[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH032216B2 - - Google Patents

Info

Publication number
JPH032216B2
JPH032216B2 JP58131817A JP13181783A JPH032216B2 JP H032216 B2 JPH032216 B2 JP H032216B2 JP 58131817 A JP58131817 A JP 58131817A JP 13181783 A JP13181783 A JP 13181783A JP H032216 B2 JPH032216 B2 JP H032216B2
Authority
JP
Japan
Prior art keywords
alloy
less
strontium
barium
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58131817A
Other languages
Japanese (ja)
Other versions
JPS6024348A (en
Inventor
Ryo Masumoto
Juetsu Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENKI JIKI ZAIRYO KENKYUSHO
Original Assignee
DENKI JIKI ZAIRYO KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENKI JIKI ZAIRYO KENKYUSHO filed Critical DENKI JIKI ZAIRYO KENKYUSHO
Priority to JP58131817A priority Critical patent/JPS6024348A/en
Priority to US06/624,290 priority patent/US4572750A/en
Publication of JPS6024348A publication Critical patent/JPS6024348A/en
Publication of JPH032216B2 publication Critical patent/JPH032216B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は交流磁界における磁気特性および耐摩
耗性がすぐれ、鍛造加工が容ィで磁気記録再生ヘ
ツドに好適な高透磁率合金およびその製造法なら
びに磁気記録再生ヘツドに関するものである。 テープレコーダーなどの磁気記録再生ヘツドは
交流磁界において作動するものであるから、これ
に用いられる磁性合金は高周波磁界における実効
透磁率が高いことが必要とされ、また磁気テープ
が接触して摺動するため耐摩耗性が良好であるこ
とが望まれている。現在、耐摩耗性にすぐれた磁
気ヘツド用磁性合金としてはセンダスト(Fe−
Si−Al系合金)およびフエライト(MnO−ZnO
−Fe2O3)があるが、これらは非常に硬く脆いた
め、鍛造、圧延加工が不可能で、ヘツドコアの製
造に研削、研磨の方法が用いられており、従つて
その成品は高価である。またセンダストは飽和磁
束密度は大きいが薄板にできないので高周波磁界
における実効透磁率が比較的小さい。またフエラ
イトは実効透磁率は大きいが、飽和磁束密度が
5000G以下で小さいのが欠点である。他方パーマ
ロイ(Ni−Fe系合金)は鍛造、圧延加工および
打抜きは容易で量産性にすぐれているが、軟く摩
耗しやすいのが大きな欠点である。 本発明者らはNi−Fe系合金の磁気特性および
耐摩耗性の改善について幾多研究を行つた結果、
Ni−Fe系合金にa族元素のストロンチウムお
よびバリウムの1種および2種の合金0.001〜5
%を添加することにより目的を達成したのであ
る。 本発明は重量比にてニツケル30〜90%、ストロ
ンチウムおよびバリウムの1種または2種の合計
0.001〜5%、残部鉄および少量の不純物とから
なるか、またはこれを主成分とし、副成分として
銅30%以下、タングステン、ニオブ、タンタル、
マンガンのそれぞれ15%以下、モリブデン、コバ
ルトのそれぞれ10%以下、クロム、バナジウム、
チタン、ケイ素、ゲルマニウム、ガリウム、イン
ジウム、タリウムのそれぞれ5%以下、アルミニ
ウム、ジルコニウム、ハフニウム、希土類元素、
白金族元素のそれぞれ3%以下、ベリリウム、
錫、アンチモン、ホウ素、リンのそれぞれ2%以
下の1種または2種以上の合計0.01〜30%からな
り、飽和磁束密度5000G以上を有し、耐摩耗性お
よび実効透磁率がすぐれ、磁気記録再生ヘツド等
に使用し得る高透磁率磁性合金に係る。 さらに本発明は上記の高透磁率磁性合金をケー
スおよびコアに用いて製造した耐摩耗性にすぐれ
た磁気記録再生ヘツドに係る。 本発明の特徴とする所は下記の点にある。 第1発明 重量比にてニツケル30〜90%、ストロンチウム
およびバリウムの1種または2種の合計0.001〜
5%、残部鉄および少量の不純物とからなり、飽
和磁束密度5000G以上を有することを特徴とする
磁気記録再生ヘツド用耐摩耗性高透磁率合金。 第2発明 重量比にてニツケル30〜90%、ストロンチウム
およびバリウムの1種または2種の合計0.001〜
5%、銅30%以下、タングステン、ニオブ、タン
タル、マンガンのそれぞれ15%以下、モリブデ
ン、コバルトのそれぞれ10%以下、クロム、バナ
ジウム、チタン、ケイ素、ゲルマニウム、ガリウ
ム、インジウム、タリウムのそれぞれ5%以下、
アルミニウム、ジルコニウム、ハフニウム、希土
類元素、白金族元素のそれぞれ3%以下、ベリリ
ウム、錫、アンチモン、ホウ素、リンのそれぞれ
2%以下の1種または2種以上の合計0.01〜30
%、残部鉄および少量の不純物とからなる飽和磁
束密度5000G以上を有することを特徴とする磁気
記録再生ヘツド用耐摩耗性高透磁率合金。 第3発明 重量比にてニツケル30〜90%、ストロンチウム
およびバリウムの1種または2種の合計0.001〜
5%、残部鉄および少量の不純物とからなる合金
を、600℃以上融点以下の温度で非酸化性雰囲気
あるいは真空中において、少くとも1分間以上
100時間以下の組成に対応した適当時間加熱した
後、600℃以上から100℃/秒〜1℃/時の組成に
対応した適当な速度で常温まで冷却することを特
徴とする磁気記録再生ヘツド用耐摩耗性高透磁率
合金の製造法。 第4発明 重量比にてニツケル30〜90%、ストロンチウム
およびバリウムの1種または2種の合計0.001〜
5%、残部鉄および少量の不純物とからなる合金
を600℃以上融点以下の温度で非酸化性雰囲気あ
るいは真空中において、少くとも1分間以上100
時間以下の組成に対応した適当時間加熱した後、
600℃以上から100℃/秒〜1℃/時の組成に対応
した適当な速度で常温まで冷却し、これをさらに
600℃以下で非酸化性雰囲気中あるいは真空中に
おいて1分間以上100時間以下の組成に対応した
適当時間加熱し、冷却することを特徴とする磁気
記録再生ヘツド用耐摩耗性高透磁率合金の製造
法。 第5発明 重量比にてニツケル30〜90%、ストロンチウム
およびバリウムの1種または2種の合計0.001〜
5%、残部鉄および少量の不純物とからなる合金
を用いたことを特徴とする磁気記録再生ヘツドに
ある。 本発明の合金を造るには、まず主成分のニツケ
ル30〜90%、ストロンチウムおよびバリウムの1
種または2種の合計0.001〜5%および残部鉄の
適当量を非酸化雰囲気中あるいは真空中において
適当な溶解炉を用いて溶解した後、適当な脱酸
剤、脱硫剤を少量添加してできるだけ不純物を取
り除き、そのままか、更にこれに銅30%以下、タ
ングステン、ニオブ、タンタル、マンガンのそれ
ぞれ15%以下、モリブデン、コバルトのそれぞれ
10%以下、クロム、バナジウム、チタン、ケイ
素、ゲルマニウム、ガリウム、インジウム、タリ
ウムのそれぞれ5%以下、アルミニウム、ジルコ
ニウム、ハフニウム、希土類元素、白金族元素の
それぞれ3%以下、ベリリウム、錫、アンチモ
ン、ホウ素、リンのそれぞれ2%以下の1種また
は2種以上の合金0.01〜30%の定量を添加して充
分に撹拌し、組成的に均一な溶融合金を造る。次
にこれを適当な形および大きさの鋳型に注入して
健全な鋳塊を得、さらにこれを高温において鍛造
熱間圧延および冷間圧延などの成形加工を施して
目的の形状のもの、例えば厚さ0.1mmに薄板を造
る。 次にその薄板から目的の形状、寸法のものを打
抜き、これを適当な非酸化性雰囲気中あるいは真
空中で再結晶温度以上、すなわち約600℃以上、
特に800℃以上融点以下の温度に1分間以上加熱
し、次いで組成に対応した適当な速度、例えば
100℃/秒〜1℃/時で冷却する。合金の組成に
よつてはこれをさらに約600℃以下の温度(規則
格子−不規則格子変態点以下の温度)、特に200〜
600℃に1分間以上100時間以下加熱し、冷却する
ことにより飽和磁束密度5000G以上を有し、耐摩
耗性にすぐれた高透磁率磁性合金を得ることがで
きる。 上記の液体化温度から規則−不規則格子変態点
(約600℃)以上の温度までの冷却は、急冷しても
徐冷しても得られる磁性には大した変わりはない
が、この変態点以下の冷却速度は磁性に大きな影
響を及ぼす。すなわちこの変態点以上の温度より
100℃/秒〜1℃/時の組成に対応した適当な速
度で常温迄冷却することにより、地の規則度が適
当に調整され、すぐれた磁性が得られる。そして
上記の冷却速度の内100℃/秒に近い速度で急冷
すると、規則度が小さくなり、これ以上速く冷却
すると規則化が進まず、規則度はさらに小さくな
り磁性は劣化する。しかしその規則度の小さい合
金をその変態点以下の200℃〜600℃に再加熱し冷
却すると、規則化が進んで適度な規則度となり磁
性は向上する。他方、上記の変態点以上の温度か
ら、例えば1℃/時以下の速度で徐冷すると、規
則化は進みすぎ、磁性は低下する。 次に本発明の実施例について述べる。 実施例 1 合金番号13(組成Ni=78.5%、Sr=1.0%、Ba
=1.2%、残部Fe) 試料を造るには上記組成の合金材料の全重量
800gをアルミナ坩堝に入れ、真空中で高周波誘
導炉によつて溶かした後、よく撹拌して均質な溶
融合金とした。次いでこれを直径25mm、高さ170
mmの孔をもつ鋳型に注入し、得られた鋳塊を約
1000℃で鍛造して厚さ約7mmの板とした。さらに
約600〜900℃の間で厚さ1mmまで熱間圧延し、次
いで常温で冷間圧延を施して0.1mmの薄板とし、
それから外径45mm、内径33mmの環状板および磁気
ヘツドのコアを打ち抜いた。次にこれらに第1表
に示す種々な熱処理を施し、環状板で磁気特性
を、またコアを用いて磁気ヘツドを製造し、表面
粗さ計で磁気テープ(CrO2)による200時間走行
後の摩耗量を測定して第1表のような結果を得
た。
