[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2683098B2 - encoder - Google Patents

encoder

Info

Publication number
JP2683098B2
JP2683098B2 JP12004689A JP12004689A JP2683098B2 JP 2683098 B2 JP2683098 B2 JP 2683098B2 JP 12004689 A JP12004689 A JP 12004689A JP 12004689 A JP12004689 A JP 12004689A JP 2683098 B2 JP2683098 B2 JP 2683098B2
Authority
JP
Japan
Prior art keywords
light
diffraction grating
diffracted
diffracted light
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12004689A
Other languages
Japanese (ja)
Other versions
JPH02298816A (en
Inventor
公 石塚
哲治 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14776556&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2683098(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP12004689A priority Critical patent/JP2683098B2/en
Priority to US07/522,051 priority patent/US5146085A/en
Priority to EP90108932A priority patent/EP0397202B1/en
Priority to DE69011188T priority patent/DE69011188T2/en
Publication of JPH02298816A publication Critical patent/JPH02298816A/en
Application granted granted Critical
Publication of JP2683098B2 publication Critical patent/JP2683098B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Transform (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明はエンコーダーに関し、特に、回折格子の回折
格子に入射する光束の相対的な変位を、回折格子から射
出するいくつかの回折光同志を干渉させて形成した干渉
光を光電変換することにより検出するエンコーダーに関
する。
Description: TECHNICAL FIELD The present invention relates to an encoder, and more particularly, to a relative displacement of a light beam incident on a diffraction grating of a diffraction grating by causing some diffracted light beams emitted from the diffraction grating to interfere with each other. The present invention relates to an encoder that detects photoelectric interference of formed interference light.

〔従来技術〕(Prior art)

従来より、NC工作機械等で、被検物体の位置や角度変
位を検出するセンサーとしてエンコーダーが使用されて
いる。そして、近年この種のエンコーダーに対して高分
解能化と高精度化が益々要求されてきている。
Conventionally, encoders have been used as sensors for detecting the position and angular displacement of an object to be inspected in NC machine tools and the like. In recent years, there has been an increasing demand for higher resolution and higher accuracy for this type of encoder.

変位検出用の光学式スケールとして回折格子を用い、
回折格子の記録密度を数ミクロン/ピツチにし、回折格
子から射出するいくつかの回折光を互いに干渉させるこ
とでスケールの変位に応じた周期信号を得る方式の高分
解能、高精度なエンコーダーが既に知られているが、更
なる高精度化、高分解能化のために回折格子の記録密度
を波長オーダー程度に上げると、回折光の回折角度(回
折格子からの射出角)が大きくなり、光学部品の配置が
面倒になるという問題点が発生する。
Using a diffraction grating as an optical scale for displacement detection,
A high-resolution, high-precision encoder that obtains a periodic signal according to the displacement of the scale by making the recording density of the diffraction grating several microns / pitch and interfering some diffracted light emitted from the diffraction grating is already known. However, if the recording density of the diffraction grating is increased to about the wavelength order for higher precision and higher resolution, the diffraction angle of the diffracted light (exit angle from the diffraction grating) increases, and There is a problem that the arrangement becomes troublesome.

例えば、第6図に示す従来のエンコーダーは以下のよ
うな動作によってスケールの変位に応じた信号を発生さ
せている。
For example, the conventional encoder shown in FIG. 6 generates a signal according to the displacement of the scale by the following operation.

レーザーダイオード1からの光束をコリメータレンズ
2で平行光束にして回折格子5上の点P1に垂直に入射さ
せ、点P1から射出した+1次反射回折光(R1+)をミラ
ー6を介してビームスプリツター4まで戻すと同時に点
P1から射出した−1次反射回折光(R1−)をミラー62を
介してビームスプリツター4まで戻し、ビームスプリツ
ター4を介して±1反射回折光を重ねあわせて干渉させ
る。回折格子5が格子1ピツチ分だけ移動するあいだに
+1次回折光の波面の位相が『2π進み』−1次回折光
の波面の位相が『2π遅れる』という原理によって、2
光束を干渉させて形成した干渉光で格子1ピツチの移動
に応じて2周期の明暗変化が観測される。即ち回折格子
5の格子本数の2倍の周期信号が取り出せる。
The light beam from the laser diode 1 is collimated by the collimator lens 2 and is made incident vertically on the point P1 on the diffraction grating 5, and the + 1st-order reflected diffracted light (R1 +) emitted from the point P1 is passed through the mirror 6 through the beam splitter. Point at the same time as returning to 4
The −1st order reflected diffracted light (R1−) emitted from P1 is returned to the beam splitter 4 via the mirror 62, and the ± 1 reflected diffracted light is overlapped and interfered via the beam splitter 4. While the diffraction grating 5 moves by one pitch of the grating, the phase of the wavefront of the + 1st-order diffracted light is "2π advanced" and the phase of the wavefront of the -1st-order diffracted light is "2π delayed".
With the interference light formed by causing the light beams to interfere with each other, a change in brightness of two cycles is observed according to the movement of one pitch of the grating. That is, a periodic signal having twice the number of gratings of the diffraction grating 5 can be taken out.

