WO2024154671A1 - Rotating cylinder - Google Patents
Rotating cylinder Download PDFInfo
- Publication number
- WO2024154671A1 WO2024154671A1 PCT/JP2024/000665 JP2024000665W WO2024154671A1 WO 2024154671 A1 WO2024154671 A1 WO 2024154671A1 JP 2024000665 W JP2024000665 W JP 2024000665W WO 2024154671 A1 WO2024154671 A1 WO 2024154671A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- state
- base
- rotor
- working fluid
- cylinder
- Prior art date
Links
- 239000012530 fluid Substances 0.000 claims description 50
- 230000014759 maintenance of location Effects 0.000 claims description 11
- 230000002093 peripheral effect Effects 0.000 claims description 6
- 238000007599 discharging Methods 0.000 claims description 4
- 239000003921 oil Substances 0.000 description 6
- 230000020169 heat generation Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 230000004308 accommodation Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010720 hydraulic oil Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B31/00—Chucks; Expansion mandrels; Adaptations thereof for remote control
- B23B31/02—Chucks
- B23B31/24—Chucks characterised by features relating primarily to remote control of the gripping means
- B23B31/30—Chucks characterised by features relating primarily to remote control of the gripping means using fluid-pressure means in the chuck
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q11/00—Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
- B23Q11/12—Arrangements for cooling or lubricating parts of the machine
Definitions
- the present invention relates to a rotating cylinder installed in a machine tool.
- Patent Document 1 discloses a technology for cooling the inside of an oil reservoir in a rotating cylinder used in a machine tool by rotating multiple fans that rotate together with the rotor, thereby ventilating outside air into the oil reservoir.
- Patent Document 1 efficiently exhausts the generated heat and suppresses the temperature rise of the rotating cylinder, but since the heat generation itself is not suppressed, energy loss occurs due to the heat generation.
- the present invention was made in consideration of these circumstances, and provides a rotating cylinder that can reduce energy loss.
- a rotating cylinder comprising a base and a rotating body configured to be rotatable relative to the base, wherein a state switching unit is provided that can switch a gap between the base and the rotating body at a radially opposing portion where the base and the rotating body radially oppose each other between a first state and a second state, and the second state is a state in which the gap is larger than in the first state.
- the state switching portion includes a switching piston provided on the base at the radially opposing portion, and the first state and the second state are switched in accordance with the movement of the switching piston in the axial direction of the rotating body.
- a rotating cylinder according to any one of [1] to [3], wherein the rotating body comprises a rotating body main body, a main piston, first and second cylinder chambers, and first and second pressure retention valves, the base comprises first and second ports configured to be able to supply and discharge a working fluid, the first and second ports being respectively disposed in the radially opposing portions, the first port and the first cylinder chamber being connected through a first flow path, and the second port and the second cylinder chamber being connected through a second flow path, the main piston being configured to be movable by supplying and discharging the working fluid to the first and second cylinder chambers, and the first and second pressure retention valves being configured to be able to hold the pressure of the working fluid supplied into the first and second cylinder chambers, respectively.
- the gap between the base and the rotor can be switched between a first and a second state. Therefore, the gap between the base and the rotor is reduced only when it is necessary to reduce the gap, and in other cases, the gap between the base and the rotor is increased, thereby suppressing heat generation associated with the rotation of the rotor and reducing energy loss.
- FIG. 1A is a perspective view of a rotating cylinder 1 according to one embodiment of the present invention
- FIG. 1B is a perspective view of the rotating cylinder 1 as viewed from a different angle
- 2 is a cross-sectional view of the rotating cylinder 1 of FIG. 1 , taken along a line parallel to the rotation axis C of the rotor 3 and passing through the rotation axis C and the state switching portion 22.
- 3 is a view showing the rotary cylinder 1 of FIG. 2 disassembled into a base 2 and a rotary body 3.
- FIG. 4 is a diagram showing the base 2 in FIG. 3 disassembled into a base body 21 and a state switching portion 22.
- FIG. 3 is a cross-sectional view of the rotating cylinder 1 of FIG.
- FIG. 6A is an enlarged view of area A in FIG. 2, showing gap 1b in a first state
- FIG. 6B shows the state after the switching piston 25 constituting the state switching unit 22 has been moved to change the state of gap 1b from the first state to the second state.
- FIG. 6B is an exploded view of FIG.
- a rotating cylinder 1 according to an embodiment of the present invention includes a base 2 and a rotor 3 configured to be rotatable relative to the base 2.
- the base 2 is usually connected to a machine tool so as to be in a substantially non-rotating state.
- the rotor 3 is fixed to the spindle of the machine tool and rotates about a rotation axis C in association with the rotation of the spindle.
- the rotor 3 incorporates a reciprocating main piston 32.
- the rotary cylinder 1 is configured to supply a working fluid (e.g., hydraulic oil) for reciprocating the main piston 32 into the rotor 3 through the base 2.
- a working fluid e.g., hydraulic oil
- the base 2 is provided with first and second ports 2a, 2b configured to be able to supply and discharge the working fluid.
- the ports 2a, 2b are provided in the radially opposing portion 1a where the base 2 and the rotor 3 are radially opposed. In the radially opposing portion 1a, the working fluid is exchanged between the base 2 and the rotor 3. Sealing members (e.g., O-rings) are provided between various members to prevent leakage of the working fluid.
- Sealing members e.g., O-rings
- the rotor 3 includes a rotor main body 31, a main piston 32, first and second cylinder chambers 33a, 33b, and first and second pressure retention valves 34a, 34b.
- the rotor main body 31 includes a front body 31a, a rear body 31b, and a rear cap 31c.
- the rear body 31b is connected to the front body 31a by a bolt 31d (shown in Fig. 1A).
- the rear cap 31c is connected to the rear body 31b by a bolt 31e.
- the rotor main body 31 is fixed to the spindle by a bolt 31f that passes through the front body 31a and the rear body 31b.
- the main piston 32 is disposed in the accommodation space 31g of the rotor main body 31 and is freely slidable in the direction of the rotation axis.
- the main piston 32 comprises a cylindrical portion 32a, a flange portion 32b, and a connecting portion 32c.
- the accommodation space 31g comprises a cylindrical space 31g1 and a flange space 31g2.
- the cylindrical portion 32a is accommodated in the cylindrical space 31g1, and the flange portion 32b is accommodated in the flange space 31g2.
- the flange space 31g2 is divided into cylinder chambers 33a, 33b by the flange portion 32b.
- the main piston 32 is configured to be movable by supplying and discharging working fluid to the first and second cylinder chambers 33a, 33b.
- the flange portion 32b is connected to the rotor body 31 by a pin 32d, allowing the main piston 32 to rotate integrally with the rotor body 31.
- the connecting portion 32c is a female thread provided on the inner surface of the cylindrical portion 32a, and by fixing one end of a connecting bar to the connecting portion 32c and connecting the other end to a chuck device, the reciprocating motion of the main piston 32 can be transmitted to the chuck device, allowing the chuck to hold and release the workpiece.
- the rotor body 31 is provided with a first flow path 31h1 that connects the first port 2a and the first cylinder chamber 33a, and a second flow path 31h2 that connects the second port 2b and the second cylinder chamber 33b, and the working fluid can be supplied to and discharged from the cylinder chambers 33a and 33b through the first and second flow paths 31h1 and 31h2.
- the pressure retention valves 34a and 34b are disposed in the flow paths 31h1 and 31h2, respectively, and are configured to be able to retain the pressure of the working fluid in the cylinder chambers 33a and 33b.
- the pressure retention valves 34a and 34b are each configured as pilot-operated check valves, and the passage and blocking of the working fluid can be controlled by the pilot pressure.
- the base 2 includes a base body 21, a state switching unit 22, a bearing 23, and an oil reservoir 24.
- the base body 21 includes a front body 21a and a rear body 21b.
- the rear body 21b is connected to the front body 21a by a bolt 2c (shown in Fig. 1A).
- the base body 21 is cylindrical, and the state switching unit 22 and the bearing 23 are provided inside the base body 21.
- the rotating body 3 is supported by a pair of bearings 23 and can rotate relative to the base 2.
- the area between the pair of bearings 23 is the radially opposed portion 1a. In the radially opposed portion 1a, the base 2 and the rotating body 3 face each other in a non-contact manner through a minute gap 1b (shown in Fig. 6).
- the oil reservoir 24 is connected to the base body 21 by bolts (not shown).
- the base body 21 is provided with a drain port 21c that communicates with the oil reservoir 24, and a portion of the working fluid supplied through ports 2a and 2b is discharged from the drain port 21c through gap 1b. Therefore, gap 1b is filled with working fluid.
- the state switching unit 22 is configured to be able to switch the gap 1b between the base 2 and the rotor 3 at the radially opposing portion 1a between a first state shown in Fig. 6A and a second state shown in Fig. 6B. In the second state, the gap 1b is larger than in the first state.
- the state switching unit 22 is preferably disposed between a pair of bearings 23.
- the state switching unit 22 includes a switching piston 25 provided on the base 2 at the radially opposing portion 1a.
- the switching piston 25 is a cylindrical member, with the inner surface of the switching piston 25 facing the rotating body 3 and the outer surface of the switching piston 25 facing the base body 21.
- the first state and the second state are switched with the axial movement of the switching piston 25 (movement in the direction in which the rotation axis C extends; left and right direction in FIG. 2).
- the drive mechanism for moving the switching piston 25 is not particularly limited, but in this embodiment, the switching piston 25 is biased in one direction by a biasing member 26 such as a spring, and is movable in the other direction (opposite to the one direction) by a working fluid pressure (e.g. hydraulic) mechanism.
