[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0331703A - Fixed position detector - Google Patents

Fixed position detector

Info

Publication number
JPH0331703A
JPH0331703A JP16790589A JP16790589A JPH0331703A JP H0331703 A JPH0331703 A JP H0331703A JP 16790589 A JP16790589 A JP 16790589A JP 16790589 A JP16790589 A JP 16790589A JP H0331703 A JPH0331703 A JP H0331703A
Authority
JP
Japan
Prior art keywords
light
fixed position
signal
reflector
beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16790589A
Other languages
Japanese (ja)
Inventor
Akira Ishizuka
公 石塚
Tetsuji Nishimura
西村 哲治
Satoru Ishii
哲 石井
Masaaki Tsukiji
築地 正彰
Yoichi Kubota
洋一 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP16790589A priority Critical patent/JPH0331703A/en
Publication of JPH0331703A publication Critical patent/JPH0331703A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To simplify the specific position of a relative mobile object and to stably and highly accurately detect the fixed position by utilizing a change in the optical length of interference light attended with the movement of the relative mobile object. CONSTITUTION:A luminous flux with weak interference projected from a light source is converted into an approximate parallel beam and bisected with demultiplexer 2. One of the luminous flux is made incident upon a reflector 4 on a fixed body 4a through an optical path L0 and the other is made incident upon a reflector 3 on the relative mobile object 8 through an optical path L1. The reflected luminous flux of respective reflectors 3, 4 are superposed by the demultiplexer 2 and optically modulated based upon a difference between the optical lengths of respective optical paths L0, L1 to form interference light and the interference light is made incident upon a photodetector 5. An output signal S from the photodetector 5 is compared with a previously set regulation level by a comparator 6, and when the mobile object 8 reaches a fixed position, a fixed position detecting signal SP is generated. Consequently, the fixed position can be highly accurately detected.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は定位置検出装置に関し、特に光の干渉性や偏光
特性を利用して例えば特定の位置を被検移動物体が通過
したか否かを検出し2、通過したときは定位置検知信号
を発生するようにしたものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a fixed position detection device, and in particular, detects whether a moving object to be detected has passed a specific position by utilizing the coherence and polarization characteristics of light. 2, and when it passes, a fixed position detection signal is generated.

(従来の技術) 従来よりNC工作機槻、芥種ロボットそして半導体製造
装置においては、物体の高精度な位置決め検出がiiJ
能な定位置検出装置が要求されている。この定位置検出
装置としては例えば光や磁気等を用いて物体位置の自動
読み取りを行った装置かある。
(Conventional technology) Highly accurate positioning and detection of objects has traditionally been used in NC machine tools, snail robots, and semiconductor manufacturing equipment.
There is a need for a fixed position sensing device that can This fixed position detection device includes, for example, a device that automatically reads the position of an object using light, magnetism, or the like.

このうちミクロンとかナノメータ程度の精度が要求され
る場合には光の干渉を利用したレーザ干渉計や回折光の
干渉を利用したエンコーダ等により変位!11を求める
ようにした装置が用いられている。
If accuracy on the order of microns or nanometers is required, displacement can be achieved using a laser interferometer that uses light interference or an encoder that uses diffracted light interference! 11 is used.

般に物体の変位量を積算して該物体の絶対位置を求める
測定においては原点位置く定位置)を精度良く求める必
要がある。従来より移動物体に関する原点位置を検出す
るようにした定位置検出装置は神々と提案されている。
Generally, in measurements in which the absolute position of an object is determined by integrating the amount of displacement of the object, it is necessary to accurately determine the origin position (or fixed position). 2. Description of the Related Art Conventionally, a number of fixed position detection devices have been proposed that detect the origin position of a moving object.

第6図〜第9図は各々従来の定位置検出装置の要部概略
図である。第6図(A)は物体64に設けた微小な反射
パターン63の通過トラックに光源61からの光束をハ
ーフミラ−62を介して集光し、反射パターン63によ
る反射光の有無、即ち第6図(B)に示すような規定レ
ベルvc以−1−7の反射光の有無を検出手段65で検
出することにより定(i7置検知信号を発生させている
6 to 9 are schematic diagrams of main parts of conventional fixed position detection devices. FIG. 6(A) shows the presence or absence of light reflected by the reflective pattern 63 by focusing the light beam from the light source 61 onto the passage track of a minute reflective pattern 63 provided on an object 64 via a half mirror 62. By detecting the presence or absence of reflected light of -1-7 above the specified level vc as shown in (B) by the detection means 65, a constant (i7 position detection signal) is generated.

第7図(A)は物体64に設けた微小な反射パターン6
3の通過トラックに光源61からの光束をハーフミラ−
62を介し・て集光し、反射光の発生夕、イミングをU
いにずらした2種類の反射光イ、1号を2つの受光手段
71.72により得て第7図(B)に示すように双方の
受光手段で得られる反射光4tの一致、即ち検出量Zの
具合を検出【、・て定位置検知信号を得ている。
FIG. 7(A) shows a minute reflection pattern 6 provided on an object 64.
A half mirror transmits the light beam from the light source 61 to the passing track of 3.
62, and the timing of the occurrence of reflected light is determined by U.
Two types of reflected light A and No. 1 shifted by 1 and 2 are obtained by two light receiving means 71 and 72, and as shown in FIG. Detects the Z condition and obtains a fixed position detection signal.

