JPH0331959B2 - - Google Patents
Info
- Publication number
- JPH0331959B2 JPH0331959B2 JP56204257A JP20425781A JPH0331959B2 JP H0331959 B2 JPH0331959 B2 JP H0331959B2 JP 56204257 A JP56204257 A JP 56204257A JP 20425781 A JP20425781 A JP 20425781A JP H0331959 B2 JPH0331959 B2 JP H0331959B2
- Authority
- JP
- Japan
- Prior art keywords
- fluid
- sleeve
- oil
- communication chamber
- flow velocity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012530 fluid Substances 0.000 claims description 63
- 238000004891 communication Methods 0.000 claims description 24
- 238000013459 approach Methods 0.000 claims description 3
- 230000003139 buffering effect Effects 0.000 claims 2
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000003754 machining Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B31/00—Chucks; Expansion mandrels; Adaptations thereof for remote control
- B23B31/02—Chucks
- B23B31/24—Chucks characterised by features relating primarily to remote control of the gripping means
- B23B31/30—Chucks characterised by features relating primarily to remote control of the gripping means using fluid-pressure means in the chuck
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Gripping On Spindles (AREA)
Description
本発明は、旋盤用チヤツクのジヨウを作動させ
る駆動源としての回転流体圧シリンダなどに好適
に利用することのできる技術であつて、加圧され
た流体を消費装置へ供給する際に用いる流体用回
転継手の構造に関する。
The present invention is a technology that can be suitably used for a rotary fluid pressure cylinder, etc. as a drive source for operating a chuck for a lathe, and is a technology that can be suitably used for a rotary fluid pressure cylinder or the like as a drive source for operating a chuck for a lathe. Concerning the structure of a rotating joint.
従来の係る流体用回転継手の構造は、特公昭56
−24803号からも明らかなように静止体から回転
体へ加圧流体を供給する際の流体用通路の途中に
環状の流路が介在する構造のものであつたので、
静止部と回動部間にできる広範囲な隙間から多量
の加圧流体が漏れる欠点を備えていた。
係る加圧流体の漏れをより少なくするために
は、その隙間を微小にするか、或いは消費装置へ
向う加圧流体の環状流路と消費装置を経てもどる
消費流体の環状流路との間隔を広くし、両者を遠
くへ離すしかなく、従つて、発熱量が増大した
り、焼付きが生じたり、流体用回転継手部の全長
が長大になるといつた欠点を備えていた。
さらに改善されて特開昭56−131882号は、加圧
流体路と消費流体路の配設位置が加圧流体の漏れ
を防ぐに極めて重要な役目を果していることに関
する何等の技術開示もなされておらず、また前記
加圧流体の漏れをさらに激減させるためには、こ
の加圧流体によつて発生する衝撃を和らげること
が重要である。しかし、係る技術に関し何等の開
示もなされていないものである。
The structure of the conventional rotary joint for fluids is
As is clear from No. 24803, it had a structure in which an annular flow path was interposed in the middle of the fluid passage when supplying pressurized fluid from a stationary body to a rotating body.
The drawback was that a large amount of pressurized fluid leaked from the wide gap created between the stationary part and the rotating part. In order to further reduce the leakage of the pressurized fluid, the gap should be made very small, or the distance between the annular flow path for the pressurized fluid going to the consuming device and the annular flow path for the consuming fluid returning through the consuming device should be reduced. The only way to do this is to make the joint wider and to separate them further apart, which has disadvantages such as an increase in heat generation, seizure, and an increase in the overall length of the fluid rotary joint. Further improved, JP-A-56-131882 discloses no technical disclosure regarding the fact that the arrangement positions of the pressurized fluid path and the consumption fluid path play an extremely important role in preventing leakage of the pressurized fluid. In addition, in order to further reduce the leakage of the pressurized fluid, it is important to soften the impact generated by the pressurized fluid. However, nothing has been disclosed regarding such technology.
本発明は、係る従来装置の欠点、即ち加圧流体
による衝撃の発生、さらに加圧流体の漏れ量が多
いという欠点を解決することにある。
SUMMARY OF THE INVENTION The present invention aims to solve the disadvantages of such conventional devices, namely, the occurrence of shock due to the pressurized fluid and the large amount of leakage of the pressurized fluid.