- the working fluid is supplied and discharged through a state change port 21d provided in the base body 21 so as to change the working fluid pressure applied to the axial end face of the switching piston 25.
- a state change port 21d provided in the base body 21 so as to change the working fluid pressure applied to the axial end face of the switching piston 25.
- the switching piston 25 is pushed by the biasing member 26, causing the gap 1b to be in the second state, and when the switching piston 25 is moved against the biasing force of the biasing member 26 by supplying working fluid to the state change port 21d, the gap 1b is in the first state.
- the switching piston 25 is connected to the base body 21 by the biasing member 26 and cannot rotate relative to the base body 21.
- ports 2a and 2b are composed of through holes 2a1 and 2b1 provided in base body 21 and through holes 2a2 and 2b2 provided in switching piston 25.
- through holes 2a1 and 2a2 communicate with each other to form port 2a
- through holes 2b1 and 2b2 communicate with each other to form port 2b.
- the positions of through holes 2a1 and 2a2 are shifted from each other, and the positions of through holes 2b1 and 2b2 are shifted from each other. Therefore, in the second state, working fluid cannot be flowed in or discharged through ports 2a and 2b.
- switching piston 25 also functions as a switching valve that controls the opening and closing of ports 2a and 2b. Even in the second state, the working fluid flows through the small gap between the base body 21 and the switching piston 25, so it is possible to oil the bearing 23 and expel the working fluid remaining in the gap 1b to promote cooling.
- the inner peripheral surface of the switching piston 25 is provided with a convex portion 25a and a concave portion 25b
- the outer peripheral surface of the rotating body 3 is provided with a convex portion 3a and a concave portion 3b.
- the convex portions 25a, 3a and the concave portions 25b, 3b are provided in an annular shape.
- the concave portion 25b is sandwiched between a pair of convex portions 25a, and the concave portion 3b is sandwiched between a pair of convex portions 3a.
- the convex portion 25a of the switching piston 25 and the convex portion 3a of the rotating body 3 face each other, and the gap 1b is narrowed.
- the convex portion 25a of the switching piston 25 and the concave portion 3b of the rotating body 3 face each other, and the concave portion 25b of the switching piston 25 and the convex portion 3a of the rotating body 3 face each other, and the gap 1b is wider than in the first state.
- Ports 2a and 2b are each provided in separate recesses 25b.
- Flow paths 31h1 and 31h2 open into separate recesses 3b.
- h2/h1 is, for example, 2 or more, preferably 5 or more, and more preferably 10 or more.
- This value is, for example, 2 to 1000, specifically, for example, 2, 5, 10, 20, 30, 40, 50, 100, 1000, and may be in a range between any two of the numerical values exemplified here or any greater than or equal to the numerical values exemplified here.
- h1 [mm] is, for example, 0.01 to 0.1, preferably 0.02 to 0.03, specifically, for example, 0.01, 0.02, 0.025, 0.03, 0.04, 0.05, 0.10, and may be in a range between any two of the numerical values exemplified here.
- h2 [mm] is, for example, 0.2 to 10, preferably 0.5 to 1.5, specifically, for example, 0.2, 0.5, 1, 1.5, 2, 3, 4, 5, 10, or may be in the range between any two of the values exemplified here.
- the state switching unit 22 puts the gap 1b into the first state shown in Fig. 6A and supplies the working fluid from the port 2a to the cylinder chamber 33a. Since the total capacity of the cylinder chambers 33a and 33b is constant, the working fluid in the cylinder chamber 33b is discharged through the port 2b and the drain port 21c by the volume of the working fluid supplied to the cylinder chamber 33a. This causes the main piston 32 to move backward. This operation is continued until the chuck holds the workpiece. During this operation, the gap 1b is in the first state, so the gap 1b is small and the amount of drainage does not increase.
- the state switching unit 22 switches the gap 1b to the second state. Since the pressure retention valve 34a is provided in the flow path 31h1 communicating with the cylinder chamber 33a, the pressure of the working fluid in the cylinder chamber 33a is maintained, and the workpiece is not released from the chuck.
- the spindle is rotated in this state, the rotating body 3 rotates together with the spindle.
- the heat generated at this time is inversely proportional to the size of the gap 1b, but since the gap 1b is large in the second state, the amount of heat generated is small, and the energy loss associated with the heat generation is small.
- the state switching by the state switching unit 22 may be performed in a state where the rotating body 3 is stopped, or may be performed while the rotating body 3 is rotating.
- the pressure of the working fluid in the cylinder chamber 33a is maintained by the pressure retention valve 34a, so it is possible to keep the second state until the end of machining by the machine tool.
- the pressure of the working fluid in the cylinder chamber 33a may decrease due to leakage of the working fluid from the cylinder chamber 33a. If the pressure of the working fluid decreases, the holding force of the chuck for the workpiece decreases, so it is preferable to perform a refreshing operation to increase the working fluid from the cylinder chamber 33a before the pressure of the working fluid falls below a predetermined threshold.
- the refreshing operation may be performed periodically, or may be performed when it is detected that the pressure of the working fluid falls below a predetermined threshold.
- the cycle of the refreshing operation is 0.1 to 10 minutes, preferably 0.5 to 2 minutes, and specifically, for example, 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 minutes, and may be in a range between any two of the numerical values exemplified here.
- the threshold pressure for performing the refresh operation is ⁇ P0 , where ⁇ is, for example, 0.50 to 0.99, and preferably 0.8 to 0.95.
- ⁇ may be, for example, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, or 0.99, or may be in a range between any two of the numerical values exemplified here.
- the refreshing operation can be performed by setting the gap 1b to the first state using the state switching unit 22, similar to "(2) Holding the workpiece".
- a small amount of working fluid flows into the cylinder chamber 33a, increasing the pressure of the working fluid in the cylinder chamber 33a.
- the pressure of the working fluid in the cylinder chamber 33a After the pressure of the working fluid in the cylinder chamber 33a has been increased, it can be switched to the second state, similar to "(3) Switching from the first state to the second state".
- the refresh operation should be performed for a time sufficient to increase the pressure of the working fluid in the cylinder chamber 33a, and the time for which the refresh operation is performed is, for example, 1 second or more.
- This time is, for example, 1 to 60 seconds, and specifically, for example, 1, 5, 10, 20, 30, 40, 50, or 60 seconds, and may be in a range between any two of the numerical values exemplified here, or any value greater than or equal to the number.
- the chuck releases the workpiece by releasing its hold.
- the state switching unit 22 sets the gap 1b to the first state, supplies the working fluid from the port 2b to the cylinder chamber 33b, and drains the working fluid in the cylinder chamber 33a through the port 2a and the drain port 21c by the volume of the working fluid supplied to the cylinder chamber 33b. This moves the main piston 32 forward. During this operation, the gap 1b is in the first state, so the gap 1b is small and the amount of drainage does not increase.
- the pump for supplying the working fluid is operated even in the second state, but if there is no need to improve the efficiency of oiling or cooling the bearings, the pump may be stopped. In this case, the energy required for the pump operation can be reduced, making it possible to further save energy.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Gripping On Spindles (AREA)
- Auxiliary Devices For Machine Tools (AREA)
Abstract
Provided is a rotating cylinder capable of attaining a reduction in energy loss. This rotating cylinder comprises a base and a rotor configured so as to be rotatable relative to the base, the rotating cylinder being equipped with a state switch part whereby a gap between the base and the rotor in a radial-direction opposed portion, which is a portion where the base faces the rotor in the radial direction, is switched between a first state and a second state, the gap in the second state being larger than that in the first state.
Description
本発明は、工作機械に設置される回転シリンダに関する。
The present invention relates to a rotating cylinder installed in a machine tool.
特許文献1には、工作機械に用いる回転シリンダにおいて、回転体と共に回転する複数のファンを回転させることによって、外気を油溜め部内で通気させて油溜め部の内側を冷却する技術が開示されている。
Patent Document 1 discloses a technology for cooling the inside of an oil reservoir in a rotating cylinder used in a machine tool by rotating multiple fans that rotate together with the rotor, thereby ventilating outside air into the oil reservoir.
特許文献1の技術では、発生した熱を効率的に排出して回転シリンダの温度上昇が抑制されているものの、発熱自体が抑制されているのではないので、発熱に伴うエネルギーロスが発生している。
The technology in Patent Document 1 efficiently exhausts the generated heat and suppresses the temperature rise of the rotating cylinder, but since the heat generation itself is not suppressed, energy loss occurs due to the heat generation.
本発明はこのような事情に鑑みてなされたものであり、エネルギーロスを低減可能な回転シリンダを提供するものである。
The present invention was made in consideration of these circumstances, and provides a rotating cylinder that can reduce energy loss.
本発明によれば、以下の発明が提供される。
[1]ベースと、前記ベースに対して相対回転可能に構成された回転体を備える回転シリンダであって、前記ベースと前記回転体が径方向に対向する径方向対向部での前記ベースと前記回転体の間の隙間を第1状態と第2状態の間で切替可能な状態切替部が設けられており、第2状態は、第1状態よりも前記隙間が大きい状態である、回転シリンダ。
[2][1]に記載の回転シリンダであって、前記状態切替部は、前記径方向対向部において前記ベースに設けられた切替用ピストンを備え、前記回転体の軸方向への前記切替用ピストンの移動に伴って、第1状態と第2状態が切り替えられる、回転シリンダ。
[3][2]に記載の回転シリンダであって、前記切替用ピストンは、筒状であり、前記切替用ピストンの内周面と、前記回転体の外周面には、それぞれ、凸部と凹部が設けられており、第1状態では、前記切替用ピストンの凸部と前記回転体の凸部が対向し、第2状態では、前記切替用ピストンの凸部と前記回転体の凹部が対向し、前記切替用ピストンの凹部と前記回転体の凸部が対向するする、回転シリンダ。
[4][1]~[3]の何れか1つに記載の回転シリンダであって、前記回転体は、回転体本体と、主ピストンと、第1及び第2シリンダ室と、第1及び第2圧力保持弁を備え、前記ベースは、作動流体の供給及び排出が可能に構成された第1及び第2ポートを備え、第1及び第2ポートは、それぞれ、前記径方向対向部に配置されており、第1ポートと第1シリンダ室は、第1流路を通じて接続されており、第2ポートと第2シリンダ室は、第2流路を通じて接続されており、前記主ピストンは、第1及び第2シリンダ室への前記作動流体の供給及び排出によって移動可能に構成され、第1及び第2圧力保持弁は、それぞれ、第1及び第2シリンダ室内に供給された前記作動流体の圧力を保持可能に構成される、回転シリンダ。 According to the present invention, the following inventions are provided.