第8図(A)は2枚のランダム格子列板81゜82の重
なり具合により光源61からの光束の逮過光叶の急峻な
変化を検出手段65で検出し、即ち第8図(B>に示す
ように規定レベルVC以1−の透過光610)−Ij−
無を検出することにより定位置検知イ、ζ号を得ている
FIG. 8(A) shows that the detecting means 65 detects a steep change in the light flux of the light beam from the light source 61 depending on the overlapping condition of two random grid array plates 81 and 82, that is, FIG. 8(B> As shown in , transmitted light 610) -Ij- below the specified level VC
Fixed position detection A and ζ are obtained by detecting nothing.

(発明が解決しようとする問題点) 第6図(A)に示す装置において物体の定位置に関して
精度の良い再現性定位置信号を得るには急峻な波形が必
要となり、その為には反射バター〕、・及び集光ビーム
径を数ミクロンからナノメータの範囲内に設定し・なけ
ればならない。
(Problems to be Solved by the Invention) In order to obtain a highly accurate and reproducible fixed position signal regarding the fixed position of an object in the apparatus shown in FIG. 6(A), a steep waveform is required. ], and the focused beam diameter must be set within the range of several microns to nanometers.

般にレーザ光を集光レンズで集光しても集光ビーム径は
1μm程度が限度である。又1μm以ドの光束が得られ
たと1ノでも極度に焦点深度の浅い光学系となる為に反
射パターンと集光レンズとの間隔が常に焦点深度以内に
入るように構成しなければならず、このような構成は難
しく、複雑な機械機構やサーボ装置を必要とする等の問
題点がある。
Generally, even when laser light is focused by a condensing lens, the diameter of the focused beam is limited to about 1 μm. Furthermore, even if a luminous flux of 1 μm or less is obtained, the optical system will have an extremely shallow depth of focus, so the configuration must be such that the distance between the reflection pattern and the condensing lens is always within the depth of focus. Such a configuration is difficult and has problems such as requiring a complicated mechanical mechanism and servo device.

第7図(A>に小す装置は反射光の発生タイミングをず
らし2つの信号レベルの一致を利用しており、急峻な波
長は第6図(A)の装置程必要としないが、例えばナノ
メータの精度で物体位置の再現性を図るには反射パター
ン及び集光ビーム径をミクロン以下とする必要があり、
第6図(A)の装置と同様な問題点がある、。
The device shown in Fig. 7 (A) uses the coincidence of the two signal levels by shifting the generation timing of the reflected light, and does not require a steep wavelength as much as the device shown in Fig. 6 (A). In order to achieve reproducibility of object position with accuracy of
There is a problem similar to that of the device shown in FIG. 6(A).

第8図(A)に示す装置はてセ、峻など−り波形を/j
lる為に微細なランダムピッチ格子板を極めて近接させ
て配置し・、かつ間隔を安定的に保−)機構を必要とし
・機構ト大変困難であるという問題点かある。
The device shown in FIG.
There is a problem in that fine random pitch grating plates are arranged very close to each other in order to maintain the spacing, and a mechanism is required to maintain the spacing stably, which is very difficult to implement.

本発明は相対移動物体の移動に伴う王渉光の光路長の変
化を利用することにより、相対移動物体の特定の位置を
部活にしかも安定的に高精度に検出し、定位置検知信号
を発〈1−させることのできる定位置検出装置の提供を
目的とする。
The present invention detects a specific position of a relatively moving object stably and with high precision by utilizing the change in the optical path length of the optical beam that accompanies the movement of a relatively moving object, and generates a fixed position detection signal. - It is an object of the present invention to provide a fixed position detection device that can perform

(問題点を解決するための手段) 本発明の定(☆置検出装置は、可干渉性か弱い光束を光
分割器で2つの光束に分割し、そのうち方の光束を相対
移動物体に設けた反射体RVに、他方の光束を固定物体
又は該相対移動物体に設けた該反射体RVと異なる反射
体RCに各々入射させ、これらの反射体RV、RCから
の2つの反射光束を該光分割器で重ね合わせて受光素子
に入射させ、該受光素子から得られる信号レベルを判別
手段により予め設定した規定レベルと比較し、該判別手
段からの判別結果に基づいて信号発生回路より定位置検
知信号を発生させたことを特徴としている。
(Means for Solving the Problems) The fixed position detection device of the present invention splits a weak coherent beam into two beams using a beam splitter, and one of the beams is reflected by a relatively moving object. The other light beam is incident on a fixed object or a reflector RC different from the reflector RV provided on the relatively moving object, and the two reflected light beams from these reflectors RV and RC are transmitted to the light splitter. The signal level obtained from the light receiving element is compared with a predetermined level set in advance by the determining means, and the signal generating circuit generates a fixed position detection signal based on the determination result from the determining means. It is characterized by the fact that it has occurred.