本発明は、以上の欠点をみごとに解消するもの
であつて、その特徴は、流体用通路を備えた静止
体と、該静止体に軸承されて回転する回転体と、
その両者間に介在するスリーブとから形成され、
前記スリーブには多数本の流体路が半径方向へ指
向させ穿設されており、さらに前記回転体には前
記流体路の少なくとも1本と連通する弓弦状の連
通室が設けられているのほか、前記流体路の内方
端部には流速緩衝部が設けられていると共に該流
速緩衝部の切断面形状が前記連通室へ近づくにつ
れ漸増する末広がり形状に形成されている点にあ
る。
The present invention successfully solves the above-mentioned drawbacks, and has the following features: a stationary body equipped with a fluid passage; a rotating body that is rotatably supported by the stationary body;
and a sleeve interposed between the two,
The sleeve is provided with a plurality of fluid passages oriented in the radial direction, and the rotating body is provided with a bow-shaped communication chamber that communicates with at least one of the fluid passages. A flow velocity buffer is provided at the inner end of the fluid path, and the cross section of the flow velocity buffer has a shape that gradually widens toward the communication chamber.
回転体が回転することに伴つて発生する連通室
における流体による回転方向前方側の低圧力と後
方側の高圧との圧力降下勾配は、流速緩衝部の円
周長さ方向部位において除々に減圧されることか
ら、その圧力降下勾配が小さくなる。
さらに連通室へ近づくにつれて除々に増加する
末広がり形状の流速緩衝部は、加圧流体の衝撃を
著しく減少させ且つ乱流の発生も防止する。
The pressure drop gradient between the low pressure on the front side in the rotational direction and the high pressure on the rear side in the rotational direction due to the fluid in the communication chamber that occurs as the rotating body rotates is gradually reduced in the circumferential length direction of the flow velocity buffer part. Therefore, the pressure drop gradient becomes smaller. Furthermore, the flow velocity damping section, which has a diverging shape that gradually increases as it approaches the communication chamber, significantly reduces the impact of the pressurized fluid and also prevents the occurrence of turbulent flow.
流体が油であり且つチヤツクのジヨウを開閉す
るための回転油圧シリンダの具体的な実施例につ
いて説明する。
第1図は、液体の供給体Aと流体の消費装置を
備える回転体Bとからなる回転油圧シリンダの一
部切断斜視図であり、第2図は該シリンダの縦断
面図である。
図において、1はシリンダ、2はピストンロツ
ド、3はピストンロツド2上に固定されたピスト
ンであつて、シリンダ1の空洞4内を摺動自在に
嵌入されてなる。5は前記ピストンロツド2を嵌
挿する回転バルブであつて、内部には油の流れ方
向を一方向にのみ規制するロツク機構6,6′が
組込まれて、前記シリンダ1に対しボルト7を使
用して接合されてなる。8,9,10は空洞4の
気密性を保つためのOリングである。
11はピストン3に固定されたガイドピンで該
ガイドピンの両端P,P′のいづれか片端は常にシ
リンダ1または回転バルブ5に設けたカイドピン
用穴12に(図示例ではシリンダ側に)案内され
ることにより、ピストンロツド2の自由な回動が
制限されるようになつている。
一方、ピストンロツド2の片端は図示しないド
ローチユーブに螺合連結され、チヤツクのジヨウ
を移動させるようになす。
他方、回転バルブ5には大小二段の鍵状段部が
設けられており、一方が大径鍵状段部K1に、他
方が小径鍵状段部K2に構成されてなり、小径鍵
状段部K2にはスリーブボデイ13が設けられ
る。ここにスリーブボデイ13内部にはスリーブ
14が次のようにして圧入される。即ち、スリー
ブ14の両端に嵌込んだベアリング15,15′
の一方(図示例では15)は、直接にスリーブボ
デイ13の内側壁へ当接され、他方のベアリング
(図示例では15′)は、ボルト16にてスリーブ
ボデイ13に接合されたスリーブカバア17の内
側壁へ当接されるようになされて固設一体化され
ている。従つて、スリーブボデイ13と共に静止
しているスリーブ14の内周は、回転する小径鍵
状段部K2の外周と常にわずかな微小隙間を介し
て接しており、該微小隙間の半径方向隙間は通常
数10ミクロンの微小な隙間である。また、小径鍵
状段部K2の端縁部にはストツパ18がボルト1
9を使用して止着されている。
次に、シリンダ1内でのピストン3の作動を説
明すれば、以下のようにして行われる。図示しな
い外部供給装置(油槽)からの加圧された加圧油
はスリーブボデイ13の注入口24を介し油路2