しかしながら、前述したように、回折格子5の記録密
度(ピツチ)が細かくなるほど回折光の回折角が大きく
なるので、回折格子5から射出する回折光の射出角が90
゜近くなる。従って、回折格子5に接触しないようにミ
ラー61,62を回折格子5の近傍に設置しなければなら
ず、このような設置は極めて面倒である。更に、回折格
子5の格子ピツチをレーザーダイオード1からの光束の
波長以下にすると、回折光が取り出せなくなり、回折格
子5の変化を検出することすら不可能になる。
However, as described above, the finer the recording density (pitches) of the diffraction grating 5, the larger the diffraction angle of the diffracted light, so the exit angle of the diffracted light emitted from the diffraction grating 5 is 90 degrees.
It will be near. Therefore, the mirrors 61 and 62 must be installed in the vicinity of the diffraction grating 5 so as not to contact the diffraction grating 5, and such installation is extremely troublesome. Further, if the grating pitch of the diffraction grating 5 is set to be equal to or less than the wavelength of the light beam from the laser diode 1, the diffracted light cannot be extracted, and even the change of the diffraction grating 5 cannot be detected.

〔発明の概要〕[Summary of the Invention]

本発明の目的は、上記従来の問題点を解消し、高分解
能化を容易に行なうことが可能なエンコーダーを提供す
ることにある。
An object of the present invention is to solve the above-mentioned conventional problems and to provide an encoder capable of easily achieving high resolution.

この目的を達成するために、本発明のエンコーダー
は、光束R1と光束R2を回折格子に入射せしめ、該光束R1
が該回折格子で反射回折されて生じる第1回折光と該光
束R2が該回折格子で反射回折されて生じる第2回折光と
を干渉させて干渉光を形成し、該干渉光を光電変換する
ことにより該光束R1及びR2と該回折格子の相対的な変位
を検出するエンコーダーにおいて、該光束R1が該回折格
子に入射する時の光路とほぼ同じ光路へ向かって該第1
回折光が射出し、該光束R2が該回折格子に入射する時の
光路とほぼ同じ光路に向かって該第2回折光が射出する
よう該光束R1及びR2を該回折格子に入射せしめる光学手
段を有することを特徴としている。
In order to achieve this object, the encoder of the present invention makes a light beam R 1 and a light beam R 2 incident on a diffraction grating, and the light beam R 1
Interfere with the first diffracted light generated by being reflected and diffracted by the diffraction grating and the second diffracted light generated by the light flux R 2 being reflected and diffracted by the diffraction grating to form interference light, and the interference light is photoelectrically converted. By doing so, in the encoder that detects the relative displacement of the light beams R 1 and R 2 and the diffraction grating, the first direction toward the optical path substantially the same as the optical path when the light beam R 1 enters the diffraction grating.
Diffracted light is emitted, the light beam R 2 is allowed to enter the diffraction grating the light beam R 1 and R 2 so that the second diffraction light is emitted toward the substantially same optical path as the optical path when incident on the diffraction grating It is characterized by having optical means.