[1] A rotating cylinder comprising a base and a rotating body configured to be rotatable relative to the base, wherein a state switching unit is provided that can switch a gap between the base and the rotating body at a radially opposing portion where the base and the rotating body radially oppose each other between a first state and a second state, and the second state is a state in which the gap is larger than in the first state.
[2] A rotating cylinder as described in [1], wherein the state switching portion includes a switching piston provided on the base at the radially opposing portion, and the first state and the second state are switched in accordance with the movement of the switching piston in the axial direction of the rotating body.
[3] A rotating cylinder as described in [2], wherein the switching piston is cylindrical, and an inner peripheral surface of the switching piston and an outer peripheral surface of the rotating body are provided with a convex portion and a concave portion, respectively, so that in a first state, the convex portion of the switching piston faces the convex portion of the rotating body, and in a second state, the convex portion of the switching piston faces the concave portion of the rotating body, and the concave portion of the switching piston faces the convex portion of the rotating body.
[4] A rotating cylinder according to any one of [1] to [3], wherein the rotating body comprises a rotating body main body, a main piston, first and second cylinder chambers, and first and second pressure retention valves, the base comprises first and second ports configured to be able to supply and discharge a working fluid, the first and second ports being respectively disposed in the radially opposing portions, the first port and the first cylinder chamber being connected through a first flow path, and the second port and the second cylinder chamber being connected through a second flow path, the main piston being configured to be movable by supplying and discharging the working fluid to the first and second cylinder chambers, and the first and second pressure retention valves being configured to be able to hold the pressure of the working fluid supplied into the first and second cylinder chambers, respectively.
[1]ベースと、前記ベースに対して相対回転可能に構成された回転体を備える回転シリンダであって、前記ベースと前記回転体が径方向に対向する径方向対向部での前記ベースと前記回転体の間の隙間を第1状態と第2状態の間で切替可能な状態切替部が設けられており、第2状態は、第1状態よりも前記隙間が大きい状態である、回転シリンダ。
[2][1]に記載の回転シリンダであって、前記状態切替部は、前記径方向対向部において前記ベースに設けられた切替用ピストンを備え、前記回転体の軸方向への前記切替用ピストンの移動に伴って、第1状態と第2状態が切り替えられる、回転シリンダ。
[3][2]に記載の回転シリンダであって、前記切替用ピストンは、筒状であり、前記切替用ピストンの内周面と、前記回転体の外周面には、それぞれ、凸部と凹部が設けられており、第1状態では、前記切替用ピストンの凸部と前記回転体の凸部が対向し、第2状態では、前記切替用ピストンの凸部と前記回転体の凹部が対向し、前記切替用ピストンの凹部と前記回転体の凸部が対向するする、回転シリンダ。
[4][1]~[3]の何れか1つに記載の回転シリンダであって、前記回転体は、回転体本体と、主ピストンと、第1及び第2シリンダ室と、第1及び第2圧力保持弁を備え、前記ベースは、作動流体の供給及び排出が可能に構成された第1及び第2ポートを備え、第1及び第2ポートは、それぞれ、前記径方向対向部に配置されており、第1ポートと第1シリンダ室は、第1流路を通じて接続されており、第2ポートと第2シリンダ室は、第2流路を通じて接続されており、前記主ピストンは、第1及び第2シリンダ室への前記作動流体の供給及び排出によって移動可能に構成され、第1及び第2圧力保持弁は、それぞれ、第1及び第2シリンダ室内に供給された前記作動流体の圧力を保持可能に構成される、回転シリンダ。 According to the present invention, the following inventions are provided.
[1] A rotating cylinder comprising a base and a rotating body configured to be rotatable relative to the base, wherein a state switching unit is provided that can switch a gap between the base and the rotating body at a radially opposing portion where the base and the rotating body radially oppose each other between a first state and a second state, and the second state is a state in which the gap is larger than in the first state.
[2] A rotating cylinder as described in [1], wherein the state switching portion includes a switching piston provided on the base at the radially opposing portion, and the first state and the second state are switched in accordance with the movement of the switching piston in the axial direction of the rotating body.
[3] A rotating cylinder as described in [2], wherein the switching piston is cylindrical, and an inner peripheral surface of the switching piston and an outer peripheral surface of the rotating body are provided with a convex portion and a concave portion, respectively, so that in a first state, the convex portion of the switching piston faces the convex portion of the rotating body, and in a second state, the convex portion of the switching piston faces the concave portion of the rotating body, and the concave portion of the switching piston faces the convex portion of the rotating body.
[4] A rotating cylinder according to any one of [1] to [3], wherein the rotating body comprises a rotating body main body, a main piston, first and second cylinder chambers, and first and second pressure retention valves, the base comprises first and second ports configured to be able to supply and discharge a working fluid, the first and second ports being respectively disposed in the radially opposing portions, the first port and the first cylinder chamber being connected through a first flow path, and the second port and the second cylinder chamber being connected through a second flow path, the main piston being configured to be movable by supplying and discharging the working fluid to the first and second cylinder chambers, and the first and second pressure retention valves being configured to be able to hold the pressure of the working fluid supplied into the first and second cylinder chambers, respectively.
本発明の回転シリンダでは、ベースと回転体の間の隙間が第1及び第2状態の間で切替可能になっている。このため、ベースと回転体の間の隙間を小さくする必要がある場合にのみ、この隙間を小さくし、それ以外の場合は、ベースと回転体の間の隙間を大きくすることによって、回転体の回転に伴う発熱が抑制できるので、エネルギーロスが低減される。
In the rotating cylinder of the present invention, the gap between the base and the rotor can be switched between a first and a second state. Therefore, the gap between the base and the rotor is reduced only when it is necessary to reduce the gap, and in other cases, the gap between the base and the rotor is increased, thereby suppressing heat generation associated with the rotation of the rotor and reducing energy loss.
以下、本発明の実施形態について説明する。以下に示す実施形態中で示した各種特徴事項は、互いに組み合わせ可能である。また、各特徴について独立して発明が成立する。
The following describes an embodiment of the present invention. The various features shown in the following embodiment can be combined with each other. Furthermore, each feature can be an invention independently.
1.回転シリンダ1の構成
図1~図7を用いて、本発明の一実施形態の回転シリンダ1について説明する。 1. Configuration of Rotary Cylinder 1 A rotary cylinder 1 according to an embodiment of the present invention will be described with reference to FIGS.
図1~図7を用いて、本発明の一実施形態の回転シリンダ1について説明する。 1. Configuration of Rotary Cylinder 1 A rotary cylinder 1 according to an embodiment of the present invention will be described with reference to FIGS.
1-1.基本構成
図1~図2に示すように、本発明の一実施形態の回転シリンダ1は、ベース2と、ベース2に対して相対回転可能に構成された回転体3を備える。ベース2は、通常、ほぼ非回転状態となるように工作機械に連結される。回転体3は、工作機械のスピンドルへ固着されスピンドルの回転に伴って回転軸Cを中心に回転する。 1 and 2, a rotating cylinder 1 according to an embodiment of the present invention includes a base 2 and a rotor 3 configured to be rotatable relative to the base 2. The base 2 is usually connected to a machine tool so as to be in a substantially non-rotating state. The rotor 3 is fixed to the spindle of the machine tool and rotates about a rotation axis C in association with the rotation of the spindle.
図1~図2に示すように、本発明の一実施形態の回転シリンダ1は、ベース2と、ベース2に対して相対回転可能に構成された回転体3を備える。ベース2は、通常、ほぼ非回転状態となるように工作機械に連結される。回転体3は、工作機械のスピンドルへ固着されスピンドルの回転に伴って回転軸Cを中心に回転する。 1 and 2, a rotating cylinder 1 according to an embodiment of the present invention includes a base 2 and a rotor 3 configured to be rotatable relative to the base 2. The base 2 is usually connected to a machine tool so as to be in a substantially non-rotating state. The rotor 3 is fixed to the spindle of the machine tool and rotates about a rotation axis C in association with the rotation of the spindle.
図2~図3に示すように、回転体3は、往復動可能な主ピストン32を内蔵する。また、回転シリンダ1は、ベース2を通じて主ピストン32を往復動させるための作動流体(例:作動油)を回転体3内に供給するように構成されている。図1に示すように、ベース2には、作動流体の供給及び排出が可能に構成された第1及び第2ポート2a,2bが設けられている。図2に示すように、ポート2a,2bは、ベース2と回転体3が径方向に対向する径方向対向部1aに設けられている。径方向対向部1aにおいて、ベース2と回転体3の間で作動流体が授受される。各種部材間には作動流体の漏れを防ぐためのシール部材(例:Oリング)が設けられている。
As shown in Figures 2 and 3, the rotor 3 incorporates a reciprocating main piston 32. The rotary cylinder 1 is configured to supply a working fluid (e.g., hydraulic oil) for reciprocating the main piston 32 into the rotor 3 through the base 2. As shown in Figure 1, the base 2 is provided with first and second ports 2a, 2b configured to be able to supply and discharge the working fluid. As shown in Figure 2, the ports 2a, 2b are provided in the radially opposing portion 1a where the base 2 and the rotor 3 are radially opposed. In the radially opposing portion 1a, the working fluid is exchanged between the base 2 and the rotor 3. Sealing members (e.g., O-rings) are provided between various members to prevent leakage of the working fluid.