5を通り、ロツク機構6を経て油路26、油室2
7へと導かれ、ピストン3を押圧移動させる。該
ピストン3の移動に伴つて押出される油室27′
の消費油はロツク機構6′を経て油路25′を通
り、排出口24′から外部供給装置へ回収される
のである。
以上の作用によるピストンの往工程が終了し復
工程に移るときは、前述の排出口24′が注入口
に、また注入口24が排出口になるよう切換弁
(図示せず)を切換え逆経路の回路になすことに
よつて復工程が行われる。このさい、加圧油の微
量は回転バルブ5とスリーブ14の微小隙間T,
T′を通つて両側ベアリング15,15′へ供給さ
れ、該ベアリング15,15′を潤滑せしめた後
にドレン溜め22を経て外部供給装置へ回収され
る。このさいスリーブ14の内部に連通孔fを明
け、環状の排油路f1とf2を連通せしめてある
から両ベアリング15,15′へ供給される油量
の均衡が保たれるようになされている。
以上に詳述した作動によつて、チヤツクのジヨ
ウを稼動中或は停止中に開閉し、図示しないワー
クがジヨウに把握され、この状態を保持しながら
ワークの機械加工が行われる。
次に回転継手構造の工夫に関し、第3図から第
6図を用いて説明する。第3図は第2図のZ−Z
切断面図、第4図はスリーブ14の斜視図、第5
図は回転バルブ5の斜視図、第6図はスリーブ1
4内の加圧流体路25b及び消費流体路25′b
の配列状態を示す展開平面図の部分拡大図であ
る。第4図から明らかなようにスリーブ14の外
周には、環状の油路25a及び25′aが距離を
おいて並列に設けてあり、該油路の半径方向適所
にこれと連通する多数本の流体路(第3図では各
6本)が放射状に穿設されている。該流体路は、
加圧流体を通す加圧流体路25bとを消費流体を
通す消費流体路25′bとから形成されている。
一方第5図に示す回転バルブ5の外周には、前記
加圧流体路25b及び消費流体路25′bの各開
口部の少なくとも1本に対応させて開口する一部
を切込んで弓弦状に削設した複数の連通室が配設
されている。該連通路は、加圧流体路25bに連
通する供給連通室25cと消費流体路25′bに
連通する排出連通室25′cとから形成されてい
る(第3図示例は各連通室に2本の流体路が開口
するものを示してある)。
しかるに注入口24から供給される加圧油は、
環状の油路25aを通り多数の加圧流体路25
b,25b,…のいずれかに分散されて供給通連
室25cへと導かれ、前記の油路25へ送給され
て消費装置に供給されるのである。他方、前記の
油路25′に押出される消費油は、排出連通室2
5′cへ導かれてから多数の消費流体路25′b,
25′b,…のいずれかを経て環状の油路25′a
にもどされ排出口24′を介して油槽へ回収され
るのである。
第3図示のように回転バルブ5への加圧油の押
圧力を放射方向へ均衡に作用させるときは、回転
バルブ5が偏芯荷重状態で回転しない点で優れて
いる。従つて加圧流体路25b,25b,…及び
消費流体路25′b,25′b,…は、回転バルブ
5の重量を無視すれば等分される放射状の多数配
置に穿設するのがよく、またこの油路に対応して
開口する供給連通室25c、及び排出通連室2
5′cも、回転バルブ5の複数箇所へ等間隔の配
置になして設け、且つ偏芯荷重を受けない構造に
形成することが大切である。
以上の実施例では、スリーブボデイ13とスリ
ーブ14を別体構造になしてあるが、一体構造の
供給体をなして、該供給体に多数箇の油路を直接
等分割配列に設けるものであつてもよいものであ
る。
また、回転バルブ5における流体を急激に連通
あるいは急激に遮断することなく、連通室に近づ
くにつれ流体の流速を緩和させることのできる末
広がり形状に形成した弓弦状の流速緩衝部S,
S′が流体路の内方端部に設けられている。
さらに、静止体であるスリーブ14の内壁面と
回転バルブ5の小径鍵状段部K2の外周面との微
小隙間に介在する流体である油はその粘性の働き
で連通室における回転方向の前方側部分が低圧と
なり後方側部分が高圧となる圧力降下勾配をもつ
が、前記流速緩衝部S,S′の特殊な形状の作用に
よつて緩やかな圧力降下勾配にされ油の流速が遅
くなると共にその衝激が和らげられるものとな
る。
工夫のもうひとつは、第6図示のように加圧流
体路25b,25b,…の列と消費流体路25′
b,25′b,…の列とにおいて、互に穿設する
油路が相手方油路の中間位置に配置されたいわゆ
る千鳥状配置に形成した配列にするものである。
これの作用を詳述すれば、供給される加圧油は
加圧流体路25bと供給連通室25cとの非接触
部分にできる微小隙間を介し交換されるものとな
るのでこの微小隙間を通して周辺部への流出(漏
れ)が発生する。この漏れは、環状の排油路f
1,f2を介しドレン溜め22へもどすのである
が、前記千鳥状に配設されているときは互の距離
Lが大きくできることから加圧油の漏れは極めて
僅少となるのである。
なお、この千鳥配置の流体路はスリーブ14へ
複数組設けて使用することも可能である。
A specific embodiment of a rotary hydraulic cylinder in which the fluid is oil and is used to open and close a chuck will be described. FIG. 1 is a partially cutaway perspective view of a rotary hydraulic cylinder consisting of a liquid supply body A and a rotary body B provided with a fluid consumption device, and FIG. 2 is a longitudinal sectional view of the cylinder. In the figure, 1 is a cylinder, 2 is a piston rod, and 3 is a piston fixed on the piston rod 2, which is slidably fitted into the cavity 4 of the cylinder 1. Reference numeral 5 denotes a rotary valve into which the piston rod 2 is fitted, and a locking mechanism 6, 6' for regulating the flow direction of oil in only one direction is incorporated therein. It is joined together. 