この他、本発明において偏光特性を利用する場合には、
可干渉性が弱い光束を所定の偏光特性を有する光束とし
、第1光分割器で2つの光束に分割し、そのうち一方の
光束を相対移動物体に設けた反射体RVに、他方の光束
を固定物体又は該相対移動物体に設けた該反射体RVと
異なる反射体RCに各々入射させ、これらの反射体RV
、RCからの2つの反射光束を互いに偏光面が直交する
直線偏光にして該第1光分割器で重ね合わせた後、位相
板を通過させ、該2つの反射光束の光路長差に応じて偏
光面が回転する略直線偏光に変換した後、第2光分割器
で2つの光束に分割し、該2つの光束を互いに偏光方位
角が異なる偏光素子を通過させ、各々対応する受光素子
に入射させ、該2つの受光素子より得られた2つの信号
レベルが合致しているか否か及び2つの信号レベルのう
ち少なくとも1つの信号レベルが予め設定した規定レベ
ルに達成しているか否かを判別手段で判別し、該判別手
段による判別結果に基づいて信号発生回路より定位置検
知信号を発生させるようにしている。
In addition, when utilizing polarization characteristics in the present invention,
A light beam with weak coherence is made into a light beam with predetermined polarization characteristics, and the first light splitter splits it into two light beams. One of the light beams is fixed to a reflector RV provided on a relatively moving object, and the other light beam is fixed. The light is incident on a different reflector RC from the reflector RV provided on the object or the relatively moving object, and these reflectors RV
, the two reflected light beams from the RC are converted into linearly polarized light whose polarization planes are perpendicular to each other, and are superimposed by the first light splitter, and then passed through a phase plate to polarize the light beams according to the optical path length difference between the two reflected light beams. After converting into substantially linearly polarized light with a rotating surface, it is split into two light beams by a second light splitter, and the two light beams are passed through polarizing elements with different polarization azimuths, and are incident on corresponding light receiving elements. , the determining means determines whether or not the two signal levels obtained from the two light receiving elements match, and whether or not at least one of the two signal levels has reached a preset specified level. Based on the determination result by the determining means, a signal generating circuit generates a fixed position detection signal.

(実施例) 第1図(A)は本発明の第1実施例の要部概略図である
。同図において発光ダイオード等の光源1より放射され
た弱い干渉性の光束をコリメーターレンズ1aで略平行
光として光分割器2に入射させて2つの光束に分割して
いる。このうち−方の光束を光路り。を通過させて固定
物体4aに設けた反射体4に入射させ、他方の光束を光
路L1を通過させて相対移動物体8に設けた反射体3に
入射させている。そして各々の反射体3.4で反射した
2つの反射光束を光分割器2で重ね合わせて、2つの光
路り。、Llの光路長差に基づいて光変調させ、干渉光
を形成して受光素子5に入射させている。
(Embodiment) FIG. 1(A) is a schematic diagram of a main part of a first embodiment of the present invention. In the figure, a weakly coherent light beam emitted from a light source 1, such as a light emitting diode, is made into substantially parallel light by a collimator lens 1a, and is incident on a light splitter 2, where it is split into two light beams. The negative beam of these is the optical path. The other light beam passes through the optical path L1 and is made to enter the reflector 3 provided on the relatively moving object 8. The two reflected light beams reflected by each reflector 3.4 are superimposed by the light splitter 2 to form two optical paths. , Ll, the light is modulated based on the optical path length difference, and interference light is formed to be incident on the light receiving element 5.

そして受光手段5からの出力信号Sと判別手段を構成す
る比較器6により予め設定した規定レベル(判定レベル
)Zと比較し、規定レベル2を越えているか又は一致し
ているか否かの判別を行っている。そして出力信号Sが
規定レベルZを越えているか又は一致していると判別し
たときは物体8が定位置に達したとみなし、信号発生回
路7より定位置検知信号spを発生させている。
Then, the output signal S from the light receiving means 5 is compared with a preset standard level (judgment level) Z by the comparator 6 constituting the determining means, and it is determined whether it exceeds the standard level 2 or matches the standard level 2. Is going. When it is determined that the output signal S exceeds or matches the specified level Z, it is assumed that the object 8 has reached the home position, and the signal generating circuit 7 generates the home position detection signal sp.

次に本実施例における判別手段による判別方法に詳細に
ついて説明する。
Next, details of the discrimination method by the discrimination means in this embodiment will be explained.

本実施例に係る光源1から放射される弱い干渉性の光束
とはその放射スペクトルが例えば第1図(B)に示すよ
うにGaP系の可視発光ダイオードのように発振中心波
長(例えばλ。=700nm)λ。に対し広い波長帯@
(例えばΔλ=100nm)Δλを有しており、このと
きの2つの光路り。。
The weakly coherent light beam emitted from the light source 1 according to this embodiment has an emission spectrum that is similar to the oscillation center wavelength (for example, λ=) of a GaP-based visible light emitting diode, as shown in FIG. 1(B). 700nm)λ. Wide wavelength band@
(for example, Δλ=100 nm), and there are two optical paths at this time. .

L、の光路長差Xが零付近でのみ干渉信号が得られるよ
うな光束をいう。
This refers to a light beam in which an interference signal is obtained only when the optical path length difference X of L is around zero.

第1図(C)はこのときの2つの光路り。Figure 1(C) shows the two optical paths at this time.

Llの光路長差Xが零付近でのみ干渉を起こす場合の説
明図である。同図に示すように光路長差Xが光源の放射
スペクトルの中心波長λ。の整数倍の位置でピークを生
じ、光路長差Xが大きくなる程、ピークが小さくなる。
FIG. 7 is an explanatory diagram when interference occurs only when the optical path length difference X of Ll is around zero. As shown in the figure, the optical path length difference X is the center wavelength λ of the radiation spectrum of the light source. A peak occurs at a position that is an integral multiple of , and the peak becomes smaller as the optical path length difference X becomes larger.

本発明はこのような光学的性質を利用し、例えば第1図
(D)に示すように干渉光の第1のピーク値P1と第2
のピーク値P2を判別手段で判別し、第1のピーク値P
1のみを判別手段で検知するように判定レベル(規定レ
ベル)値Zを値P1と22との間に設定している。
The present invention makes use of such optical properties, and for example, as shown in FIG. 1(D), the first peak value P1 and the second peak value P1 of the interference light are
The first peak value P2 is determined by the determining means, and the first peak value P2 is determined by the determining means.
The determination level (prescribed level) value Z is set between the values P1 and 22 so that only 1 is detected by the discriminating means.