The present invention relates to a high magnetic permeability alloy that has excellent magnetic properties and wear resistance in an alternating magnetic field, can be easily forged, and is suitable for a magnetic recording/reproducing head, a method for producing the same, and a magnetic recording/reproducing head. Since magnetic recording/reproducing heads such as tape recorders operate in alternating magnetic fields, the magnetic alloys used therein must have high effective magnetic permeability in high-frequency magnetic fields, and magnetic tapes must slide in contact with each other. Therefore, it is desired that the wear resistance be good. Currently, Sendust (Fe-
(Si-Al alloy) and ferrite (MnO-ZnO
-Fe 2 O 3 ), but these are extremely hard and brittle and cannot be forged or rolled, so grinding and polishing methods are used to manufacture the head core, and the finished product is therefore expensive. . Sendust has a high saturation magnetic flux density, but cannot be made into a thin plate, so its effective permeability in a high-frequency magnetic field is relatively low. Also, although ferrite has a high effective permeability, the saturation magnetic flux density is
The disadvantage is that it is small, less than 5000G. On the other hand, permalloy (Ni-Fe alloy) is easy to forge, roll, and punch and has excellent mass productivity, but its major drawback is that it is soft and easily abraded. The present inventors conducted numerous studies on improving the magnetic properties and wear resistance of Ni-Fe alloys, and found that
Ni-Fe alloy with one or two alloys of Group A elements strontium and barium 0.001 to 5
The objective was achieved by adding %. The present invention is a combination of 30 to 90% nickel, one or two of strontium and barium by weight.
0.001 to 5%, balance iron and a small amount of impurities, or the main component is copper 30% or less, tungsten, niobium, tantalum,
15% or less each of manganese, 10% or less each of molybdenum and cobalt, chromium, vanadium,
5% or less each of titanium, silicon, germanium, gallium, indium, thallium, aluminum, zirconium, hafnium, rare earth elements,
Less than 3% each of platinum group elements, beryllium,
Contains a total of 0.01 to 30% of one or more of tin, antimony, boron, and phosphorus (2% or less each), has a saturation magnetic flux density of 5000G or more, has excellent wear resistance and effective magnetic permeability, and is suitable for magnetic recording and reproduction. This invention relates to a high permeability magnetic alloy that can be used for heads, etc. Furthermore, the present invention relates to a magnetic recording/reproducing head with excellent wear resistance manufactured using the above-mentioned high permeability magnetic alloy for the case and core. The features of the present invention are as follows. First invention Weight ratio of nickel 30 to 90%, total of one or two of strontium and barium 0.001 to
1. A wear-resistant, high permeability alloy for magnetic recording/reproducing heads, comprising 5% iron, the balance being iron and a small amount of impurities, and having a saturation magnetic flux density of 5000G or more. Second invention Weight ratio of nickel 30 to 90%, total of one or two of strontium and barium 0.001 to
5%, 30% or less of copper, 15% or less each of tungsten, niobium, tantalum, and manganese, 10% or less each of molybdenum, cobalt, 5% or less each of chromium, vanadium, titanium, silicon, germanium, gallium, indium, and thallium. ,
3% or less each of aluminum, zirconium, hafnium, rare earth elements, and platinum group elements, and 2% or less each of beryllium, tin, antimony, boron, and phosphorus, total of 0.01 to 30
%, the balance being iron and a small amount of impurities, and having a saturation magnetic flux density of 5000 G or more. Third invention Weight ratio of nickel 30 to 90%, total of one or two of strontium and barium 0.001 to 0.001
5%, balance iron and a small amount of impurities, in a non-oxidizing atmosphere or in vacuum at a temperature above 600℃ and below the melting point for at least 1 minute.
For a magnetic recording/reproducing head, which is characterized by being heated for an appropriate time corresponding to the composition for 100 hours or less, and then cooling from 600°C or higher to room temperature at an appropriate rate corresponding to the composition, from 100°C/sec to 1°C/hour. Method for manufacturing wear-resistant high permeability alloys. 4th Invention The total weight ratio of 30 to 90% nickel, one or two of strontium and barium is 0.001 to
An alloy consisting of 5% iron, the balance iron and a small amount of impurities is heated at a temperature above 600°C and below the melting point in a non-oxidizing atmosphere or in vacuum for at least 1 minute.
After heating for an appropriate time corresponding to the composition,
Cool from 600℃ or higher to room temperature at an appropriate rate corresponding to the composition of 100℃/sec to 1℃/hour, and then cool it further.