8, 9, and 10 are O-rings for keeping the cavity 4 airtight. Reference numeral 11 denotes a guide pin fixed to the piston 3, and either end P or P' of the guide pin is always guided into a guide pin hole 12 provided in the cylinder 1 or the rotary valve 5 (in the illustrated example, toward the cylinder side). As a result, free rotation of the piston rod 2 is restricted. On the other hand, one end of the piston rod 2 is threadedly connected to a draw tube (not shown) to move the chuck. On the other hand, the rotary valve 5 is provided with two large and small key-shaped steps, one of which is a large-diameter key-shaped step K1, and the other is a small-diameter key-shaped step K2. A sleeve body 13 is provided in part K2. The sleeve 14 is press-fitted into the sleeve body 13 in the following manner. That is, the bearings 15, 15' fitted into both ends of the sleeve 14
One of the bearings (15 in the illustrated example) is in direct contact with the inner wall of the sleeve body 13, and the other bearing (15' in the illustrated example) is attached to the inner side of the sleeve cover 17, which is joined to the sleeve body 13 with bolts 16. It is fixed and integrated so that it comes into contact with the wall. Therefore, the inner periphery of the sleeve 14, which is stationary together with the sleeve body 13, is always in contact with the outer periphery of the rotating small-diameter key-shaped step part K2 through a slight gap, and the radial gap of this minute gap is usually This is a tiny gap of several tens of microns. Further, a stopper 18 is attached to the end edge of the small diameter key-shaped stepped portion K2.
It is attached using 9. Next, the operation of the piston 3 within the cylinder 1 will be explained as follows. Pressurized oil from an external supply device (oil tank) (not shown) is supplied to the oil passage 2 through the inlet 24 of the sleeve body 13.
5, the lock mechanism 6, the oil passage 26, and the oil chamber 2.
7 to press and move the piston 3. Oil chamber 27' pushed out as the piston 3 moves
The consumed oil passes through the lock mechanism 6', the oil passage 25', and is recovered from the outlet 24' to the external supply device. When the forward stroke of the piston due to the above action is completed and the piston moves to the backward stroke, the switching valve (not shown) is switched so that the aforementioned discharge port 24' becomes the inlet and the inlet 24 becomes the discharge port. The reverse process is performed by making the circuit. At this time, the small amount of pressurized oil is caused by the small gap T between the rotary valve 5 and the sleeve 14.