そして受光素子5から発生した信号レベルが判定レベル
(規定レベル)Zを越えた場合又は一致した場合に物体
8が定位置に達したとみなして信号発生回路7より定位
置信号spを発生させている。尚、本実施例において判
定レベルZと一致する位置は第1図(D)に示す如く2
カ所あるからそのうちの一方だけを用いるようにしてい
る。
When the signal level generated from the light receiving element 5 exceeds or matches the determination level (prescribed level) Z, it is assumed that the object 8 has reached the home position, and the signal generation circuit 7 generates the home position signal sp. There is. In this example, the position that matches the determination level Z is 2 as shown in FIG. 1(D).
There are several locations, so I try to use only one of them.

本実施例において第1図(A)の受光素子5からの出力
信号を比較器5を通し、判定レベルZを越えている間だ
け信号発生回路7よりHiレベルの信号SPを出力して
いる。
In this embodiment, the output signal from the light receiving element 5 shown in FIG. 1(A) is passed through the comparator 5, and only while the signal exceeds the determination level Z, the signal generation circuit 7 outputs a Hi level signal SP.

このときの出力信号SPである矩形パルス信号のU )
xかり又は立下りのみを検出して、これより特定の方向
に移動する物体に対し定位置(原点位置)を高精度に検
知している。
U of the rectangular pulse signal which is the output signal SP at this time)
By detecting only the rise or fall of x, the fixed position (original position) of an object moving in a specific direction is detected with high precision.

尚、このとき矩形パルス信号の立上がり又は立Fりのみ
を取り出す回路を付加して定位置検知信号を発生させる
ようにしても良い。
Incidentally, at this time, a circuit for extracting only the rising edge or rising edge of the rectangular pulse signal may be added to generate the fixed position detection signal.

又、本実R’6例において光源としては中心波長λ=5
50〜800nmで半値波長幅Δλ=80〜150nm
の光束を用いるのか検出積度を高めるのに好ましい。
In addition, in the actual R'6 example, the light source has a center wavelength λ=5
Half-value wavelength width Δλ = 80-150nm at 50-800nm
It is preferable to use a luminous flux of

第2図は本発明の第2実施例の要部概略図である。同図
において発光ダイオード等の光源1より放射された剥い
干渉性の光束をコリメーターレンズ1aで略平行光とし
て45°方位の偏光素子10を介して45°方位の直線
偏光にしてから偏光ど−ムスプリツタ11に入射させて
、互いに直交する2つの直線偏光p、、s、に分割して
いる。このうち偏光ビームスプリッタ11を通過した光
束P1を1/4波長板13を介し円偏光とし光路り。を
通過させて固定物体4aに設けた反射体4に入射させて
いる。
FIG. 2 is a schematic diagram of main parts of a second embodiment of the present invention. In the figure, a coherent light beam emitted from a light source 1 such as a light emitting diode is converted into substantially parallel light by a collimator lens 1a, and then converted into linearly polarized light at a 45° orientation via a polarizing element 10 at a 45° orientation. The light is made incident on the splitter 11 and split into two linearly polarized lights p, , s, which are orthogonal to each other. Of these, the light beam P1 that has passed through the polarizing beam splitter 11 is turned into a circularly polarized light via a quarter-wave plate 13, and then the optical path is made. The light passes through and is incident on a reflector 4 provided on a fixed object 4a.

そして反射体4で反射した光束を再び1/4波長板13
を通過させて最初とは直交する直線偏光S2にして偏光
ビームスプリッタ11で反射させて1/4波長板14に
導光している。
Then, the light beam reflected by the reflector 4 is returned to the 1/4 wavelength plate 13.
The light is passed through to become linearly polarized light S2 orthogonal to the initial light, reflected by the polarizing beam splitter 11, and guided to the quarter-wave plate 14.

又、偏光ビームスプリッタ11で反射した光束S、を1
/4波長板12を介して円偏光とし、光路L1を通過さ
せて相対移動物体8に設けた反射体3に入射させている
。そし反射体3で反射した光束を再び1/4波長板12
を通過させて最初とは直交する直線偏光P2にして偏光
ビームスプリッタ11を通過させて1/4波長板14に
導光している。
Also, the luminous flux S reflected by the polarizing beam splitter 11 is 1
The light is made into circularly polarized light via the /4 wavelength plate 12, and is made to pass through the optical path L1 and enter the reflector 3 provided on the relatively moving object 8. Then, the light beam reflected by the reflector 3 is transferred to the 1/4 wavelength plate 12 again.
The polarized light P2 is converted into linearly polarized light P2 orthogonal to the initial polarized light, and the light is guided to the quarter-wave plate 14 through the polarizing beam splitter 11.