Manufacture of a wear-resistant high permeability alloy for magnetic recording and reproducing heads, which is heated at 600°C or lower in a non-oxidizing atmosphere or in vacuum for a period of 1 minute or more and 100 hours or less, and then cooled. Law. Fifth invention Weight ratio of nickel 30 to 90%, total of one or two of strontium and barium 0.001 to 0.001
The magnetic recording/reproducing head is characterized in that it uses an alloy consisting of 5% iron, the balance being iron and a small amount of impurities. To make the alloy of the present invention, first the main components are 30 to 90% nickel, 1% strontium and 1% barium.
After melting a total of 0.001 to 5% of the seed or two and the balance iron in an appropriate melting furnace in a non-oxidizing atmosphere or vacuum, add a small amount of an appropriate deoxidizing agent or desulfurizing agent to melt as much as possible. Remove impurities and add 30% or less copper, 15% or less each of tungsten, niobium, tantalum, and manganese, and each of molybdenum and cobalt.
10% or less of each of chromium, vanadium, titanium, silicon, germanium, gallium, indium, thallium, 3% or less of each of aluminum, zirconium, hafnium, rare earth elements, platinum group elements, beryllium, tin, antimony, boron , 2% or less of phosphorus, respectively, and 0.01 to 30% of one or more alloys are added and sufficiently stirred to produce a compositionally uniform molten alloy. Next, this is poured into a mold of an appropriate shape and size to obtain a sound ingot, which is then subjected to forming processes such as forging hot rolling and cold rolling at high temperatures to obtain the desired shape, e.g. Make a thin plate with a thickness of 0.1mm. Next, a piece of the desired shape and size is punched out from the thin plate, and it is heated at a temperature above the recrystallization temperature, that is, about 600°C or above, in a suitable non-oxidizing atmosphere or in a vacuum.
In particular, heat to a temperature of 800°C or higher and lower than the melting point for 1 minute or more, and then heat at an appropriate rate depending on the composition, e.g.
Cool at 100°C/sec to 1°C/hour. Depending on the composition of the alloy, this may be further increased to a temperature of about 600°C or below (temperature below the ordered lattice-irregular lattice transformation point), especially 200°C or less.
By heating at 600° C. for 1 minute or more and 100 hours or less and cooling, a high permeability magnetic alloy having a saturation magnetic flux density of 5000 G or more and excellent wear resistance can be obtained. Cooling from the above liquefaction temperature to a temperature above the ordered-disordered lattice transformation point (approximately 600°C) shows that there is no significant difference in the magnetism obtained whether the cooling is rapid or gradual; The following cooling rates have a significant effect on magnetism. In other words, from a temperature above this transformation point
By cooling to room temperature at an appropriate rate corresponding to the composition of 100° C./sec to 1° C./hour, the regularity of the ground can be adjusted appropriately and excellent magnetism can be obtained. If the material is rapidly cooled at a rate close to 100° C./second among the above cooling rates, the degree of order decreases, and if it is cooled any faster, the degree of order does not proceed, and the degree of order decreases further, resulting in deterioration of magnetism. However, when an alloy with a low degree of order is reheated to 200 to 600 degrees Celsius, below its transformation point, and cooled, ordering progresses and the degree of order becomes moderate, improving magnetism. On the other hand, if it is slowly cooled from a temperature above the above-mentioned transformation point at a rate of, for example, 1° C./hour or less, ordering will proceed too much and the magnetism will decrease. Next, examples of the present invention will be described. Example 1 Alloy number 13 (composition Ni=78.5%, Sr=1.0%, Ba
= 1.2%, balance Fe) To make the sample, the total weight of the alloy material with the above composition is required.
800 g of the alumina was placed in an alumina crucible and melted in a high-frequency induction furnace in a vacuum, followed by thorough stirring to obtain a homogeneous molten alloy. Next, this is 25mm in diameter and 170mm in height.
The resulting ingot was poured into a mold with a hole of mm.
It was forged at 1000℃ into a plate approximately 7mm thick. Further, it is hot rolled at about 600 to 900°C to a thickness of 1 mm, and then cold rolled at room temperature to form a thin plate of 0.1 mm.
Then an annular plate with an outer diameter of 45 mm and an inner diameter of 33 mm and the core of the magnetic head were punched out. Next, these were subjected to various heat treatments shown in Table 1, and the annular plate was used to test the magnetic properties, and the core was used to manufacture a magnetic head. The amount of wear was measured and the results shown in Table 1 were obtained.

