained as when these metals are used alone. As mentioned above, the alloy of the present invention is easy to process, has excellent wear resistance, high magnetic permeability, and low coercive force, so it is suitable as a magnetic alloy for the core and case of magnetic recording/reproducing heads. It is also suitable as a magnetic material for general electromagnetic equipment that requires wear resistance and high magnetic permeability. Next, in the present invention, the composition of the alloy is set to Fe5~25.5.
%, Nb3.1~14% and the balance Ni, and the elements added as subcomponents are Cr, Mo, W, V,
Ge, Co 7% or less, Te, Mn 15% or less, Ti,
The reason why Zr, Al, Si, Sn, Sb, and rare earth elements are limited to 0.01 to 15% in total of one or more of 5% or less is as clear from each example, Table 3, and drawings. This composition range has an initial magnetic permeability of 3000 or more, a maximum permeability of 5000 or more, a recrystallized texture of {110}<112>, and excellent wear resistance of 30 microns or less. This is because magnetic properties or abrasion resistance will deteriorate if it is out of alignment. In other words, if Nb is less than 3.1, the recrystallized texture of {110} <112> will not develop sufficiently, resulting in relatively poor wear resistance, while if it is more than 14% Nb, the hardness will be high, the mass productivity of forging will be poor, and the initial penetration will be poor. This is because the magnetic coefficient is 3000 or less and the maximum permeability is 5000 or less. and Fe5~25.5%, Nb3.1~14% and the balance
Alloys in the Ni composition range have an initial permeability of 3000 or more and a maximum permeability of 5000 or more, excellent wear resistance, and good workability.
Adding Mo, W, V, Ta, Mn, Ge, Cu, etc. has the effect of increasing magnetic permeability, and V, Ta, Co, Ti,
Adding Zr, Al, Si, Sn, Sb, rare earth elements, etc. has the effect of improving wear resistance, and Mn, Ge, Co
Adding has the effect of improving forging and processing. If cutting of the alloy of the present invention is required depending on the application, small amounts of Pb, P, Te, S, Ca, and Se may be added to the extent that the magnetic properties and wear resistance of the present invention are not impaired. It's okay to do that.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はNi約79.5%を含むNi―Fe―Nb系合金
を加工率90%の冷却圧延し、1100℃で1時間加熱
した場合の初透磁率、最大透磁率、再結晶集合組
織の集積度および磁気ヘツドの摩耗量とNb量と
の関係を示す特性図、第2図は79.5%Ni―11.5%
Fe―9%合金について種々な加工率で冷間圧延
し、1100℃で1時間加熱した場合の諸特性と冷間
加工率との関係を示す特性図、第3図は79.5%Ni
―11.5%Fe―9%Nb合金を加工率90%の冷間圧
延し、種々な温度で加熱した場合の諸特性と加熱
温度との関係を示す特性図である。
Figure 1 shows the initial magnetic permeability, maximum magnetic permeability, and accumulation of recrystallized texture when a Ni-Fe-Nb alloy containing about 79.5% Ni is cold-rolled at a processing rate of 90% and heated at 1100℃ for 1 hour. A characteristic diagram showing the relationship between the degree of wear of the magnetic head and the amount of Nb, Figure 2 is 79.5%Ni-11.5%
A characteristic diagram showing the relationship between various properties and cold working rate when Fe-9% alloy is cold rolled at various working rates and heated at 1100℃ for 1 hour.
FIG. 2 is a characteristic diagram showing the relationship between various properties and heating temperature when a -11.5%Fe-9%Nb alloy is cold rolled at a processing rate of 90% and heated at various temperatures.

Claims (1)