以上の2光束p2.s2は互いに偏光方位が直交した直
線偏光で光路り、の光路長が相対移動物体8の移動に伴
って変化し、この結果相互の位相か連続的にずれる。光
路り。とり、の光路長が完全に一致すると両光束P2.
S2の位相も一致し、1/4波長板14を通過した光束
は第2図(C)、(()のように45°方位の直線偏光
となるので非偏光ビームスプリッタ15を通過又は反射
した光束に対し45°方位の偏光素子(偏光板等)を通
過させると2光束間の位相差φ1−φ2かπの偶数倍毎
にピークをもつモ渉信−号(周期信号)か受光素子より
得られる。
The above two luminous fluxes p2. s2 are linearly polarized lights whose polarization directions are orthogonal to each other, and the optical path length of the light beams changes with the movement of the relatively moving object 8, and as a result, their mutual phases are continuously shifted. Light path. When the optical path lengths of both P2 and P2.
The phase of S2 also matched, and the light beam that passed through the quarter-wave plate 14 became linearly polarized light with a 45° azimuth as shown in FIGS. When the light beam passes through a polarizing element (polarizing plate, etc.) oriented at 45°, a wave signal (periodic signal) with a peak at every even multiple of the phase difference φ1 - φ2 or π between the two beams is generated from the light receiving element. can get.

k実施例においては第2図(C)で示すように2光束の
位相差φ1−φ2に応じて合成される直線偏光波の向き
が変わるので偏光素子10の向きを調整すれば「渉信号
のピークがあられれるタイミングをずらすことが可能で
ある。
In the k embodiment, as shown in FIG. 2(C), the direction of the combined linearly polarized light wave changes depending on the phase difference φ1-φ2 between the two light beams, so adjusting the direction of the polarizing element 10 changes the polarization signal. It is possible to shift the timing of the peak.

今、光路L1の光路長が次第に長くなって位相φ2か第
2図(C)で示すようにずれていくと合成される直線偏
光波は左回りに回転する。そこで第1図(D)のように
非偏光ビームスプリッタ15で2分した光束の一方に偏
光板16をその偏光り位か225°となるように配置し
、もう方に偏光板17をその偏光方位が67.5°とな
るように配置する。そうすると偏光板16を通過して生
じた干渉信号のピークは偏光板17を通過して生じた干
渉信号のピークより1/4周期たけ位相のずれた2種類
の一ト渉信号が得られる。これらの干渉信号のピークは
第2図(B)に示すように光路長差か長くなる程低くな
る。
Now, as the optical path length of the optical path L1 gradually increases and the phase φ2 shifts as shown in FIG. 2(C), the combined linearly polarized light waves rotate counterclockwise. Therefore, as shown in FIG. 1(D), a polarizing plate 16 is placed on one side of the light beam divided into two by the non-polarizing beam splitter 15 so that the polarization angle is 225 degrees, and a polarizing plate 17 is placed on the other side to polarize the beam. Arrange so that the orientation is 67.5°. Then, the peak of the interference signal generated by passing through the polarizing plate 16 is shifted in phase by 1/4 period from the peak of the interference signal generated by passing through the polarizing plate 17, and two types of combined signals are obtained. The peaks of these interference signals become lower as the optical path length difference increases, as shown in FIG. 2(B).

そこで本実施例では受光素子5bの干渉信号が受光素子
5aの干渉信号よりdれて生じ、両者の信号レベルが一
致した所は2光束の位相のずれが#(又はπの偶数倍)
あるいは波長え。/2の整数倍になるから、2光束の位
相のずれが零になる交点のみを検出して、このとき信号
発生回路7とAND回路9を用いて定位置検知信号を発
生させている。
Therefore, in this embodiment, the interference signal of the light-receiving element 5b is generated d later than the interference signal of the light-receiving element 5a, and where the signal levels of both coincide, the phase shift of the two light beams is # (or an even multiple of π).
Or wavelength. Since it is an integral multiple of /2, only the intersection point where the phase shift of the two light beams becomes zero is detected, and at this time, the signal generating circuit 7 and the AND circuit 9 are used to generate a fixed position detection signal.

その為、本実施例では第2図(B)に示すように第1の
ピークの交点の信号値Zと第2のピークの交点の信号値
Z′が判別できるように信号値ZとZ′の間に判定レベ
ルvcを設け、2つの信号レベルの一致と慈イ3号しベ
ルか信号値vc以上であることを満たしている場合のみ
AND回路9を用いて定位置検知信号を発生させるよう
にしている。尚、本実施例では受光素子5a、5bはコ
ンパレータ6a、6bを通すと交点毎に反転するので受
光素子5a、5bの和信号が信号値2vc以上で反転信
号が発生した瞬間にパルスを発生させる回路装置を付加
して、これにより定位置検出信号を発生させている。
Therefore, in this embodiment, as shown in FIG. 2(B), the signal values Z and Z' are set so that the signal value Z at the intersection of the first peak and the signal value Z' at the intersection of the second peak can be distinguished. A determination level VC is provided between the two signals, and the AND circuit 9 is used to generate a fixed position detection signal only when the two signal levels match and the signal level 3 is equal to or higher than the signal value VC. I have to. In this embodiment, when the light receiving elements 5a and 5b pass through the comparators 6a and 6b, they are inverted at every intersection, so a pulse is generated at the moment when the sum signal of the light receiving elements 5a and 5b is equal to or greater than the signal value 2vc and an inverted signal is generated. A circuit arrangement is added to generate the home position detection signal.

本実施例においては定位置検知信号は厳密に一カ所であ
り、原理的に相対移動物体の移動方向にもよらないので
非常に高精度な定位置検知信号を発生させることができ
る。
In this embodiment, the fixed position detection signal is generated at exactly one location, and in principle it does not depend on the moving direction of the relatively moving object, so it is possible to generate a very highly accurate fixed position detection signal.

第2 (E) 、 (F) 、 (G)は本実施例にお
いて偏光素子16.17の偏光方位を変えたときの受光
素子5a、5bから得られる干渉信号の説明図である。
2nd (E), (F), and (G) are explanatory diagrams of interference signals obtained from the light receiving elements 5a and 5b when the polarization directions of the polarizing elements 16 and 17 are changed in this embodiment.