【表】 実施例 2 合金番号42(組成Ni=79.0%、Nb=7.0%、Sr
=1.5%、Ba=1.0%、残部Fe) 試料を造るには上記組成の合金材料の全重量
800gをアルミナ坩堝に入れ、真空中で高周波誘
導電気炉によつて溶かした後よく撹拌して溶融合
金とした。製造工程は実施例1と同じである。試
料に種々の熱処理を施して第2表に示すような特
性が得られた。
[Table] Example 2 Alloy number 42 (composition Ni=79.0%, Nb=7.0%, Sr
= 1.5%, Ba = 1.0%, balance Fe) To make a sample, the total weight of the alloy material with the above composition is
800 g of the alumina was placed in an alumina crucible, melted in a vacuum using a high-frequency induction electric furnace, and stirred well to obtain a molten alloy. The manufacturing process is the same as in Example 1. The samples were subjected to various heat treatments and the properties shown in Table 2 were obtained.

【表】【table】

【表】 次に第3表には1150℃の真空中で2時間加熱し
た後、600℃から種々な速度で常温まで冷却する
か、あるいはこれをさらに600℃以下の温度で再
加熱して、常温で測定された代表的な合金の諸特
性が示してある。
[Table] Next, Table 3 shows that after heating in a vacuum at 1150°C for 2 hours, cooling from 600°C to room temperature at various rates, or further heating at a temperature below 600°C, The properties of representative alloys measured at room temperature are shown.