【特許請求の範囲】 1 重量比にてFe5〜25.5%、Nb3.1〜14%およ
び残部Niと少量の不純物とからなり、初透磁率
3000以上、最大透磁率5000以上で、且つ{110}<
112>の再結晶集合組織を有することを特徴とす
るNi―Fe―Nb系耐摩耗性高透磁率合金。 2 従量比にてFe5〜25.5%、Nb3.1〜14%およ
び残部Niを主成分とし、副成分としてCu,Mo,
W,V,Ge,Co,Cuをそれぞれ7%以下、Ta,
Mnをそれぞれ15%以下、Ti,Zr,Al,Si,Sn,
Sb,希土類元素をそれぞれ5%以下の1種また
は2種以上の合計0.01〜15%と、少量の不純物と
からなり、初透磁率3000以上、最大透磁率5000以
上で、且つ{110}<112>の再結晶集合組織を有
することを特徴とするNi―Fe―Nb系耐摩耗性高
透磁率合金。 3 重量比にてFe5〜25.5%、Nb3.1〜14%およ
び残部Niと少量の不純物とからなり、初透磁率
3000以上、最大透磁率5000以上で、且つ{110}<
112>の再結晶集合組織を有するNi―Fe―Nb系耐
摩耗性高透磁率合金よりなる磁気記録再生ヘツ
ド。
[Claims] 1 Consisting of 5 to 25.5% Fe, 3.1 to 14% Nb, and the balance Ni and a small amount of impurities by weight, and has an initial permeability
3000 or more, maximum permeability 5000 or more, and {110}<
A wear-resistant, high permeability Ni-Fe-Nb alloy characterized by having a recrystallized texture of 112>. 2 The main components are Fe5~25.5%, Nb3.1~14%, and the balance Ni in terms of quantity ratio, and the secondary components are Cu, Mo,
W, V, Ge, Co, Cu are each 7% or less, Ta,
Mn up to 15% each, Ti, Zr, Al, Si, Sn,
It consists of one or more types of Sb and rare earth elements of 5% or less each, a total of 0.01 to 15%, and a small amount of impurities, and has an initial magnetic permeability of 3000 or more, a maximum magnetic permeability of 5000 or more, and {110}<112 A wear-resistant, high permeability Ni-Fe-Nb alloy characterized by having a recrystallized texture of >. 3 Consists of Fe5~25.5%, Nb3.1~14%, balance Ni and a small amount of impurities in weight ratio, initial permeability
3000 or more, maximum permeability 5000 or more, and {110}<
A magnetic recording/reproducing head made of a wear-resistant, high permeability Ni-Fe-Nb alloy having a recrystallization texture of >112.
JP10049076A 1976-08-25 1976-08-25 Niifeenb line abrasionnresistant highhpermiability alloy and method of manufacture thereof and magnetic record reproducing head Granted JPS5326994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10049076A JPS5326994A (en) 1976-08-25 1976-08-25 Niifeenb line abrasionnresistant highhpermiability alloy and method of manufacture thereof and magnetic record reproducing head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10049076A JPS5326994A (en) 1976-08-25 1976-08-25 Niifeenb line abrasionnresistant highhpermiability alloy and method of manufacture thereof and magnetic record reproducing head

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP58147983A Division JPS5985851A (en) 1983-08-15 1983-08-15 Manufacture of wear resistant ni-fe-nb alloy with high magnetic permeability
JP60221133A Division JPS61160807A (en) 1985-10-05 1985-10-05 Magnetic recording and reproducing head consisting of wear resistant high permeability ni-fe-nb alloy

Publications (2)

Publication Number Publication Date
JPS5326994A JPS5326994A (en) 1978-03-13
JPS6130405B2 true JPS6130405B2 (en) 1986-07-14

Family

ID=14275365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10049076A Granted JPS5326994A (en) 1976-08-25 1976-08-25 Niifeenb line abrasionnresistant highhpermiability alloy and method of manufacture thereof and magnetic record reproducing head

Country Status (1)

Country Link
JP (1) JPS5326994A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5538636A (en) * 1978-09-08 1980-03-18 Toshiba Corp Erasing head
JPS59112414A (en) * 1982-12-20 1984-06-28 Alps Electric Co Ltd Magnetic head

Also Published As

Publication number Publication date
JPS5326994A (en) 1978-03-13

Similar Documents

Publication Publication Date Title
US4065330A (en) Wear-resistant high-permeability alloy
US4299622A (en) Magnetic alloy
US4830685A (en) Wear-resistant alloy of high permeability and method of producing the same
US5547520A (en) Wear-resistant high permeability magnetic alloy and method of manufacturing the same
JPS625972B2 (en)
JPH0158261B2 (en)
KR100405929B1 (en) Abrasion resistant high transmittance alloy, its manufacturing method and magnetic recording playback head
JPS6212296B2 (en)
JPS5924178B2 (en) Square hysteresis magnetic alloy and its manufacturing method
JPS5947017B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JPS6130405B2 (en)
US4362581A (en) Magnetic alloy
JPS5947018B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JPS6155583B2 (en)
JPS5924177B2 (en) Square hysteresis magnetic alloy
JPH026202B2 (en)
JPS58150119A (en) Alloy having high magnetic permeability for magnetic recording and reproducing head and its production, and magnetic recording and reproducing head
JPS6218619B2 (en)
JPS62188756A (en) Grain-oriented foil of high saturation magnetic flux density and its production
JPH02194154A (en) Manufacture of water-resistant high permeability alloy
JPS5985851A (en) Manufacture of wear resistant ni-fe-nb alloy with high magnetic permeability
JPH0310699B2 (en)
JPS5857499B2 (en) Ni-Fe-Nb wear-resistant high permeability alloy and magnetic recording/reproducing head
JPH02153036A (en) Wear-resistant high permeability alloy for magnetic recording/reproducing head and its manufacture and magnetic recording/reproducing head
JPS6057686B2 (en) Permanent magnetic ribbon and its manufacturing method