2つの偏光素子16.17の中間の偏光方位を45’か
ら1350に変えると同図(B)のように全体の干渉信
号が反転し、ど−りが底になってくる。そこで判定レベ
ルを信号値2′にし、信号値Z′を下回ったという条件
を与えてこのときの交点の信号値Zを検出している。
When the polarization direction between the two polarizing elements 16 and 17 is changed from 45' to 1350, the entire interference signal is reversed and the bottom becomes the bottom, as shown in FIG. Therefore, the determination level is set to signal value 2', the condition that the signal value is below Z' is given, and the signal value Z at the intersection at this time is detected.

一般に2つの偏光素子16.17の中間の偏光方位を変
えると45°、1350以外では同図(G)のように交
点の位置が光路長差がλ。の整数倍の位置から外れてく
る。その場合、信号値ZとZ′が接近するので十分に信
号値ZとZ′が判別できる範囲にする必要がある。
Generally, when the polarization direction between the two polarizing elements 16 and 17 is changed, the optical path length difference is λ. It comes off from a position that is an integer multiple of . In that case, since the signal values Z and Z' are close to each other, it is necessary to set the range so that the signal values Z and Z' can be sufficiently distinguished.

又、2つの偏光素子16.17の間に角度差を45°よ
り小さくすると同図(F)に示すように2つの干渉信号
の波形が接近してくる。逆に45°より大きくすると2
つの干渉信号の波形が離れ交点の信号値Zの位置が0.
5に近くなり、信号値Z′との判別が困難になってくる
Furthermore, when the angle difference between the two polarizing elements 16 and 17 is made smaller than 45 degrees, the waveforms of the two interference signals approach each other as shown in FIG. On the other hand, if it is larger than 45°, it becomes 2
The waveforms of the two interference signals are separated and the position of the signal value Z at the intersection is 0.
5, and it becomes difficult to distinguish it from the signal value Z'.

本実施例においては、いずれの場合にも偏光素子16.
17の偏光方位の配置は第1の交点の信号値2と第2の
交点の信号値Z′が分層して判別できるような相互の偏
光角度差及び偏光方位を決めれば本発明の目的を達成す
ることができる。
In this embodiment, in either case, the polarizing element 16.
The purpose of the present invention can be achieved by determining the mutual polarization angle difference and polarization direction such that the signal value 2 at the first intersection point and the signal value Z' at the second intersection point can be separated and distinguished. can be achieved.

第3.第4.第5図は各々本発明の第3゜第4.第5実
施例の一部分の要部概略図である。
Third. 4th. FIG. 5 shows the 3rd and 4th sections of the present invention, respectively. It is a principal part schematic diagram of a part of 5th Example.

7J3図に示す第3実施例では第1図、又は第2図の実
施例において固定物体4aに設けた反射体4を相対移動
物体8の一部に設置し、光路り。。
In the third embodiment shown in FIG. 7J3, the reflector 4 provided on the fixed object 4a in the embodiment of FIG. .

L、の互いの光路長が移動物体の移動に伴って逆向きに
変化するように構成している。
The optical path lengths of L and L are configured to change in opposite directions as the moving object moves.

第1.第2図の実施例の構成に比べて単位移動当りの光
路長差の変化量、即ち敏感度が2倍になり定位置検出積
度が2倍になるという特長がある。この他の構成につい
ては第1又は第2実施例と同様である。
1st. Compared to the configuration of the embodiment shown in FIG. 2, this embodiment has the advantage that the amount of change in the optical path length difference per unit movement, that is, the sensitivity is doubled, and the fixed position detection accuracy is doubled. The other configurations are the same as those in the first or second embodiment.

第4図に示す第4実施例は第3図の実施例において反射
面3,4を相対移動物体8の移動方向に対して角度θ傾
けている。これにより装置全体の小型化を図っている。
A fourth embodiment shown in FIG. 4 differs from the embodiment shown in FIG. 3 in that the reflecting surfaces 3 and 4 are tilted at an angle θ with respect to the moving direction of the relatively moving object 8. This makes the entire device more compact.

本実施例において角度θを例えば45’としたときは同
図(A) 、 (B)に示すように双方の反射体3.4
が移動物体8上に設置されている場合は第1.第2実施
例に比べて各々敏感度が1/F7になるから全体として
2/g=1’X倍となるという特長がある。
In this embodiment, when the angle θ is set to 45', for example, both reflectors 3.4 as shown in FIGS.
is placed on the moving object 8, the first. Compared to the second embodiment, each sensitivity is 1/F7, so the sensitivity is 2/g=1'X times as a whole.

第5図に示す第5実施例は第4図(A)の第4実施例に
おいて反射体3,4として凸レンズとミラーを組合わせ
入射光路と射出光路の方向か全く等しくなる、所謂「キ
ャッツアイ」と呼ばれる構成を利用したものであり、同
図(A)はレンズ51.52の焦点位置に各々ミラー5
3.54を配置したもの、同図(B)は端面結像タイプ
の屈折率分布型レンズ55.56の底面に反射膜57.
58を蒸着した光学素子を反射体として配置している。
The fifth embodiment shown in FIG. 5 is a so-called "cat's eye" in which the directions of the incident optical path and the exit optical path are completely equal by combining convex lenses and mirrors as the reflectors 3 and 4 in the fourth embodiment shown in FIG. 4(A). (A) shows mirrors 5 at the focal positions of lenses 51 and 52.
3.54 is arranged, the same figure (B) shows a reflective film 57.54 on the bottom surface of an edge imaging type gradient index lens 55.56.
58 is placed as a reflector.