1-2.回転体3
図3に示すように、回転体3は、回転体本体31と、主ピストン32と、第1及び第2シリンダ室33a,33bと、第1及び第2圧力保持弁34a,34bを備える。回転体本体31は、フロントボディ31aと、リアボディ31bと、リアキャップ31cを備える。リアボディ31bは、ボルト31d(図1Aに図示)によってフロントボディ31aに連結されている。リアキャップ31cは、ボルト31eによってリアボディ31bに連結されている。回転体本体31は、フロントボディ31aとリアボディ31bを貫通するボルト31fによってスピンドルに固定される。 1-2. Rotating body 3
As shown in Fig. 3, the rotor 3 includes a rotor main body 31, a main piston 32, first and second cylinder chambers 33a, 33b, and first and second pressure retention valves 34a, 34b. The rotor main body 31 includes a front body 31a, a rear body 31b, and a rear cap 31c. The rear body 31b is connected to the front body 31a by a bolt 31d (shown in Fig. 1A). The rear cap 31c is connected to the rear body 31b by a bolt 31e. The rotor main body 31 is fixed to the spindle by a bolt 31f that passes through the front body 31a and the rear body 31b.
図3に示すように、回転体3は、回転体本体31と、主ピストン32と、第1及び第2シリンダ室33a,33bと、第1及び第2圧力保持弁34a,34bを備える。回転体本体31は、フロントボディ31aと、リアボディ31bと、リアキャップ31cを備える。リアボディ31bは、ボルト31d(図1Aに図示)によってフロントボディ31aに連結されている。リアキャップ31cは、ボルト31eによってリアボディ31bに連結されている。回転体本体31は、フロントボディ31aとリアボディ31bを貫通するボルト31fによってスピンドルに固定される。 1-2. Rotating body 3
As shown in Fig. 3, the rotor 3 includes a rotor main body 31, a main piston 32, first and second cylinder chambers 33a, 33b, and first and second pressure retention valves 34a, 34b. The rotor main body 31 includes a front body 31a, a rear body 31b, and a rear cap 31c. The rear body 31b is connected to the front body 31a by a bolt 31d (shown in Fig. 1A). The rear cap 31c is connected to the rear body 31b by a bolt 31e. The rotor main body 31 is fixed to the spindle by a bolt 31f that passes through the front body 31a and the rear body 31b.
主ピストン32は、回転体本体31の収容空間31g内に配置され、回転軸芯方向へ摺動自在になっている。主ピストン32は、筒部32aと、フランジ部32bと、連結部32cを備える。収容空間31gは、筒空間31g1とフランジ空間31g2を備える。筒部32aは、筒空間31g1内に収容され、フランジ部32bは、フランジ空間31g2内に収容される。フランジ空間31g2は、フランジ部32bによってシリンダ室33a,33bに分割される。主ピストン32は、第1及び第2シリンダ室33a,33bへの作動流体の供給及び排出によって移動可能に構成されている。
The main piston 32 is disposed in the accommodation space 31g of the rotor main body 31 and is freely slidable in the direction of the rotation axis. The main piston 32 comprises a cylindrical portion 32a, a flange portion 32b, and a connecting portion 32c. The accommodation space 31g comprises a cylindrical space 31g1 and a flange space 31g2. The cylindrical portion 32a is accommodated in the cylindrical space 31g1, and the flange portion 32b is accommodated in the flange space 31g2. The flange space 31g2 is divided into cylinder chambers 33a, 33b by the flange portion 32b. The main piston 32 is configured to be movable by supplying and discharging working fluid to the first and second cylinder chambers 33a, 33b.
フランジ部32bは、ピン32dによって回転体本体31に連結されており、主ピストン32が、回転体本体31と一体回転可能になっている。連結部32cは、一例では、筒部32aの内面に設けられた雌ネジ部であり、連結バーの一端を連結部32cに固定し、他端をチャック装置に連結することによって、主ピストン32の往復動をチャック装置に伝達し、チャックによるワークの保持及び解放を行うことができるようになっている。
The flange portion 32b is connected to the rotor body 31 by a pin 32d, allowing the main piston 32 to rotate integrally with the rotor body 31. In one example, the connecting portion 32c is a female thread provided on the inner surface of the cylindrical portion 32a, and by fixing one end of a connecting bar to the connecting portion 32c and connecting the other end to a chuck device, the reciprocating motion of the main piston 32 can be transmitted to the chuck device, allowing the chuck to hold and release the workpiece.
回転体本体31には、第1ポート2aと第1シリンダ室33aを接続する第1流路31h1と、第2ポート2bと第2シリンダ室33bを接続する第2流路31h2が設けられており、第1及び第2流路31h1,31h2を通じてシリンダ室33a,33bへの作動流体の供給及び排出が可能になっている。圧力保持弁34a,34bは、それぞれ、流路31h1,31h2中に配置されており、シリンダ室33a,33b内の作動流体の圧力を保持可能に構成されている。圧力保持弁34a,34bは、それぞれ、パイロット操作チェック弁で構成されており、パイロット圧力によって作動流体の通過と阻止を制御可能になっている。
The rotor body 31 is provided with a first flow path 31h1 that connects the first port 2a and the first cylinder chamber 33a, and a second flow path 31h2 that connects the second port 2b and the second cylinder chamber 33b, and the working fluid can be supplied to and discharged from the cylinder chambers 33a and 33b through the first and second flow paths 31h1 and 31h2. The pressure retention valves 34a and 34b are disposed in the flow paths 31h1 and 31h2, respectively, and are configured to be able to retain the pressure of the working fluid in the cylinder chambers 33a and 33b. The pressure retention valves 34a and 34b are each configured as pilot-operated check valves, and the passage and blocking of the working fluid can be controlled by the pilot pressure.
1-3.ベース2
1-3-1.ベース2の基本構成
図3~図4に示すように、ベース2は、ベース本体21と、状態切替部22と、ベアリング23と、油溜め部24を備える。ベース本体21は、フロントボディ21aと、リアボディ21bを備える。リアボディ21bは、ボルト2c(図1Aに図示)によってフロントボディ21aに連結されている。ベース本体21は、筒状であり、ベース本体21の内部に状態切替部22とベアリング23が設けられている。回転体3は、一対のベアリング23によって軸受されて、ベース2に対して相対回転可能になっている。一対のベアリング23の間の部位が径方向対向部1aとなる。径方向対向部1aにおいて、ベース2と回転体3は、微小な隙間1b(図6に図示)を介して、非接触で対向している。 1-3. Base 2
1-3-1. Basic configuration of the base 2 As shown in Figs. 3 and 4, the base 2 includes a base body 21, a state switching unit 22, a bearing 23, and an oil reservoir 24. The base body 21 includes a front body 21a and a rear body 21b. The rear body 21b is connected to the front body 21a by a bolt 2c (shown in Fig. 1A). The base body 21 is cylindrical, and the state switching unit 22 and the bearing 23 are provided inside the base body 21. The rotating body 3 is supported by a pair of bearings 23 and can rotate relative to the base 2. The area between the pair of bearings 23 is the radially opposed portion 1a. In the radially opposed portion 1a, the base 2 and the rotating body 3 face each other in a non-contact manner through a minute gap 1b (shown in Fig. 6).
1-3-1.ベース2の基本構成
図3~図4に示すように、ベース2は、ベース本体21と、状態切替部22と、ベアリング23と、油溜め部24を備える。ベース本体21は、フロントボディ21aと、リアボディ21bを備える。リアボディ21bは、ボルト2c(図1Aに図示)によってフロントボディ21aに連結されている。ベース本体21は、筒状であり、ベース本体21の内部に状態切替部22とベアリング23が設けられている。回転体3は、一対のベアリング23によって軸受されて、ベース2に対して相対回転可能になっている。一対のベアリング23の間の部位が径方向対向部1aとなる。径方向対向部1aにおいて、ベース2と回転体3は、微小な隙間1b(図6に図示)を介して、非接触で対向している。 1-3. Base 2
1-3-1. Basic configuration of the base 2 As shown in Figs. 3 and 4, the base 2 includes a base body 21, a state switching unit 22, a bearing 23, and an oil reservoir 24. The base body 21 includes a front body 21a and a rear body 21b. The rear body 21b is connected to the front body 21a by a bolt 2c (shown in Fig. 1A). The base body 21 is cylindrical, and the state switching unit 22 and the bearing 23 are provided inside the base body 21. The rotating body 3 is supported by a pair of bearings 23 and can rotate relative to the base 2. The area between the pair of bearings 23 is the radially opposed portion 1a. In the radially opposed portion 1a, the base 2 and the rotating body 3 face each other in a non-contact manner through a minute gap 1b (shown in Fig. 6).
油溜め部24は、ボルト(不図示)によってベース本体21に連結されている。ベース本体21には、油溜め部24に連通するドレンポート21cが設けられており、ポート2a,2bを通じて供給された作動流体の一部は、隙間1bを通ってドレンポート21cから排出されるようになっている。このため、隙間1bには作動流体が充満している。
The oil reservoir 24 is connected to the base body 21 by bolts (not shown). The base body 21 is provided with a drain port 21c that communicates with the oil reservoir 24, and a portion of the working fluid supplied through ports 2a and 2b is discharged from the drain port 21c through gap 1b. Therefore, gap 1b is filled with working fluid.