【表】 次に本発明合金のSrおよびBa添加効果につい
て図面によつて詳細に述べる。第1図には78.5%
Ni−Fe−Ba合金についてBa添加量と実効透磁
率、飽和磁束密度および摩耗量との関係を示し、
第2図には79%Ni−Fe−7%Nb−Ba合金につ
いてBa添加量と実効透磁率、飽和磁束密度およ
び摩耗量との関係を示した。 第3図には78.5%Ni−Fe−Sr合金についてSr
添加量と実効透磁率、飽和磁束密度および摩耗量
との関係を示し、第4図には79%Ni−Fe−7%
Nb−Sr合金についてSr添加量と実効透磁率、飽
和磁束密度および摩耗量との関係を示した。第5
図は78.5%Ni−Fe−1.0%Sr−1.2%Ba合金にCu,
W,Nb,TaあるいはMnを添加した場合の各元
素の添加量と実効透磁率、飽和磁束密度および摩
耗量との関係を示す特性図である。 第6図は78.5%Ni−Fe−1.0%Sr−1.2%Ba合
金Mo,Co,Cr,VあるいはTiを添加した場合
の各元素の添加量と実効透磁率、飽和磁束密度お
よび摩耗量との関係を示す特性図である。 第7図は78.5%Ni−Fe−1.0%Sr−1.2%Ba合
金にSi,Ge,Ga,In,又はTlを添加した場合の
各元素の添加量と実効透磁率、飽和磁束密度およ
び摩耗量との関係を示す特性図である。 第8図は78.5%Ni−Fe−1.0%Sr−1.2%Ba合
金にAl,Zr,Hf,Ce,Pt又はBe,Sn,Sb,B
あるいはPをそれぞれ添加した場合の各元素の添
加量と実効透磁率、飽和磁束密度および摩耗量と
の関係を示す特性図である。 一般にストロンチウム又はバリウムの添加量の
増加とともに実効透磁率は著しく増大し、摩耗量
は減少する。しかしストロンチウムおよびバリウ
ムが5%以上では加工が困難になり好ましくな
い。 本発明のこのような磁気特性の向上は溶解時に
おけるストロンチウムおよびバリウムの脱酸効果
によつて不純物が除去され、合金組織を清浄にす
るとともに、ストロンチウムおよびバリウムの結
晶型がニツケルおよび鉄と同様に対称性のよい立
方晶を形成するので、結晶磁気異方性エネルギー
が小さくなり、磁化し易い状態に成るものと考え
られる。さらにNi−Sr系、Fe−Sr系、Ni−Ba
系およびFe−Ba系金属間化合物が微細に析出し
て磁区を分割し磁壁を増加させるので、交流磁界
における磁壁の移動速度を相対的に減少させ、そ
のため渦電流損失が小さくなり、大きな実効透磁
率が得られるものと考えられる。また本発明合金
の耐摩耗性の向上は、大きな原子間距離を有する
ストロンチウム又はバリウムを添加すると、Ni
−Fe合金の地が固溶体硬化するとともに、強固
な金属間化合物が地に微細に析出することによる
ものと考えられる。 更に副成分として添加するCu,W,Nb,Ta,
Mn,Mo,Co,Cr,V,Ti,Ge,Ga,In,Tl,
Al,Si,Zr,Hf,希土類元素、白金族元素、
Be,Sn,Sb,BおよびP等は本発明合金の実効
透磁率を高める効果があり、またCoは飽和磁束
密度を高めるのに有効である。更にCu,W,
Nb,Ta,V,Ti,Ge,Ga,In,Tl,Al,Si,
Zr,Hf,希土類元素、白金族元素、Be,Sn,
Sb,BおよびP等は本発明合金の耐摩耗性を改
善する効果が大きく、更にNb,Ta,Mn,Ti,
Si,希土類元素は鍛造加工性を改善する効果が大
きい。 要するに本発明合金は飽和磁束密度が5000G以
上で実効透磁率が高く、耐摩耗性がすぐれ、且つ
加工性が良好なので磁気記録再生ヘツド用磁性合
金として好適であるばかりでなく、VTRおよび
電子計算機の磁気記録再生ヘツドならびに普通の
電気機器などに用いる磁性材料としても非常に好
適である。 次に本発明において合金の組成をニツケル30〜
90%、ストロンチウム又はバリウムの1種または
2種の合計0.001〜5%および残部鉄と限定し、
またこれに添加する元素を銅30%以下、タングス
テン、ニオブ、タンタル、マンガンのそれぞれ15
%以下、モリブデン、コバルトのそれぞれ10%以
下、クロム、バナジウム、チタン、ケイ素、ゲル
マニウム、ガリウム、インジウム、タリウムのそ
れぞれ5%以下、アルミニウム、ジルコニウム、
ハフニウム、希土類元素、白金族元素のそれぞれ
3%以下、ベリリウム、錫、アンチモン、ホウ
素、リンのそれぞれ2%以下の1種または2種以
上の合金0.01〜30%と限定した理由は、実施例、
第3表および図面第1図ないし第8図より明らか
なように、その組成範囲の飽和磁束密度は5000G
以上で、実効透磁率および耐摩耗性にすぐれ、且
つ加工性も良好であるが、組成がこの範囲をはず
れると飽和磁束密度が5000G以下となり、実効透
磁率が低下し、摩耗が大きくなり、且つ加工が困
難となり、磁気記録再生ヘツドの材料として不適
当となるからである。すなわち、ストロンチウム
およびバリウムが0.001%未満では添加効率が小
さく、5%を越えると鍛造加工が困難となるから
である。そしてこれに副成分として銅30%以下、
タングステン15%、ニオブ15%、タンタル15%、
マンガン15%、モリブデン10%、クロム5%、バ
ナジウム5%、チタン5%、ゲルマニウム5%、
ガリウム5%、インジウム5%、タリウム5%、
アルミニウム3%、ケイ素5%、ハフニウム3
%、希土類元素3%、白金族元素3%のそれぞれ
を越え添加すると飽和磁束密度が5000G以下とな
るからであり、ベリリウム2%、錫2%、アンチ
モン2%、ホウ素2%、リン2%のそれぞれを越
えて添加すると鍛造あるいは加工が困難となるか
らであり、Coを10%を越え添加すると実効透磁
率が小さくなるからである。 なお、第3表より明らかなように、Ni−Fe系
合金に副成分の何れかを入れると実効透磁率は更
に大きくなり、また、硬度も高くなり、耐摩耗性
が改善されるのでこれらの副成分の添加は同一効
果であり、同効成分と見倣し得る。また、希土類
元素はスカンジウム、イツトリウムおよびランタ
ン系元素からなるものであるが、その副成分添加
効果は全く同一であり、白金族元素は白金、イリ
ジウム、ルテニウム、ロジウム、パラジウム、オ
スミウムからなるが、その効果も全く同一であ
る。
[Table] Next, the effect of adding Sr and Ba to the alloy of the present invention will be described in detail with reference to the drawings. Figure 1 shows 78.5%
The relationship between Ba addition amount, effective magnetic permeability, saturation magnetic flux density, and wear amount for Ni-Fe-Ba alloy is shown.
Figure 2 shows the relationship between the amount of Ba added and the effective magnetic permeability, saturation magnetic flux density, and wear amount for the 79% Ni-Fe-7% Nb-Ba alloy. Figure 3 shows Sr for 78.5%Ni-Fe-Sr alloy.
The relationship between the addition amount, effective magnetic permeability, saturation magnetic flux density, and wear amount is shown in Figure 4.
The relationship between the amount of Sr added and the effective magnetic permeability, saturation magnetic flux density, and wear amount for Nb-Sr alloys was shown. Fifth
The figure shows 78.5%Ni-Fe-1.0%Sr-1.2%Ba alloy with Cu,
FIG. 3 is a characteristic diagram showing the relationship between the amount of each element added, effective magnetic permeability, saturation magnetic flux density, and amount of wear when W, Nb, Ta, or Mn is added. Figure 6 shows the relationship between the amount of each element added, effective magnetic permeability, saturation magnetic flux density and amount of wear when Mo, Co, Cr, V or Ti is added to the 78.5%Ni-Fe-1.0%Sr-1.2%Ba alloy. It is a characteristic diagram showing a relationship. Figure 7 shows the amount of each element added, effective magnetic permeability, saturation magnetic flux density, and wear amount when Si, Ge, Ga, In, or Tl is added to a 78.5% Ni-Fe-1.0% Sr-1.2% Ba alloy. FIG. Figure 8 shows 78.5%Ni-Fe-1.0%Sr-1.2%Ba alloy with Al, Zr, Hf, Ce, Pt or Be, Sn, Sb, B
Alternatively, it is a characteristic diagram showing the relationship between the amount of each element added, effective magnetic permeability, saturation magnetic flux density, and amount of wear when P is added. Generally, as the amount of strontium or barium added increases, the effective magnetic permeability increases significantly and the amount of wear decreases. However, if the content of strontium and barium exceeds 5%, processing becomes difficult, which is not preferable. This improvement in magnetic properties of the present invention is due to the deoxidizing effect of strontium and barium during melting, which removes impurities and cleanses the alloy structure. It is thought that since it forms a cubic crystal with good symmetry, the magnetocrystalline anisotropy energy becomes small, making it easy to magnetize. Furthermore, Ni-Sr system, Fe-Sr system, Ni-Ba system
The Fe-Ba system and Fe-Ba intermetallic compounds precipitate finely, dividing the magnetic domain and increasing the domain wall, which relatively reduces the moving speed of the domain wall in an alternating magnetic field, which reduces eddy current loss and increases the effective permeability. It is thought that magnetic property can be obtained. Furthermore, the wear resistance of the alloy of the present invention is improved by adding strontium or barium, which has a large interatomic distance.
This is thought to be due to solid solution hardening of the -Fe alloy base and fine precipitation of strong intermetallic compounds on the base. Furthermore, Cu, W, Nb, Ta, added as subcomponents
Mn, Mo, Co, Cr, V, Ti, Ge, Ga, In, Tl,
Al, Si, Zr, Hf, rare earth elements, platinum group elements,