これらの光学系を用いると反射体3.4間の反射方位の
ずれに起因するチルトによる縞が発生しないので受光素
子5a、5bにて検出される干渉光の明暗信号の振幅が
良い状態に保てる。
When these optical systems are used, stripes due to tilt caused by deviations in the reflection direction between the reflectors 3.4 do not occur, so the amplitude of the bright and dark signals of the interference light detected by the light receiving elements 5a and 5b can be maintained in a good condition. .

又、光路長が長く光路長差が零に近い場合でも受光素子
5a、5bからビームが外れるおそれも少なく、2光束
の干渉か容易に安定に行なえるという特長がある。
Further, even when the optical path length is long and the optical path length difference is close to zero, there is little risk that the beam will deviate from the light receiving elements 5a, 5b, and the interference between two beams can be easily and stably performed.

尚、本実施例の光学弟子は他の実施例の反射体として使
用することができる。
Incidentally, the optical reflector of this embodiment can be used as a reflector in other embodiments.

(発明の効果) 本発明によれば町ト渉性か弱い光束を有する光束を放射
する発光ダイオード等を光源にして所謂マイケルソン干
渉計を構成し、移動物体の移動に伴って2光束の光路長
差が変化するように配置し、f゛渉イミ号強度か適当な
規定レベル(判別レベル)を越えたこと、又はそれに加
え互いに位相のすれた2種の干渉信号を発生させ、両者
のレベルか一致したことを定位置(原点、零点)と定義
して定位置検知信号を発生させるように構成することに
よって、従来の定位置検出装置に比へて簡単で安定的に
、即ち位置関係が多少ずれても定位置検知信号を発生さ
せることができ、高鯖度に定位置検出か出来、被検物体
に対しては反射体を取り付けるという簡単な作業で済み
、ミクロンオーターの微細なパターンを形成したり、2
つの蹟密格f−を準備し正確に取付ける等の煩わしさが
ほとんどない定位置検出装置を達成することができる。
(Effects of the Invention) According to the present invention, a so-called Michelson interferometer is constructed using a light emitting diode or the like as a light source that emits a light beam having a weak interpolation, and the optical path length of the two light beams is changed as the moving object moves. The interference signals are arranged so that the difference changes, and it is determined that the intensity of the interference signal exceeds an appropriate specified level (discrimination level), or in addition, two types of interference signals that are out of phase with each other are generated, and the level of both signals is changed. By defining a coincidence as a fixed position (origin, zero point) and generating a fixed position detection signal, it is easier and more stable than conventional fixed position detection devices, that is, the positional relationship can be changed to some extent. It is possible to generate a fixed position detection signal even if there is a deviation, and it is possible to detect the fixed position with high accuracy.The simple task of attaching a reflector to the object to be detected is enough to form a fine pattern of micron size. Or, 2
It is possible to achieve a fixed position detection device that does not require much trouble such as preparing and accurately mounting two locks.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)は本発明の第1実施例の要部概略図である
。第1図(B)は第1図の光源の放射スペクトルの説明
図、第1図(Ill) 、 (D)は干渉信号の説明図
、第2図(A)は本発明の第2実MS例の要部概略図、
第2図(B)は同図(A)の2つの干渉信号の説明図、
第2図(C)は同図(A、)における所定方向に偏光し
た直線偏光を合成する説明図、第2図(D)は同図(A
)において2つの干渉光を発生させる説明図、第2図(
E) 、 (F) 、 (G)は2つの干渉光の説明図
、第3.第4.第5図は各々本発明の第3.第4.第5
実施例の一部分の要部概略図、第6.第7.第8図は各
々従来の定位置検出装置の説明図である。 図中、1は光源、1aはコリメーターレンズ、2.15
は光分割器、3,4は各々反射体、4aは固定物体、5
.5b、5bは受光素子、8は相対移動物体、6,6a
、6b、6cは比較器、7は信号発生回路、9はAND
回路、10.1617は偏光素子、11は1−光ど−ム
スプリッタ、 2 13.14は1/4波長板である。 第 図(C)
FIG. 1(A) is a schematic diagram of a main part of a first embodiment of the present invention. FIG. 1(B) is an explanatory diagram of the radiation spectrum of the light source in FIG. 1, FIG. 1(Ill), (D) is an explanatory diagram of the interference signal, and FIG. A schematic diagram of the main parts of the example,
FIG. 2(B) is an explanatory diagram of the two interference signals in FIG. 2(A),
Figure 2 (C) is an explanatory diagram for synthesizing linearly polarized light polarized in a predetermined direction in Figure 2 (A), and Figure 2 (D) is
) is an explanatory diagram of generating two interference lights in Figure 2 (
E), (F), and (G) are explanatory diagrams of two interference lights, 3rd. 4th. FIG. 5 shows the third embodiment of the present invention. 4th. Fifth
A schematic diagram of a part of the main part of the embodiment, 6th. 7th. FIG. 8 is an explanatory diagram of each conventional fixed position detection device. In the figure, 1 is a light source, 1a is a collimator lens, 2.15
is a light splitter, 3 and 4 are reflectors, 4a is a fixed object, 5
.. 5b, 5b are light receiving elements, 8 is a relatively moving object, 6, 6a
, 6b, 6c are comparators, 7 is a signal generation circuit, 9 is an AND
In the circuit, 10.1617 is a polarizing element, 11 is a 1-optical beam splitter, and 2 13.14 is a 1/4 wavelength plate. Figure (C)