回転体3が回転すると、隙間1bにある作動流体がせん断されるが、作動流体の粘度により抵抗トルクTが発生する。この抵抗トルクによる負荷はほぼ100%熱に変換される。時間当たりの発熱量Qは次の式で表され、発熱量Qは、せん断部半径隙間hに反比例する。hを大きくすると発熱は小さくなるが、ドレンポート21cを通じて排出される作動流体の量(ドレン量)が大きくなる。
T:抵抗トルク ω:回転速度 τ:せん断応力 μ:作動流体の粘度
h:せん断部半径隙間 S:せん断部面積 R:せん断部半径 L:せん断部幅合計 When the rotor 3 rotates, the working fluid in the gap 1b is sheared, generating a resistance torque T due to the viscosity of the working fluid. The load caused by this resistance torque is converted into heat almost 100%. The amount of heat generated per unit time Q is expressed by the following formula, and the amount of heat generated Q is inversely proportional to the shear section radius gap h. Increasing h reduces the amount of heat generated, but increases the amount of working fluid discharged through the drain port 21c (the amount of drainage).
T: Resistance torque ω: Rotational speed τ: Shear stress μ: Viscosity of working fluid h: Radius gap of shear section S: Area of shear section R: Radius of shear section L: Total width of shear section
h:せん断部半径隙間 S:せん断部面積 R:せん断部半径 L:せん断部幅合計 When the rotor 3 rotates, the working fluid in the gap 1b is sheared, generating a resistance torque T due to the viscosity of the working fluid. The load caused by this resistance torque is converted into heat almost 100%. The amount of heat generated per unit time Q is expressed by the following formula, and the amount of heat generated Q is inversely proportional to the shear section radius gap h. Increasing h reduces the amount of heat generated, but increases the amount of working fluid discharged through the drain port 21c (the amount of drainage).
1-3-2.状態切替部22の構成
状態切替部22は、径方向対向部1aでのベース2と回転体3の間の隙間1bを、図6Aに示す第1状態と、図6Bに示す第2状態の間で切替可能に構成されている。第2状態は、第1状態よりも隙間1bが大きい状態である。状態切替部22は、一対のベアリング23の間に配置されることが好ましい。 1-3-2. Configuration of state switching unit 22 The state switching unit 22 is configured to be able to switch the gap 1b between the base 2 and the rotor 3 at the radially opposing portion 1a between a first state shown in Fig. 6A and a second state shown in Fig. 6B. In the second state, the gap 1b is larger than in the first state. The state switching unit 22 is preferably disposed between a pair of bearings 23.
状態切替部22は、径方向対向部1aでのベース2と回転体3の間の隙間1bを、図6Aに示す第1状態と、図6Bに示す第2状態の間で切替可能に構成されている。第2状態は、第1状態よりも隙間1bが大きい状態である。状態切替部22は、一対のベアリング23の間に配置されることが好ましい。 1-3-2. Configuration of state switching unit 22 The state switching unit 22 is configured to be able to switch the gap 1b between the base 2 and the rotor 3 at the radially opposing portion 1a between a first state shown in Fig. 6A and a second state shown in Fig. 6B. In the second state, the gap 1b is larger than in the first state. The state switching unit 22 is preferably disposed between a pair of bearings 23.
本実施形態では、状態切替部22は、径方向対向部1aにおいてベース2に設けられた切替用ピストン25を備える。切替用ピストン25は、筒状の部材であり、切替用ピストン25の内面が回転体3に対向し、切替用ピストン25の外面がベース本体21に対向する。切替用ピストン25の軸方向移動(回転軸Cが延びる方向への移動。図2の左右方向)に伴って、第1状態と第2状態が切り替えられる。切替用ピストン25を移動させるための駆動機構は、特に限定されないが、本実施形態では、切替用ピストン25は、バネなどの付勢部材26によって一方向に付勢されており、作動流体圧(例:油圧)機構によって他方向(一方向と逆の方向)に移動可能になっている。
In this embodiment, the state switching unit 22 includes a switching piston 25 provided on the base 2 at the radially opposing portion 1a. The switching piston 25 is a cylindrical member, with the inner surface of the switching piston 25 facing the rotating body 3 and the outer surface of the switching piston 25 facing the base body 21. The first state and the second state are switched with the axial movement of the switching piston 25 (movement in the direction in which the rotation axis C extends; left and right direction in FIG. 2). The drive mechanism for moving the switching piston 25 is not particularly limited, but in this embodiment, the switching piston 25 is biased in one direction by a biasing member 26 such as a spring, and is movable in the other direction (opposite to the one direction) by a working fluid pressure (e.g. hydraulic) mechanism.
作動流体は、ベース本体21に設けられた状態切替ポート21dを通じて、切替用ピストン25の軸方向の端面に加わる作動流体圧を変化させるように、作動流体の供給及び排出を行う。本実施形態では、状態切替ポート21dに作動流体を供給していない状態では、切替用ピストン25が付勢部材26によって押されることによって隙間1bが第2状態となり、状態切替ポート21dに作動流体を供給することによって付勢部材26による付勢力に逆らって切替用ピストン25を移動させると隙間1bが第1状態となるように構成されている。切替用ピストン25は、付勢部材26によってベース本体21に連結されており、ベース本体21に対して相対回転不能になっている。
The working fluid is supplied and discharged through a state change port 21d provided in the base body 21 so as to change the working fluid pressure applied to the axial end face of the switching piston 25. In this embodiment, when no working fluid is supplied to the state change port 21d, the switching piston 25 is pushed by the biasing member 26, causing the gap 1b to be in the second state, and when the switching piston 25 is moved against the biasing force of the biasing member 26 by supplying working fluid to the state change port 21d, the gap 1b is in the first state. The switching piston 25 is connected to the base body 21 by the biasing member 26 and cannot rotate relative to the base body 21.
図4~図5に示すように、ポート2a,2bは、ベース本体21に設けられた貫通孔2a1,2b1と、切替用ピストン25に設けられた貫通孔2a2,2b2で構成される。第1状態では、貫通孔2a1と貫通孔2a2が互いに連通してポート2aとなり、貫通孔2b1と貫通孔2b2が互いに連通してポート2bとなる。このため、切替用ピストン25の内周面への作動流体の供給及び排出が可能になる。一方、第2状態では、貫通孔2a1と貫通孔2a2の位置が互いにずれるとともに、貫通孔2b1と貫通孔2b2の位置が互いにずれる。このため、第2状態では、ポート2a,2bを通じて作動流体を流入させたり、排出させたりすることができない。このように、切替用ピストン25は、ポート2a,2bの開閉を制御する切替弁としても機能する。なお、第2状態でも、ベース本体21と切替用ピストン25の間の僅かな隙間分は作動流体が流れるので、ベアリング23に給油を行なったり、隙間1bに留まる作動流体を排出して冷却を促進したりすることが可能になっている。
As shown in Figures 4 and 5, ports 2a and 2b are composed of through holes 2a1 and 2b1 provided in base body 21 and through holes 2a2 and 2b2 provided in switching piston 25. In the first state, through holes 2a1 and 2a2 communicate with each other to form port 2a, and through holes 2b1 and 2b2 communicate with each other to form port 2b. This makes it possible to supply and discharge the working fluid to and from the inner surface of switching piston 25. On the other hand, in the second state, the positions of through holes 2a1 and 2a2 are shifted from each other, and the positions of through holes 2b1 and 2b2 are shifted from each other. Therefore, in the second state, working fluid cannot be flowed in or discharged through ports 2a and 2b. In this way, switching piston 25 also functions as a switching valve that controls the opening and closing of ports 2a and 2b. Even in the second state, the working fluid flows through the small gap between the base body 21 and the switching piston 25, so it is possible to oil the bearing 23 and expel the working fluid remaining in the gap 1b to promote cooling.
図7に示すように、切替用ピストン25の内周面には凸部25aと凹部25bが設けられており、回転体3の外周面には、凸部3aと凹部3bが設けられている。凸部25a,3a及び凹部25b,3bは環状に設けられている。凹部25bは、一対の凸部25aで挟まれ、凹部3bは、一対の凸部3aで挟まれている。第1状態では、切替用ピストン25の凸部25aと回転体3の凸部3aが対向し、隙間1bが狭くなる。一方、第2状態では、切替用ピストン25の凸部25aと回転体3の凹部3bが対向し、切替用ピストン25の凹部25bと回転体3の凸部3aが対向し、第1状態よりも隙間1bが広くなる。
As shown in FIG. 7, the inner peripheral surface of the switching piston 25 is provided with a convex portion 25a and a concave portion 25b, and the outer peripheral surface of the rotating body 3 is provided with a convex portion 3a and a concave portion 3b. The convex portions 25a, 3a and the concave portions 25b, 3b are provided in an annular shape. The concave portion 25b is sandwiched between a pair of convex portions 25a, and the concave portion 3b is sandwiched between a pair of convex portions 3a. In the first state, the convex portion 25a of the switching piston 25 and the convex portion 3a of the rotating body 3 face each other, and the gap 1b is narrowed. On the other hand, in the second state, the convex portion 25a of the switching piston 25 and the concave portion 3b of the rotating body 3 face each other, and the concave portion 25b of the switching piston 25 and the convex portion 3a of the rotating body 3 face each other, and the gap 1b is wider than in the first state.
凹部25b及び凹部3bは、それぞれ複数(本実施形態では2つずつ)設けられている。ポート2a,2bは、それぞれ、別々の凹部25b内に設けられている。流路31h1,31h2は、別々の凹部3b内に開口している。
There are multiple recesses 25b and multiple recesses 3b (two of each in this embodiment). Ports 2a and 2b are each provided in separate recesses 25b. Flow paths 31h1 and 31h2 open into separate recesses 3b.