Be, Sn, Sb, B, P, etc. are effective in increasing the effective magnetic permeability of the alloy of the present invention, and Co is effective in increasing the saturation magnetic flux density. Furthermore, Cu, W,
Nb, Ta, V, Ti, Ge, Ga, In, Tl, Al, Si,
Zr, Hf, rare earth elements, platinum group elements, Be, Sn,
Sb, B, P, etc. have a great effect on improving the wear resistance of the alloy of the present invention, and Nb, Ta, Mn, Ti, etc.
Si and rare earth elements have a great effect on improving forging workability. In short, the alloy of the present invention has a saturation magnetic flux density of 5000 G or more, high effective permeability, excellent wear resistance, and good workability, so it is not only suitable as a magnetic alloy for magnetic recording/reproducing heads, but also for VTRs and electronic computers. It is also very suitable as a magnetic material for use in magnetic recording/reproducing heads and ordinary electrical equipment. Next, in the present invention, the composition of the alloy is changed from Nickel 30 to
90%, 0.001 to 5% in total of one or both of strontium or barium, and the balance iron,
In addition, the elements added to this are less than 30% copper, and 15% each of tungsten, niobium, tantalum, and manganese.
% or less, molybdenum and cobalt each 10% or less, chromium, vanadium, titanium, silicon, germanium, gallium, indium, thallium each 5% or less, aluminum, zirconium,
The reason for limiting the content to 0.01 to 30% of an alloy of one or more types of hafnium, rare earth elements, and platinum group elements, each of which is 3% or less, and beryllium, tin, antimony, boron, and phosphorus, each of which is 2% or less, is as follows:
As is clear from Table 3 and Figures 1 to 8, the saturation magnetic flux density in the composition range is 5000G.
As described above, the material has excellent effective magnetic permeability and wear resistance, as well as good workability, but if the composition is outside this range, the saturation magnetic flux density will be less than 5000G, the effective magnetic permeability will decrease, and wear will increase. This is because it is difficult to process, making it unsuitable as a material for magnetic recording/reproducing heads. That is, if the content of strontium and barium is less than 0.001%, the addition efficiency is low, and if it exceeds 5%, forging becomes difficult. In addition to this, less than 30% copper is added as a subcomponent.
15% tungsten, 15% niobium, 15% tantalum,
15% manganese, 10% molybdenum, 5% chromium, 5% vanadium, 5% titanium, 5% germanium,
5% gallium, 5% indium, 5% thallium,
3% aluminum, 5% silicon, 3% hafnium
%, rare earth elements 3%, and platinum group elements 3%, the saturation magnetic flux density becomes 5000 G or less. This is because if more than 10% of Co is added, forging or processing becomes difficult, and if more than 10% of Co is added, the effective magnetic permeability decreases. As is clear from Table 3, if any of the subcomponents is added to the Ni-Fe alloy, the effective magnetic permeability will further increase, the hardness will also increase, and the wear resistance will be improved. Addition of sub-ingredients has the same effect and can be considered as an ingredient with the same effect. Rare earth elements consist of scandium, yttrium, and lanthanum-based elements, but the effect of adding their subcomponents is exactly the same, and platinum group elements consist of platinum, iridium, ruthenium, rhodium, palladium, and osmium, but The effect is exactly the same.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は78.5%Ni−Fe−Ba合金のバリウム量
と実効透磁率、飽和磁束密度および摩耗量との関
係を示す特性図、第2図は79%Ni−Fe−7%Nb
−Ba合金のバリウム量と実効透磁率、飽和磁束
密度および摩耗量との関係を示す特性図、第3図
は78.5%Ni−Fe−Sr合金のストロンチウム量と
実効透磁率、飽和磁束密度および摩耗量との関係
を示す特性図、第4図は79%Ni−Fe−7%Nb−
Sr合金のストロンチウム量と実効透磁率、飽和
磁束密度および摩耗量との関係を示す特性図、第
5図は78.5%Ni−Fe−1.0%Sr−1.2%Ba合金に
Cu,W,Nb,TaあるいはMnを添加した場合の
各元素の添加量と実効透磁率、飽和磁束密度およ
び摩耗量との関係を示す特性図、第6図は78.5%
Ni−Fe−1.0%Sr−1.2%Ba合金にMo,Co,Cr,
VあるいはTiを添加した場合の各元素の添加量
と実効透磁率、飽和磁束密度および摩耗量との関
係を示す特性図、第7図は78.5%Ni−Fe−1.0%
Sr−1.2%Ba合金にSi,Ge,Ga,In,又はTlを
添加した場合の各元素の添加量と実効透磁率、飽
和磁束密度および摩耗量との関係を示す特性図、
第8図は78.5%Ni−Fe−1.0%Sr−1.2%Ba合金
にAl,Zr,Hf,Ce,Pt又はBe,Sn,Sb,Bあ
るいはPをそれぞれを添加した場合の各元素の添
加量と実効透磁率、飽和磁束密度および摩耗量と
の関係を示す特性図である。
Figure 1 is a characteristic diagram showing the relationship between barium content, effective magnetic permeability, saturation magnetic flux density, and wear amount of 78.5%Ni-Fe-Ba alloy, Figure 2 is 79%Ni-Fe-7%Nb
-Characteristic diagram showing the relationship between barium content and effective magnetic permeability, saturation magnetic flux density, and wear amount of Ba alloy. Figure 3 shows the relationship between strontium content and effective magnetic permeability, saturation magnetic flux density, and wear amount of 78.5% Ni-Fe-Sr alloy. A characteristic diagram showing the relationship with the amount, Figure 4 is 79%Ni-Fe-7%Nb-
A characteristic diagram showing the relationship between the amount of strontium, effective magnetic permeability, saturation magnetic flux density, and amount of wear in Sr alloy.
Characteristic diagram showing the relationship between the amount of each element added, effective magnetic permeability, saturation magnetic flux density, and wear amount when Cu, W, Nb, Ta, or Mn is added. Figure 6 is 78.5%.
Ni-Fe-1.0%Sr-1.2%Ba alloy with Mo, Co, Cr,
A characteristic diagram showing the relationship between the amount of each element added, effective magnetic permeability, saturation magnetic flux density, and wear amount when V or Ti is added. Figure 7 shows 78.5%Ni-Fe-1.0%.
Characteristic diagram showing the relationship between the amount of each element added and effective magnetic permeability, saturation magnetic flux density, and wear amount when Si, Ge, Ga, In, or Tl is added to Sr-1.2%Ba alloy,
Figure 8 shows the amounts of each element added when Al, Zr, Hf, Ce, Pt, Be, Sn, Sb, B or P are added to a 78.5% Ni-Fe-1.0% Sr-1.2% Ba alloy. FIG. 3 is a characteristic diagram showing the relationship between , effective magnetic permeability, saturation magnetic flux density, and amount of wear.