Claims (2)

【特許請求の範囲】[Claims] (1)可干渉性が弱い光束を光分割器で2つの光束に分
割し、そのうち一方の光束を相対移動物体に設けた反射
体RVに、他方の光束を固定物体又は該相対移動物体に
設けた該反射体RVと異なる反射体RCに各々入射させ
、これらの反射体RV、RCからの2つの反射光束を該
光分割器で重ね合わせて受光素子に入射させ、該受光素
子から得られる信号レベルを判別手段により予め設定し
た規定レベルと比較し、該判別手段からの判別結果に基
づいて信号発生回路より定位置検知信号を発生させたこ
とを特徴とする定位置検出装置。
(1) A light beam with weak coherence is split into two light beams by a light splitter, one of which is placed on a reflector RV placed on a relatively moving object, and the other beam is placed on a fixed object or the relatively moving object. The two reflected light beams from the reflectors RV and RC are superimposed by the light splitter and are made to enter the light receiving element, and the signal obtained from the light receiving element is A fixed position detection device characterized in that a level is compared with a predetermined level set in advance by a discriminating means, and a fixed position detection signal is generated from a signal generating circuit based on the determination result from the discriminating means.
(2)可干渉性が弱い光束を所定の偏光特性を有する光
束とし、第1光分割器で2つの光束に分割し、そのうち
一方の光束を相対移動物体に設けた反射体RVに、他方
の光束を固定物体又は該相対移動物体に設けた該反射体
RVと異なる反射体RCに各々入射させ、これらの反射
体RV、RCからの2つの反射光束を互いに偏光面が直
交する直線偏光にして該第1光分割器で重ね合わせた後
、位相板を通過させ、該2つの反射光束の光路長差に応
じて偏光面が回転する略直線偏光に変換した後、第2光
分割器で2つの光束に分割し、該2つの光束を互いに偏
光方位角が異なる偏光素子を通過させ、各々対応する受
光素子に入射させ、該2つの受光素子より得られた2つ
の信号レベルが合致しているか否か及び2つの信号レベ
ルのうち少なくとも1つの信号レベルが予め設定した規
定レベルに達成しているか否かを判別手段で判別し、該
判別手段による判別結果に基づいて信号発生回路より定
位置検知信号を発生させたことを特徴とする定位置検出
装置。
(2) A light beam with weak coherence is made into a light beam having a predetermined polarization characteristic, is split into two light beams by the first light splitter, and one of the light beams is sent to a reflector RV provided on a relatively moving object, and the other is The light flux is made incident on a reflector RC different from the reflector RV provided on a fixed object or the relatively moving object, and the two reflected light fluxes from these reflectors RV and RC are converted into linearly polarized light whose polarization planes are orthogonal to each other. After being superimposed by the first beam splitter, the two reflected beams are passed through a phase plate and converted into substantially linearly polarized light whose plane of polarization rotates according to the optical path length difference between the two reflected beams. The two light beams are split into two light beams, passed through polarizing elements with different polarization azimuths, and made incident on the corresponding light receiving elements. Check whether the two signal levels obtained from the two light receiving elements match. and whether or not at least one of the two signal levels has reached a predetermined level is determined by a determining means, and the signal generating circuit detects the fixed position based on the determination result by the determining means. A fixed position detection device characterized by generating a signal.
JP16790589A 1989-06-28 1989-06-28 Fixed position detector Pending JPH0331703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16790589A JPH0331703A (en) 1989-06-28 1989-06-28 Fixed position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16790589A JPH0331703A (en) 1989-06-28 1989-06-28 Fixed position detector

Publications (1)

Publication Number Publication Date
JPH0331703A true JPH0331703A (en) 1991-02-12

Family

ID=15858226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16790589A Pending JPH0331703A (en) 1989-06-28 1989-06-28 Fixed position detector

Country Status (1)

Country Link
JP (1) JPH0331703A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008158205A (en) * 2006-12-22 2008-07-10 Mitsubishi Rayon Co Ltd Manufacturing method of plastic optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008158205A (en) * 2006-12-22 2008-07-10 Mitsubishi Rayon Co Ltd Manufacturing method of plastic optical fiber

Similar Documents

Publication Publication Date Title
US4979826A (en) Displacement measuring apparatus
JP2586120B2 (en) encoder
US5059791A (en) Reference position detecting device utilizing a plurality of photo-detectors and an encoder using the device
US20120287441A1 (en) Displacement Detecting Device
US9175987B2 (en) Displacement detecting device
JPH073344B2 (en) Encoder
US20030174343A1 (en) Optical displacement sensing device with reduced sensitivity to misalignment
US7738112B2 (en) Displacement detection apparatus, polarization beam splitter, and diffraction grating
US7034948B2 (en) Displacement pickup
US6407815B2 (en) Optical displacement measurement system
US5000542A (en) Optical type encoder
NL8005258A (en) INTERFEROMETER.
KR100531458B1 (en) Optical displacement measurement system
JP5235554B2 (en) Optical displacement measuring device
US5017777A (en) Diffracted beam encoder
JPS63277926A (en) Length measuring instrument
CN111964587B (en) Detection system, detection method and grating scale
KR100531693B1 (en) Optical displacement measurement system
JPH0331703A (en) Fixed position detector
JP2004170153A (en) Displacement detector
JPH04130220A (en) Encoder
JPS62204126A (en) Encoder
JP2683098B2 (en) encoder
JP3517506B2 (en) Optical displacement measuring device
JP2000018918A (en) Laser interference apparatus for detecting moving quantity of movable body