第1及び第2状態で隙間1bが最も狭い部位の隙間の大きさをそれぞれh1,h2とすると、h2/h1は、例えば、2以上であり、5以上が好ましく、10以上がさらに好ましい。この値は、例えば2~1000であり、具体的には例えば、2、5、10、20、30、40、50、100、1000であり、ここで例示した数値の何れか2つの間の範囲又は何れか以上であってもよい。h1[mm]は、例えば、0.01~0.1であり、好ましくは、0.02~0.03であり、具体的には例えば、0.01、0.02、0.025、0.03、0.04、0.05、0.10であり、ここで例示した数値の何れか2つの間の範囲であってもよい。h2[mm]は、例えば、0.2~10であり、好ましくは、0.5~1.5であり、具体的には例えば、0.2、0.5、1、1.5、2、3、4、5、10であり、ここで例示した数値の何れか2つの間の範囲であってもよい。
If the sizes of the gap at the narrowest portion of gap 1b in the first and second states are h1 and h2, respectively, h2/h1 is, for example, 2 or more, preferably 5 or more, and more preferably 10 or more. This value is, for example, 2 to 1000, specifically, for example, 2, 5, 10, 20, 30, 40, 50, 100, 1000, and may be in a range between any two of the numerical values exemplified here or any greater than or equal to the numerical values exemplified here. h1 [mm] is, for example, 0.01 to 0.1, preferably 0.02 to 0.03, specifically, for example, 0.01, 0.02, 0.025, 0.03, 0.04, 0.05, 0.10, and may be in a range between any two of the numerical values exemplified here. h2 [mm] is, for example, 0.2 to 10, preferably 0.5 to 1.5, specifically, for example, 0.2, 0.5, 1, 1.5, 2, 3, 4, 5, 10, or may be in the range between any two of the values exemplified here.
2.回転シリンダ1の動作
図1~図7を用いて、回転シリンダ1の動作について説明する。以下、主ピストン32を後退させることによってチャックがワークを保持する場合を例に挙げて説明する。主ピストン32を前進させることによってチャックがワークを保持する場合は、作動流体の供給及び排出を行うポート2a,2bが逆になるが、その他の作用効果は同様である。なお、主ピストン32の「後退」とは、主ピストン32が図2の左方向に移動することを意味する。 2. Operation of the rotating cylinder 1 The operation of the rotating cylinder 1 will be described with reference to Figures 1 to 7. The following describes an example in which the chuck holds a workpiece by retracting the main piston 32. When the chuck holds a workpiece by advancing the main piston 32, the ports 2a and 2b that supply and discharge the working fluid are reversed, but other functions and effects are the same. Note that "retraction" of the main piston 32 means that the main piston 32 moves leftward in Figure 2.
図1~図7を用いて、回転シリンダ1の動作について説明する。以下、主ピストン32を後退させることによってチャックがワークを保持する場合を例に挙げて説明する。主ピストン32を前進させることによってチャックがワークを保持する場合は、作動流体の供給及び排出を行うポート2a,2bが逆になるが、その他の作用効果は同様である。なお、主ピストン32の「後退」とは、主ピストン32が図2の左方向に移動することを意味する。 2. Operation of the rotating cylinder 1 The operation of the rotating cylinder 1 will be described with reference to Figures 1 to 7. The following describes an example in which the chuck holds a workpiece by retracting the main piston 32. When the chuck holds a workpiece by advancing the main piston 32, the ports 2a and 2b that supply and discharge the working fluid are reversed, but other functions and effects are the same. Note that "retraction" of the main piston 32 means that the main piston 32 moves leftward in Figure 2.
(1)初期状態
まず、チャックがワークを保持しておらず、状態切替部22が図6Bに示す第2状態になっている状態を初期状態とする。 (1) Initial State First, a state in which the chuck does not hold a workpiece and the state switching unit 22 is in the second state shown in FIG. 6B is defined as the initial state.
まず、チャックがワークを保持しておらず、状態切替部22が図6Bに示す第2状態になっている状態を初期状態とする。 (1) Initial State First, a state in which the chuck does not hold a workpiece and the state switching unit 22 is in the second state shown in FIG. 6B is defined as the initial state.
(2)ワークの保持
ワーク保持の方向にチャックを移動させる際には、状態切替部22によって隙間1bを図6Aに示す第1状態にすると共にポート2aからシリンダ室33aに作動流体を供給する。シリンダ室33aとシリンダ室33bの合計容量は一定なので、シリンダ室33aに供給した作動流体の体積分だけ、シリンダ室33b内の作動流体をポート2bとドレンポート21cを通じて排出する。これによって、主ピストン32が後退する。この動作は、チャックがワークを保持するまで継続させる。この動作中は、隙間1bが第1状態となっているので、隙間1bが小さく、ドレン量が多くなることがない。 (2) Holding the Workpiece When moving the chuck in the direction of holding the workpiece, the state switching unit 22 puts the gap 1b into the first state shown in Fig. 6A and supplies the working fluid from the port 2a to the cylinder chamber 33a. Since the total capacity of the cylinder chambers 33a and 33b is constant, the working fluid in the cylinder chamber 33b is discharged through the port 2b and the drain port 21c by the volume of the working fluid supplied to the cylinder chamber 33a. This causes the main piston 32 to move backward. This operation is continued until the chuck holds the workpiece. During this operation, the gap 1b is in the first state, so the gap 1b is small and the amount of drainage does not increase.
ワーク保持の方向にチャックを移動させる際には、状態切替部22によって隙間1bを図6Aに示す第1状態にすると共にポート2aからシリンダ室33aに作動流体を供給する。シリンダ室33aとシリンダ室33bの合計容量は一定なので、シリンダ室33aに供給した作動流体の体積分だけ、シリンダ室33b内の作動流体をポート2bとドレンポート21cを通じて排出する。これによって、主ピストン32が後退する。この動作は、チャックがワークを保持するまで継続させる。この動作中は、隙間1bが第1状態となっているので、隙間1bが小さく、ドレン量が多くなることがない。 (2) Holding the Workpiece When moving the chuck in the direction of holding the workpiece, the state switching unit 22 puts the gap 1b into the first state shown in Fig. 6A and supplies the working fluid from the port 2a to the cylinder chamber 33a. Since the total capacity of the cylinder chambers 33a and 33b is constant, the working fluid in the cylinder chamber 33b is discharged through the port 2b and the drain port 21c by the volume of the working fluid supplied to the cylinder chamber 33a. This causes the main piston 32 to move backward. This operation is continued until the chuck holds the workpiece. During this operation, the gap 1b is in the first state, so the gap 1b is small and the amount of drainage does not increase.
(3)第1状態から第2状態への切替
チャックによるワークの保持が完了すると、状態切替部22によって隙間1bを第2状態に切り替える。シリンダ室33aに連通する流路31h1には圧力保持弁34aが設けられているので、シリンダ室33a内の作動流体の圧力は維持され、チャックによるワークの保持が解除されることはない。この状態でスピンドルを回転させると、スピンドルと一緒に回転体3が回転する。この際に発生する熱は、隙間1bの大きさに反比例するが、第2状態では隙間1bが大きいので、発熱量が少なく、発熱に伴うエネルギーロスが少ない。また、発熱量が少ないので、回転体3の温度上昇が少なく、回転体3からの熱がスピンドルに伝わることによる加工精度の低下が抑制される。状態切替部22による状態の切替は、回転体3を停止させた状態で行ってもよく、回転体3を回転させながら行ってもよい。 (3) Switching from the first state to the second state When the workpiece is held by the chuck, the state switching unit 22 switches the gap 1b to the second state. Since the pressure retention valve 34a is provided in the flow path 31h1 communicating with the cylinder chamber 33a, the pressure of the working fluid in the cylinder chamber 33a is maintained, and the workpiece is not released from the chuck. When the spindle is rotated in this state, the rotating body 3 rotates together with the spindle. The heat generated at this time is inversely proportional to the size of the gap 1b, but since the gap 1b is large in the second state, the amount of heat generated is small, and the energy loss associated with the heat generation is small. In addition, since the amount of heat generated is small, the temperature rise of the rotating body 3 is small, and the deterioration of the machining accuracy due to the heat from the rotating body 3 being transmitted to the spindle is suppressed. The state switching by the state switching unit 22 may be performed in a state where the rotating body 3 is stopped, or may be performed while the rotating body 3 is rotating.
チャックによるワークの保持が完了すると、状態切替部22によって隙間1bを第2状態に切り替える。シリンダ室33aに連通する流路31h1には圧力保持弁34aが設けられているので、シリンダ室33a内の作動流体の圧力は維持され、チャックによるワークの保持が解除されることはない。この状態でスピンドルを回転させると、スピンドルと一緒に回転体3が回転する。この際に発生する熱は、隙間1bの大きさに反比例するが、第2状態では隙間1bが大きいので、発熱量が少なく、発熱に伴うエネルギーロスが少ない。また、発熱量が少ないので、回転体3の温度上昇が少なく、回転体3からの熱がスピンドルに伝わることによる加工精度の低下が抑制される。状態切替部22による状態の切替は、回転体3を停止させた状態で行ってもよく、回転体3を回転させながら行ってもよい。 (3) Switching from the first state to the second state When the workpiece is held by the chuck, the state switching unit 22 switches the gap 1b to the second state. Since the pressure retention valve 34a is provided in the flow path 31h1 communicating with the cylinder chamber 33a, the pressure of the working fluid in the cylinder chamber 33a is maintained, and the workpiece is not released from the chuck. When the spindle is rotated in this state, the rotating body 3 rotates together with the spindle. The heat generated at this time is inversely proportional to the size of the gap 1b, but since the gap 1b is large in the second state, the amount of heat generated is small, and the energy loss associated with the heat generation is small. In addition, since the amount of heat generated is small, the temperature rise of the rotating body 3 is small, and the deterioration of the machining accuracy due to the heat from the rotating body 3 being transmitted to the spindle is suppressed. The state switching by the state switching unit 22 may be performed in a state where the rotating body 3 is stopped, or may be performed while the rotating body 3 is rotating.