Claims (1)

【特許請求の範囲】 1 重量比にてニツケル30〜90%、ストロンチウ
ムおよびバリウムの1種または2種の合計0.001
〜5%、残部鉄および少量の不純物とからなり、
飽和磁束密度5000G以上を有することを特徴とす
る磁気記録再生ヘツド用耐摩耗性高透磁率合金。 2 重量比にてニツケル30〜90%、ストロンチウ
ムおよびバリウムの1種または2種の合計0.001
〜5%、銅30%以下、タングステン、ニオブ、タ
ンタル、マンガンのそれぞれ15%以下、モリブデ
ン、コバルトのそれぞれ10%以下、クロム、バナ
ジウム、チタン、ケイ素、ゲルマニウム、ガリウ
ム、インジウム、タリウムのそれぞれ5%以下、
アルミニウム、ジルコニウム、ハフニウム、希土
類元素、白金族元素のそれぞれ3%以下、ベリリ
ウム、錫、アンチモン、ホウ素、リンのそれぞれ
2%以下の1種または2種以上の合計0.01〜30
%、残部鉄および少量の不純物とからなる飽和磁
束密度5000G以上を有することを特徴とする磁気
記録再生ヘツド用耐摩耗性高透磁率合金。 3 重量比にてニツケル30〜90%、ストロンチウ
ムおよびバリウムの1種または2種の合計0.001
〜5%、残部鉄および少量の不純物とからなる合
金を、600℃以上融点以下の温度で非酸化性雰囲
気あるいは真空中において、少くとも1分間以上
100時間以下の組成に対応した適当時間加熱した
後、600℃以上から100℃/秒〜1℃/時の組成に
対応した適当な速度で常温まで冷却することを特
徴とする磁気記録再生ヘツド用耐摩耗性高透磁率
合金の製造法。 4 重量比にてニツケル30〜90%、ストロンチウ
ムおよびバリウムの1種または2種の合計0.001
〜5%、残部鉄および少量の不純物とからなる合
金を600℃以上融点以下の温度で非酸化性雰囲気
あるいは真空中において、少くとも1分間以上
100時間以下の組成に対応した適当時間加熱した
後、600℃以上から100℃/秒〜1℃/時の組成に
対応した適当な速度で常温まで冷却し、これをさ
らに600℃以下で非酸化性雰囲気中あるいは真空
中において1分間以上100時間以下で組成に対応
した適当時間加熱し、冷却することを特徴とする
磁気記録再生ヘツド用耐摩耗性高透磁率合金の製
造法。 5 重量比にてニツケル30〜90%、ストロンチウ
ムおよびバリウムの1種または2種の合計0.001
〜5%、残部鉄および少量の不純物とからなる合
金を用いたことを特徴とする磁気記録再生ヘツ
ド。
[Claims] 1. Total weight ratio of 30 to 90% nickel, one or two of strontium and barium: 0.001
~5%, balance iron and small amounts of impurities,
A wear-resistant high permeability alloy for magnetic recording and reproducing heads, characterized by having a saturation magnetic flux density of 5000G or more. 2 Weight ratio of 30 to 90% nickel, one or two of strontium and barium, total 0.001
Up to 5% copper, up to 15% each of tungsten, niobium, tantalum, and manganese, up to 10% each of molybdenum and cobalt, and up to 5% each of chromium, vanadium, titanium, silicon, germanium, gallium, indium, and thallium. below,
3% or less each of aluminum, zirconium, hafnium, rare earth elements, and platinum group elements, and 2% or less each of beryllium, tin, antimony, boron, and phosphorus, total of 0.01 to 30
%, the balance being iron and a small amount of impurities, and having a saturation magnetic flux density of 5000 G or more. 3 Total weight ratio of 30 to 90% nickel, one or two of strontium and barium 0.001
~5%, the balance iron and a small amount of impurities, in a non-oxidizing atmosphere or in vacuum at a temperature of 600℃ or higher and lower than the melting point for at least 1 minute.
For a magnetic recording/reproducing head, which is characterized by being heated for an appropriate time corresponding to the composition for 100 hours or less, and then cooling from 600°C or higher to room temperature at an appropriate rate corresponding to the composition, from 100°C/sec to 1°C/hour. Method for producing wear-resistant high permeability alloys. 4 Weight ratio of 30 to 90% nickel, one or two of strontium and barium, total 0.001
~5%, the balance iron and a small amount of impurities is heated at a temperature above 600°C and below the melting point in a non-oxidizing atmosphere or in vacuum for at least 1 minute.
After heating for an appropriate time corresponding to the composition for 100 hours or less, cooling from 600℃ or higher to room temperature at an appropriate rate corresponding to the composition of 100℃/sec to 1℃/hour, and then cooling it to room temperature at a temperature of 600℃ or less. 1. A method for producing a wear-resistant high permeability alloy for a magnetic recording/reproducing head, which comprises heating the alloy in a neutral atmosphere or in a vacuum for an appropriate period of time corresponding to the composition, from 1 minute to 100 hours, and then cooling. 5 Weight ratio of 30 to 90% nickel, one or two of strontium and barium, total 0.001
A magnetic recording/reproducing head characterized in that it uses an alloy consisting of ~5% iron, the balance being iron and a small amount of impurities.
JP58131817A 1983-07-21 1983-07-21 Wear-resistant alloy with high magnetic permeability for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head Granted JPS6024348A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58131817A JPS6024348A (en) 1983-07-21 1983-07-21 Wear-resistant alloy with high magnetic permeability for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head
US06/624,290 US4572750A (en) 1983-07-21 1984-06-25 Magnetic alloy for magnetic recording-reproducing head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58131817A JPS6024348A (en) 1983-07-21 1983-07-21 Wear-resistant alloy with high magnetic permeability for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1262698A Division JPH0645848B2 (en) 1989-10-07 1989-10-07 Manufacturing method of wear resistant high permeability alloy for magnetic recording / reproducing head and magnetic recording / reproducing head