It is supplied to the bearings 15, 15' on both sides through T' and, after lubricating the bearings 15, 15', is collected through the drain sump 22 to an external supply device. At this time, a communication hole f is formed inside the sleeve 14, and the annular oil drain passages f1 and f2 are made to communicate with each other, so that the amount of oil supplied to both bearings 15, 15' is kept in balance. . Through the operations described in detail above, the chuck is opened and closed during operation or stop, a workpiece (not shown) is grasped by the chuck, and machining of the workpiece is performed while maintaining this state. Next, improvements to the rotary joint structure will be explained using FIGS. 3 to 6. Figure 3 is Z-Z of Figure 2.
A cross-sectional view, FIG. 4 is a perspective view of the sleeve 14, and FIG.
The figure is a perspective view of the rotary valve 5, and FIG. 6 is a sleeve 1.
Pressurized fluid path 25b and consumption fluid path 25'b in 4
FIG. 3 is a partially enlarged view of a developed plan view showing an arrangement state of the . As is clear from FIG. 4, on the outer periphery of the sleeve 14, annular oil passages 25a and 25'a are provided in parallel at a distance, and a large number of annular oil passages 25a and 25'a are provided at appropriate radial positions in communication with the oil passages. Fluid channels (six each in FIG. 3) are bored radially. The fluid path is
A pressurized fluid passage 25b for passing pressurized fluid and a consumption fluid passage 25'b for passing consuming fluid are formed.
On the other hand, the outer periphery of the rotary valve 5 shown in FIG. There are multiple communication rooms that have been cut out. The communication passage is formed of a supply communication chamber 25c that communicates with the pressurized fluid passage 25b and a discharge communication chamber 25'c that communicates with the consumption fluid passage 25'b (in the third illustrated example, there are two communication chambers in each communication chamber). (The book's fluid path is shown open). However, the pressurized oil supplied from the inlet 24 is
A large number of pressurized fluid passages 25 pass through an annular oil passage 25a.
b, 25b, . On the other hand, the consumed oil pushed out to the oil passage 25' is transferred to the discharge communication chamber 2.
5'c and then a large number of consumption fluid paths 25'b,
25'b,... to the annular oil passage 25'a.
It is returned to the oil tank and collected through the outlet 24'. When the pressing force of the pressurized oil is applied to the rotary valve 5 in a balanced manner in the radial direction as shown in FIG. 3, it is advantageous in that the rotary valve 5 does not rotate under an eccentric load state. Therefore, it is preferable that the pressurized fluid passages 25b, 25b, . . . and the consumption fluid passages 25'b, 25'b, . , and a supply communication chamber 25c and a discharge communication chamber 2 that open corresponding to this oil passage.
It is also important to provide the valves 5'c at multiple locations on the rotary valve 5 at equal intervals and to form a structure that does not receive eccentric loads. In the embodiments described above, the sleeve body 13 and the sleeve 14 are constructed as separate bodies, but they can be constructed as an integrated supply body, and a large number of oil passages are directly provided in the supply body in an equally divided arrangement. It is a good thing. Further, a bow-shaped flow velocity buffer portion S formed in a shape that widens at the end is capable of reducing the flow velocity of the fluid as it approaches the communication chamber without suddenly communicating or abruptly blocking the fluid in the rotary valve 5;
S' is provided at the inner end of the fluid path. Further, due to its viscosity, oil, which is a fluid, intervening in the minute gap between the inner wall surface of the sleeve 14, which is a stationary body, and the outer circumferential surface of the small-diameter key-shaped stepped portion K2 of the rotary valve 5, moves toward the front side in the direction of rotation in the communication chamber. There is a pressure drop gradient where the pressure is low in the rear part and high pressure in the rear part, but due to the special shape of the flow velocity buffer parts S and S', the pressure drop gradient becomes gentle and the flow velocity of the oil slows down. The shock will be alleviated. Another idea is that the rows of pressurized fluid paths 25b, 25b, ... and the consumption fluid path 25' are
In the rows 25'b, 25'b, . To explain the operation in detail, the pressurized oil to be supplied is exchanged through a small gap formed in the non-contact part between the pressurized fluid path 25b and the supply communication chamber 25c, and the surrounding area is exchanged through this small gap. An outflow (leakage) occurs. This leakage occurs in the annular oil drain path f
1 and f2 to the drain reservoir 22, and when they are arranged in a staggered manner, the distance L between them can be increased, so leakage of the pressurized oil becomes extremely small. Incidentally, it is also possible to provide a plurality of sets of the staggered fluid passages in the sleeve 14 and use them.