(4)リフレッシュ動作
理想的には、圧力保持弁34aによってシリンダ室33a内の作動流体の圧力が維持されるので、工作機械による加工の終了まで第2状態のままにしておくことが可能であるが、実際は、シリンダ室33aからの作動流体のリークによって、シリンダ室33a内の作動流体の圧力が低下してしまう場合がある。作動流体の圧力が低下するとチャックによるワークの保持力が低下してしまうので、作動流体の圧力が所定の閾値を下回る前に、リフレッシュ動作を行ってシリンダ室33aからの作動流体を高めることが好ましい。リフレッシュ動作は、定期的に行ってもよく、作動流体の圧力が所定の閾値を下回ったことを検出したときに行ってもよい。リフレッシュ動作を定期的に行う場合、リフレッシュ動作の周期は、0.1~10分であり、0.5~2分が好ましく、具体的には例えば、0.1、0.5、1、2、3、4、5、6、7、8、9、10分であり、ここで例示した数値の何れか2つの間の範囲であってもよい。作動流体の圧力を検出してリフレッシュ動作を行う場合、隙間1bを第2状態に切り替えた直後の圧力をP0とすると、リフレッシュ動作を行う圧力の閾値は、α×P0であり、αは、例えば0.50~0.99であり、0.8~0.95が好ましい。αは、具体的には例えば、0.50、0.55、0.60、0.65、0.70、0.75、0.80、0.85、0.90、0.95、0.99であり、ここで例示した数値の何れか2つの間の範囲であってもよい。 (4) Refreshing Operation Ideally, the pressure of the working fluid in the cylinder chamber 33a is maintained by the pressure retention valve 34a, so it is possible to keep the second state until the end of machining by the machine tool. However, in reality, the pressure of the working fluid in the cylinder chamber 33a may decrease due to leakage of the working fluid from the cylinder chamber 33a. If the pressure of the working fluid decreases, the holding force of the chuck for the workpiece decreases, so it is preferable to perform a refreshing operation to increase the working fluid from the cylinder chamber 33a before the pressure of the working fluid falls below a predetermined threshold. The refreshing operation may be performed periodically, or may be performed when it is detected that the pressure of the working fluid falls below a predetermined threshold. When the refreshing operation is performed periodically, the cycle of the refreshing operation is 0.1 to 10 minutes, preferably 0.5 to 2 minutes, and specifically, for example, 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 minutes, and may be in a range between any two of the numerical values exemplified here. In the case where the pressure of the working fluid is detected to perform the refresh operation, if the pressure immediately after the gap 1b is switched to the second state is P0 , the threshold pressure for performing the refresh operation is α× P0 , where α is, for example, 0.50 to 0.99, and preferably 0.8 to 0.95. Specifically, α may be, for example, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, or 0.99, or may be in a range between any two of the numerical values exemplified here.
理想的には、圧力保持弁34aによってシリンダ室33a内の作動流体の圧力が維持されるので、工作機械による加工の終了まで第2状態のままにしておくことが可能であるが、実際は、シリンダ室33aからの作動流体のリークによって、シリンダ室33a内の作動流体の圧力が低下してしまう場合がある。作動流体の圧力が低下するとチャックによるワークの保持力が低下してしまうので、作動流体の圧力が所定の閾値を下回る前に、リフレッシュ動作を行ってシリンダ室33aからの作動流体を高めることが好ましい。リフレッシュ動作は、定期的に行ってもよく、作動流体の圧力が所定の閾値を下回ったことを検出したときに行ってもよい。リフレッシュ動作を定期的に行う場合、リフレッシュ動作の周期は、0.1~10分であり、0.5~2分が好ましく、具体的には例えば、0.1、0.5、1、2、3、4、5、6、7、8、9、10分であり、ここで例示した数値の何れか2つの間の範囲であってもよい。作動流体の圧力を検出してリフレッシュ動作を行う場合、隙間1bを第2状態に切り替えた直後の圧力をP0とすると、リフレッシュ動作を行う圧力の閾値は、α×P0であり、αは、例えば0.50~0.99であり、0.8~0.95が好ましい。αは、具体的には例えば、0.50、0.55、0.60、0.65、0.70、0.75、0.80、0.85、0.90、0.95、0.99であり、ここで例示した数値の何れか2つの間の範囲であってもよい。 (4) Refreshing Operation Ideally, the pressure of the working fluid in the cylinder chamber 33a is maintained by the pressure retention valve 34a, so it is possible to keep the second state until the end of machining by the machine tool. However, in reality, the pressure of the working fluid in the cylinder chamber 33a may decrease due to leakage of the working fluid from the cylinder chamber 33a. If the pressure of the working fluid decreases, the holding force of the chuck for the workpiece decreases, so it is preferable to perform a refreshing operation to increase the working fluid from the cylinder chamber 33a before the pressure of the working fluid falls below a predetermined threshold. The refreshing operation may be performed periodically, or may be performed when it is detected that the pressure of the working fluid falls below a predetermined threshold. When the refreshing operation is performed periodically, the cycle of the refreshing operation is 0.1 to 10 minutes, preferably 0.5 to 2 minutes, and specifically, for example, 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 minutes, and may be in a range between any two of the numerical values exemplified here. In the case where the pressure of the working fluid is detected to perform the refresh operation, if the pressure immediately after the gap 1b is switched to the second state is P0 , the threshold pressure for performing the refresh operation is α× P0 , where α is, for example, 0.50 to 0.99, and preferably 0.8 to 0.95. Specifically, α may be, for example, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, or 0.99, or may be in a range between any two of the numerical values exemplified here.
リフレッシュ動作は、「(2)ワークの保持」と同様に、状態切替部22によって隙間1bを第1状態にすることによって行うことができる。リフレッシュ動作では、わずかな量の作動流体がシリンダ室33aに流入して、シリンダ室33a内の作動流体の圧力が高められる。シリンダ室33a内の作動流体の圧力が高められた後は、「(3)第1状態から第2状態への切替」と同様に第2状態に切り替えることができる。
The refreshing operation can be performed by setting the gap 1b to the first state using the state switching unit 22, similar to "(2) Holding the workpiece". In the refreshing operation, a small amount of working fluid flows into the cylinder chamber 33a, increasing the pressure of the working fluid in the cylinder chamber 33a. After the pressure of the working fluid in the cylinder chamber 33a has been increased, it can be switched to the second state, similar to "(3) Switching from the first state to the second state".
リフレッシュ動作は、シリンダ室33a内の作動流体の圧力を高めるのに十分な時間行えばよく、リフレッシュ動作を行う時間は、例えば1秒以上である。この時間は、例えば、1~60秒であり、具体的には例えば、1、5、10、20、30、40、50、60秒であり、ここで例示した数値の何れか2つの間の範囲又は何れか以上であってもよい。
The refresh operation should be performed for a time sufficient to increase the pressure of the working fluid in the cylinder chamber 33a, and the time for which the refresh operation is performed is, for example, 1 second or more. This time is, for example, 1 to 60 seconds, and specifically, for example, 1, 5, 10, 20, 30, 40, 50, or 60 seconds, and may be in a range between any two of the numerical values exemplified here, or any value greater than or equal to the number.
(5)ワークの解放
ワークの加工が終わると、チャックによるワークの保持を解除してワークを解放する。ワークを解放する方向にチャックを移動させる際には、状態切替部22によって隙間1bを第1状態にしてポート2bからシリンダ室33bに作動流体を供給し、シリンダ室33bに供給した作動流体の体積分だけ、シリンダ室33a内の作動流体をポート2aとドレンポート21cを通じて排出する。これによって、主ピストン32が前進する。この動作中は、隙間1bが第1状態となっているので、隙間1bが小さく、ドレン量が多くなることがない。 (5) Releasing the Workpiece When machining of the workpiece is completed, the chuck releases the workpiece by releasing its hold. When moving the chuck in the direction to release the workpiece, the state switching unit 22 sets the gap 1b to the first state, supplies the working fluid from the port 2b to the cylinder chamber 33b, and drains the working fluid in the cylinder chamber 33a through the port 2a and the drain port 21c by the volume of the working fluid supplied to the cylinder chamber 33b. This moves the main piston 32 forward. During this operation, the gap 1b is in the first state, so the gap 1b is small and the amount of drainage does not increase.
ワークの加工が終わると、チャックによるワークの保持を解除してワークを解放する。ワークを解放する方向にチャックを移動させる際には、状態切替部22によって隙間1bを第1状態にしてポート2bからシリンダ室33bに作動流体を供給し、シリンダ室33bに供給した作動流体の体積分だけ、シリンダ室33a内の作動流体をポート2aとドレンポート21cを通じて排出する。これによって、主ピストン32が前進する。この動作中は、隙間1bが第1状態となっているので、隙間1bが小さく、ドレン量が多くなることがない。 (5) Releasing the Workpiece When machining of the workpiece is completed, the chuck releases the workpiece by releasing its hold. When moving the chuck in the direction to release the workpiece, the state switching unit 22 sets the gap 1b to the first state, supplies the working fluid from the port 2b to the cylinder chamber 33b, and drains the working fluid in the cylinder chamber 33a through the port 2a and the drain port 21c by the volume of the working fluid supplied to the cylinder chamber 33b. This moves the main piston 32 forward. During this operation, the gap 1b is in the first state, so the gap 1b is small and the amount of drainage does not increase.