Publications (2)

Publication Number Publication Date
JPS6024348A JPS6024348A (en) 1985-02-07
JPH032216B2 true JPH032216B2 (en) 1991-01-14

Family

ID=15066792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58131817A Granted JPS6024348A (en) 1983-07-21 1983-07-21 Wear-resistant alloy with high magnetic permeability for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head

Country Status (1)

Country Link
JP (1) JPS6024348A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224728A (en) * 1984-04-19 1985-11-09 Res Inst Electric Magnetic Alloys Wear resistant high magnetic permeability alloy and its manufacture and magnetic recording/reproducing head
JPS6191340A (en) * 1984-10-11 1986-05-09 Res Inst Electric Magnetic Alloys Wear-resistant high permeability alloy and its production and magnetic recording and reproducing head

Also Published As

Publication number Publication date
JPS6024348A (en) 1985-02-07

Similar Documents

Publication Publication Date Title
US4710243A (en) Wear-resistant alloy of high permeability and method of producing the same
JP2777319B2 (en) Wear-resistant high-permeability alloy, method for producing the same, and magnetic recording / reproducing head
JPH06322472A (en) Production of fe base soft magnetic alloy
JPS6133900B2 (en)
JPS625972B2 (en)
JPS59582B2 (en) Amorphous alloy for magnetic heads with low magnetostriction and high wear resistance and its manufacturing method
KR100405929B1 (en) Abrasion resistant high transmittance alloy, its manufacturing method and magnetic recording playback head
JPS6212296B2 (en)
JPS5947017B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JPH032216B2 (en)
JP3251899B2 (en) Wear-resistant high permeability alloy and magnetic recording / reproducing head
JPH0368107B2 (en)
JPH02153036A (en) Wear-resistant high permeability alloy for magnetic recording/reproducing head and its manufacture and magnetic recording/reproducing head
JPS58150119A (en) Alloy having high magnetic permeability for magnetic recording and reproducing head and its production, and magnetic recording and reproducing head
JPH02153052A (en) Manufacture of wear resistant high permeability alloy for magnetic recording/reproducing head and magnetic recording/reproducing head
JPH0645847B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPH0310699B2 (en)
JPS6218619B2 (en)
JPH0310700B2 (en)
JPH0525947B2 (en)
JPH0377644B2 (en)
JPH0645849B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPH0645846B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPS6155583B2 (en)
JPS61143546A (en) Amorphous alloy for magnetic head