本願発明によれば、加圧流体が流れるさいの衝
撃を和らげ、さらには緩やかな圧力差の減少を可
能にして流速の低速化に著効を奏し、さらにまた
乱流の防止ができることから消音化を可能にする
優れた効果を発揮するものである。
これらにより回転の立ち上りが速くでき、アイ
ドルタイムの短縮化ができるうえで優れている。
さらに加圧流体の漏れが少なく、漏れに伴うせん
断熱を極端に減少させることができる。また環状
周溝間の距離lが小さくできることから装置の小
型化、コンパクト化を図る上で非常に優れてい
る。
特に、本実施例のものと従来のものとの漏れ量
が同じであると仮定すれば、微小隙間を大きく選
択でき得ることから加圧精度がラフにでき、加工
工数の低減に著効を奏するものであり、しかもト
ルク抵抗の減少にも非常に優れた効果を発揮す
る。
また、回転体の外周に且つ等間隔に連通室を削
設ける場合は、高速回転時における回転部の振動
を防止する上でも非常に優れている。
According to the present invention, it is possible to reduce the impact when the pressurized fluid flows, and furthermore, it is possible to gradually reduce the pressure difference, which is effective in reducing the flow velocity, and furthermore, it is possible to prevent turbulent flow, thereby reducing noise. It exhibits excellent effects that make it possible. These are excellent in that they allow the rotation to start up quickly and shorten idle time.
Furthermore, there is little leakage of pressurized fluid, and shear heat associated with leakage can be extremely reduced. In addition, since the distance l between the annular circumferential grooves can be reduced, this is very advantageous in terms of making the device smaller and more compact. In particular, assuming that the leakage amount between this example and the conventional one is the same, it is possible to select a large microgap, making it possible to roughen the pressurizing accuracy, which is effective in reducing the number of machining steps. Moreover, it also exhibits an extremely excellent effect in reducing torque resistance. In addition, when communicating chambers are formed on the outer periphery of the rotating body at equal intervals, this is very effective in preventing vibrations of the rotating part during high-speed rotation.
第1図は、回転油圧シリンダの一部切断斜視
図、第2図は該シリンダ全体の縦断面図、第3図
は第2図のZ−Z切断面図、第4図はスリーブ1
4の一部切断斜視図、第5図は回転バルブ5の斜
視図、第6図はスリーブ14内の加圧流体路と消
化流体路の配列状態を示す展開平面図の部分拡大
図である。
1……シリンダ、2……ピストンロツド、3…
…ピストン、5……回転バルブ、6,6′……ロ
ツク機構、13……スリーブボデイ、14……ス
リーブ、24……注入口、24′……排出口、2
5,25′……油路、25a,25′a……環状油
路、25b……加圧流体路(流体路)、25′b…
…消費流体路(流体路)、25c……供給連通室
(連通室)、25′c……排出連通室(連通室)、2
7,27′……油室、A……供給体(静止体)、B
……回転体、S,S′……流速緩衝部。
FIG. 1 is a partially cutaway perspective view of a rotary hydraulic cylinder, FIG. 2 is a longitudinal sectional view of the entire cylinder, FIG. 3 is a Z-Z sectional view of FIG. 2, and FIG. 4 is a sleeve 1.
4, FIG. 5 is a perspective view of the rotary valve 5, and FIG. 6 is a partially enlarged exploded plan view showing the arrangement of the pressurized fluid path and the digestive fluid path within the sleeve 14. 1...Cylinder, 2...Piston rod, 3...
... Piston, 5 ... Rotary valve, 6, 6' ... Lock mechanism, 13 ... Sleeve body, 14 ... Sleeve, 24 ... Inlet, 24' ... Discharge port, 2
5, 25'...oil passage, 25a, 25'a...annular oil passage, 25b...pressurized fluid passage (fluid passage), 25'b...
...Consumption fluid path (fluid path), 25c...Supply communication chamber (communication chamber), 25'c...Discharge communication chamber (communication chamber), 2
7, 27'...Oil chamber, A...Supply body (stationary body), B
...Rotating body, S, S'...Flow velocity buffer.