3.その他実施形態
上記実施形態では、第2状態においても、作動流体を供給するためのポンプを作動させることを想定しているが、ベアリングへの給油や冷却効率を向上させる必要がない場合には、ポンプを停止させてもよい。この場合、ポンプの動作に必要なエネルギーを低減できるので、さらなる省エネが可能となる。 In the above embodiment, it is assumed that the pump for supplying the working fluid is operated even in the second state, but if there is no need to improve the efficiency of oiling or cooling the bearings, the pump may be stopped. In this case, the energy required for the pump operation can be reduced, making it possible to further save energy.
上記実施形態では、第2状態においても、作動流体を供給するためのポンプを作動させることを想定しているが、ベアリングへの給油や冷却効率を向上させる必要がない場合には、ポンプを停止させてもよい。この場合、ポンプの動作に必要なエネルギーを低減できるので、さらなる省エネが可能となる。 In the above embodiment, it is assumed that the pump for supplying the working fluid is operated even in the second state, but if there is no need to improve the efficiency of oiling or cooling the bearings, the pump may be stopped. In this case, the energy required for the pump operation can be reduced, making it possible to further save energy.
1:回転シリンダ、1a:径方向対向部、1b:隙間、2:ベース、2a:第1ポート、2b:第2ポート、22:状態切替部、25:切替用ピストン、25a:凸部、25b:凹部、3:回転体、3a:凸部、3b:凹部、31h1:第1流路、31h2:第2流路、32:主ピストン、33a:第1シリンダ室、33b:第2シリンダ室、34a:第1圧力保持弁、34b:第2圧力保持弁
1: Rotating cylinder, 1a: Radial opposing portion, 1b: Gap, 2: Base, 2a: First port, 2b: Second port, 22: State switching portion, 25: Switching piston, 25a: Convex portion, 25b: Concave portion, 3: Rotating body, 3a: Convex portion, 3b: Concave portion, 31h1: First flow path, 31h2: Second flow path, 32: Main piston, 33a: First cylinder chamber, 33b: Second cylinder chamber, 34a: First pressure retention valve, 34b: Second pressure retention valve
Claims (4)
- ベースと、前記ベースに対して相対回転可能に構成された回転体を備える回転シリンダであって、
前記ベースと前記回転体が径方向に対向する径方向対向部での前記ベースと前記回転体の間の隙間を第1状態と第2状態の間で切替可能な状態切替部が設けられており、
第2状態は、第1状態よりも前記隙間が大きい状態である、回転シリンダ。 A rotary cylinder including a base and a rotor configured to be rotatable relative to the base,
a state switching unit that can switch a gap between the base and the rotor at a radially opposed portion where the base and the rotor are radially opposed to each other between a first state and a second state;
The second state is a state in which the gap is larger than that in the first state. - 請求項1に記載の回転シリンダであって、
前記状態切替部は、前記径方向対向部において前記ベースに設けられた切替用ピストンを備え、
前記回転体の軸方向への前記切替用ピストンの移動に伴って、第1状態と第2状態が切り替えられる、回転シリンダ。 2. A rotating cylinder according to claim 1,
The state switching portion includes a switching piston provided on the base at the radially opposed portion,
A rotating cylinder, the state of which is switched between a first state and a second state in accordance with the movement of the switching piston in the axial direction of the rotating body. - 請求項2に記載の回転シリンダであって、
前記切替用ピストンは、筒状であり、
前記切替用ピストンの内周面と、前記回転体の外周面には、それぞれ、凸部と凹部が設けられており、
第1状態では、前記切替用ピストンの凸部と前記回転体の凸部が対向し、
第2状態では、前記切替用ピストンの凸部と前記回転体の凹部が対向し、前記切替用ピストンの凹部と前記回転体の凸部が対向する、回転シリンダ。 A rotating cylinder according to claim 2,
The switching piston is cylindrical,
An inner peripheral surface of the switching piston and an outer peripheral surface of the rotor are each provided with a convex portion and a concave portion,
In the first state, the convex portion of the switching piston and the convex portion of the rotor face each other,
A rotating cylinder, in a second state, a convex portion of the switching piston faces a concave portion of the rotating body, and a concave portion of the switching piston faces a convex portion of the rotating body. - 請求項1~請求項3の何れか1つに記載の回転シリンダであって、
前記回転体は、回転体本体と、主ピストンと、第1及び第2シリンダ室と、第1及び第2圧力保持弁を備え、
前記ベースは、作動流体の供給及び排出が可能に構成された第1及び第2ポートを備え、
第1及び第2ポートは、それぞれ、前記径方向対向部に配置されており、
第1ポートと第1シリンダ室は、第1流路を通じて接続されており、
第2ポートと第2シリンダ室は、第2流路を通じて接続されており、
前記主ピストンは、第1及び第2シリンダ室への前記作動流体の供給及び排出によって移動可能に構成され、
第1及び第2圧力保持弁は、それぞれ、第1及び第2シリンダ室内に供給された前記作動流体の圧力を保持可能に構成される、回転シリンダ。 A rotating cylinder according to any one of claims 1 to 3,
the rotor includes a rotor body, a main piston, first and second cylinder chambers, and first and second pressure retention valves;
The base includes first and second ports configured to be capable of supplying and discharging a working fluid;
the first and second ports are disposed in the radially opposing portions,
The first port and the first cylinder chamber are connected through a first flow path,
The second port and the second cylinder chamber are connected through a second flow path,
the main piston is configured to be movable by supplying and discharging the working fluid to and from the first and second cylinder chambers,
A rotary cylinder, wherein the first and second pressure retention valves are configured to be capable of retaining the pressure of the working fluid supplied into the first and second cylinder chambers, respectively.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023006069A JP7326636B1 (en) | 2023-01-18 | 2023-01-18 | rotating cylinder |
JP2023-006069 | 2023-01-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024154671A1 true WO2024154671A1 (en) | 2024-07-25 |
Family
ID=87563261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/000665 WO2024154671A1 (en) | 2023-01-18 | 2024-01-12 | Rotating cylinder |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7326636B1 (en) |
WO (1) | WO2024154671A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62102903A (en) * | 1985-10-23 | 1987-05-13 | エ−スド エス エ− | Hydraulic rotary actuator |
JPS62176701A (en) * | 1986-01-28 | 1987-08-03 | Kitagawa Tekkosho:Kk | Rotary hydraulic cylinder for chuck with piston position maintaining mechanism |
JPH02269512A (en) * | 1989-04-10 | 1990-11-02 | Kitagawa Iron Works Co Ltd | Fluid rotary joint structure for rotary fluid pressure cylinder device |
JP2000055012A (en) * | 1998-08-07 | 2000-02-22 | Howa Mach Ltd | Rotary cylinder |
-
2023
- 2023-01-18 JP JP2023006069A patent/JP7326636B1/en active Active
-
2024
- 2024-01-12 WO PCT/JP2024/000665 patent/WO2024154671A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62102903A (en) * | 1985-10-23 | 1987-05-13 | エ−スド エス エ− | Hydraulic rotary actuator |
JPS62176701A (en) * | 1986-01-28 | 1987-08-03 | Kitagawa Tekkosho:Kk | Rotary hydraulic cylinder for chuck with piston position maintaining mechanism |
JPH02269512A (en) * | 1989-04-10 | 1990-11-02 | Kitagawa Iron Works Co Ltd | Fluid rotary joint structure for rotary fluid pressure cylinder device |
JP2000055012A (en) * | 1998-08-07 | 2000-02-22 | Howa Mach Ltd | Rotary cylinder |
Also Published As
Publication number | Publication date |
---|---|
JP7326636B1 (en) | 2023-08-15 |
JP2024101883A (en) | 2024-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2018369B1 (en) | Gerotor motor and brake assembly | |
US5799692A (en) | Device for the transfer of fluid between machine components rotatable relative to each other | |
FI104014B (en) | Radial piston hydraulic motor and method for adjusting radial hydraulic motor | |
WO2024154671A1 (en) | Rotating cylinder | |
WO2011048958A1 (en) | Hydraulic motor-driving device | |
US6006872A (en) | Braking apparatus for a hydraulic motor | |
JP7256556B2 (en) | Rotary sliding vane machine with vane sliding and pivot bearings | |
US7044477B2 (en) | Chuck assembly with a cooling mechanism | |
US6619457B2 (en) | Bi-directional clutch unit | |
JP4835484B2 (en) | Spindle device | |
US3407707A (en) | Hydraulic motor of small overall dimensions for driving rotatably the lead screw controlling the feed motion of a machine carriage | |
JP2001113402A (en) | Spindle unit | |
JPS60192129A (en) | Liquid conveying device for rotary shaft | |
GB2237333A (en) | Hydraulic unit with scavenge valve | |
US10539131B2 (en) | Electro hydrostatic actuator | |
TW202436022A (en) | Rotary cylinder | |
US20080019845A1 (en) | Fluid Pressure Motor | |
JP2002295360A (en) | Hydrostatic driving unit | |
JP2007216328A (en) | Spindle device | |
JP4364430B2 (en) | Gerotor motor with lubrication path | |
JP2006070777A (en) | Swash plate type variable displacement piston pump | |
JPH0331959B2 (en) | ||
JPH03156176A (en) | Swash plate type liquid-operated rotating machine | |
JP6392944B1 (en) | Oil chuck | |
US4310203A (en) | Hydrostatic support assembly |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24744594 Country of ref document: EP Kind code of ref document: A1 |