Claims (1)
承されて回転する回転体と、その両者間に介在す
るスリーブとから形成され、前記スリーブには多
数本の流体路が半径方向へ指向させ穿設されてお
り、さらに前記回転体には前記流体路の少なくと
も1本と連通する弓弦状の連通室が設けられてい
るのほか、前記流体路の内方端部には流速緩衝部
が設けられていると共に該流速緩衝部の切断面形
状が前記連通室へ近づくにつれ漸増する末広がり
形状に形成されていることを特徴とする流体用回
転継手。 2 前記スリーブにおける流体路が、軸線方向へ
並列に且つ千鳥配置に設けられていることを特徴
とする特許請求の範囲第1項記載の流体用回転継
手。[Scope of Claims] 1. It is formed of a stationary body equipped with a fluid passage, a rotating body that is rotatably supported by the stationary body, and a sleeve interposed between the two, and the sleeve contains a large number of fluids. The rotary body is provided with an arch-shaped communication chamber communicating with at least one of the fluid passages, and an inner end of the fluid passage is provided with a passageway oriented in a radial direction. A rotary joint for a fluid, characterized in that a flow velocity buffering portion is provided therein, and the cross section of the flow velocity buffering portion is formed in a shape that gradually widens towards the end as it approaches the communication chamber. 2. The fluid rotary joint according to claim 1, wherein the fluid passages in the sleeve are provided in parallel in the axial direction and in a staggered arrangement.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20425781A JPS58102608A (en) | 1981-12-16 | 1981-12-16 | Rotary fluid hydraulic cylinder for chucking in machine tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20425781A JPS58102608A (en) | 1981-12-16 | 1981-12-16 | Rotary fluid hydraulic cylinder for chucking in machine tool |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58102608A JPS58102608A (en) | 1983-06-18 |
JPH0331959B2 true JPH0331959B2 (en) | 1991-05-09 |
Family
ID=16487459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20425781A Granted JPS58102608A (en) | 1981-12-16 | 1981-12-16 | Rotary fluid hydraulic cylinder for chucking in machine tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58102608A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19823823C2 (en) * | 1998-05-28 | 2000-12-07 | Roehm Gmbh | Clamping cylinder with cooling openings |
JP3878533B2 (en) * | 2002-10-17 | 2007-02-07 | ▲しゅあん▼ 隆 呉 | Oil chuck |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5220072U (en) * | 1975-07-31 | 1977-02-12 | ||
JPS55144949A (en) * | 1979-04-26 | 1980-11-12 | Kitagawa Tekkosho:Kk | Cooling mechanism for rotary fluid pressure cylinder |
-
1981
- 1981-12-16 JP JP20425781A patent/JPS58102608A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5220072U (en) * | 1975-07-31 | 1977-02-12 | ||
JPS55144949A (en) * | 1979-04-26 | 1980-11-12 | Kitagawa Tekkosho:Kk | Cooling mechanism for rotary fluid pressure cylinder |
Also Published As
Publication number | Publication date |
---|---|
JPS58102608A (en) | 1983-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3021869A (en) | Rotary type hydraulic valve | |
US2886346A (en) | Drill head with hydraulic thrust balancing means | |
US2849244A (en) | O-ring seal for rotary hydraulic cylinder | |
JPH0861018A (en) | Hollow shaft for bearing drag lever or tilting lever rotatably | |
US2623501A (en) | Piston for fluid pressure cylinders | |
JPH0331959B2 (en) | ||
US5273072A (en) | Flow passages for control valves | |
US20050040608A1 (en) | Chuck assembly with a cooling mechanism | |
US5328343A (en) | Rotary fluid pressure device and improved shuttle arrangement therefor | |
US3426655A (en) | Non-scoring hydrodynamically balanced buffer piston | |
JP2024516879A (en) | Multi-media rotating union | |
JPH0232519B2 (en) | RYUTAIYOKAITENTSUGITE | |
US3951044A (en) | Rotary radial piston machines with fluidflow supply in substantial axial direction | |
WO2024154671A1 (en) | Rotating cylinder | |
JPH0438094Y2 (en) | ||
JP3555990B2 (en) | Fluid pressure cylinder cushion device | |
US4294161A (en) | Power steering gear with oil filled capillary balancing slots | |
SE9901050D0 (en) | Device at tool spindle | |
KR960000781Y1 (en) | Integral type power steering system | |
JPS6326403A (en) | Static pressure non-contact type cylinder device | |
GB1588525A (en) | Hydraulic drive | |
US20050040609A1 (en) | Chuck assembly with a sealing member | |
US983032A (en) | Turbine. | |
JPH05309A (en) | Roll for rolling mill | |
JPH0424162Y2 (en) |