本発明の更なる特徴と具体的な形態は後述する実施例
に記載されている。
Further features and specific forms of the present invention will be described in the embodiments described later.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示す概略図であり、同図
において1はレーザーダイオードから成る光源、2はコ
リメーターレンズ、4は偏光ビームスプリツター、5は
ピツチPを有する回折格子、61,62はミラー、7は1/4波
長板、9は非偏光ビームスプリツター、10と11は偏光素
子(偏光板や偏光ビームスプリツターなど)、S1,S2は
受光素子である。光源1から出射した波長λのレーザー
光束をコリメーターレンズ2によって平行光束にし、こ
の平行光束を偏光ビームスプリツター4に入射させて互
いに偏光方位が直交した2光束R1,R2に分割する。ここ
で、光束R1は偏光ビームスプリツター4で反射したS偏
光光であり、光束R2は偏光ビームスプリツター4を透過
したP偏光光である。光束R1はミラー61を介して形成さ
れた光路L1を進行して、光束R2はミラー62を介して形成
された光路L2を進行する。そして、光束R1及びR2は各々
1/4波長板7を通過した後、回折格子5上の点P1に入射
角θ[=sin-1(λ/2p)]で入射し、光束R1及びR2
回折格子5で反射回折されて得られる、光束R1の+1次
回折光(R1+)と光束R2の−1次回折光(R2−)がそれ
ぞれ1/4波長板7を介して元の光路L1,L2に向かう。光路
L1を逆行する+1次回折光と光路L2を逆行する−1次回
折光は各々ミラー61,62で反射して偏光ビームスプリツ
ター4に向けられ、再び偏光ビームスプリツター4にて
重ねあわせられる。+1次回折光は1/4波長板7の作用
でP偏光光と成っており、又、−1次回折光は1/4波長
板7の作用でS偏光光と成っているので、これらの光束
は何ら損失なく偏光ビームスプリツター4から重なり合
って射出する。重なりあった2光束は、1/4波長板7を
通過して互いに偏光面が逆向きに回転する円偏光となる
ので、この互いに逆回りの円偏光光同志が合成された光
束の偏光状態は直線偏光となる。この光束の偏光方位は
回折格子5の変位に応じて変化する光束(R1+)と光束
(R2−)との波面の位相差によって決まり、位相差が0,
1/4π,2/4π,3/4π,4/4π,5/4π,…,8/4πと変化して
いくあいだに、この直線偏光光束の偏光方位は、45゜,6
7.5゜、90゜,112.5゜,135゜,157.5゜,…,225゜(45
゜)と回転していく。そこで、この光束を非偏光ビーム
スプリツター9にて等光量の2光束に分割したあと、一
方の光束から偏光素子10を用いて特定の偏光成分のみを
分割して取り出し、受光素子S1に入射させ、もう一方の
光束から偏光素子11を用いて特定の偏光成分のみを分離
して取り出し、受光素子S2に入射させれば各受光素子S
1,S2からそれぞれ周期的な信号が出力される。ここで偏
光素子10,11で取り出す偏光成分の方位を互いに45゜ず
らしておけば、受光素子S1,S2に入射する干渉光の明暗
変化のタイミングが互いに1/4周期(出力信号の位相で1
/2π)だけずれる。従って、これらの互いに90゜位相が
ずれた2相の周期信号を電気適に増幅、2値化をして処
理することにより回折格子5の変化量及び変位方向を検
出することができる。この検出方法に関しては周知の技
術であるので、本願で具体的に説明することは省略す
る。
FIG. 1 is a schematic view showing an embodiment of the present invention, in which 1 is a light source composed of a laser diode, 2 is a collimator lens, 4 is a polarization beam splitter, 5 is a diffraction grating having a pitch P, Reference numerals 61 and 62 are mirrors, 7 is a quarter-wave plate, 9 is a non-polarizing beam splitter, 10 and 11 are polarizing elements (such as a polarizing plate and a polarizing beam splitter), and S1 and S2 are light receiving elements. A collimator lens 2 collimates a laser beam having a wavelength λ emitted from a light source 1 and makes this collimated beam incident on a polarization beam splitter 4 to split it into two beams R1 and R2 whose polarization directions are orthogonal to each other. Here, the light beam R1 is S-polarized light reflected by the polarized beam splitter 4, and the light beam R2 is P-polarized light transmitted through the polarized beam splitter 4. The light flux R1 travels on the optical path L1 formed via the mirror 61, and the light flux R2 travels on the optical path L2 formed via the mirror 62. Then, the luminous fluxes R1 and R2 are respectively
After passing through the quarter-wave plate 7, it enters the point P1 on the diffraction grating 5 at an incident angle θ 0 [= sin -1 (λ / 2p)], and the light beams R 1 and R 2 are reflected by the diffraction grating 5. The + 1st-order diffracted light (R1 +) of the light beam R1 and the -1st-order diffracted light (R2-) of the light beam R2, which are obtained by being diffracted, respectively travel to the original optical paths L1 and L2 via the 1/4 wavelength plate 7. Light path
The + 1st- order diffracted light that goes backwards in L 1 and the -1st-order diffracted light that goes backwards in the optical path L 2 are reflected by mirrors 61 and 62, respectively, and are directed to the polarization beam splitter 4, and are again superposed by the polarization beam splitter 4. Since the + 1st-order diffracted light is made into P-polarized light by the action of the quarter-wave plate 7, and the -1st-order diffracted light is made into S-polarized light by the action of the 1 / 4-wave plate 7, these luminous fluxes are The polarized beam splitter 4 overlaps and emits without any loss. Since the two overlapping light beams pass through the quarter-wave plate 7 and become circularly polarized light whose polarization planes rotate in opposite directions, the polarization states of the light beams in which the mutually opposite circularly polarized light beams are combined are It becomes linearly polarized light. The polarization direction of this light flux is determined by the phase difference of the wavefronts of the light flux (R1 +) and the light flux (R2-) that change according to the displacement of the diffraction grating 5, and the phase difference is 0,
While changing to 1 / 4π, 2 / 4π, 3 / 4π, 4 / 4π, 5 / 4π,…, 8 / 4π, the polarization direction of this linearly polarized light beam is 45 °, 6
7.5 °, 90 °, 112.5 °, 135 °, 157.5 °,…, 225 ° (45
゜) and rotate. Therefore, after splitting this light flux into two light fluxes of equal light quantity by the non-polarizing beam splitter 9, only a specific polarization component is split from one light flux using the polarizing element 10 and is made incident on the light receiving element S1. , A specific polarization component is separated from the other light beam by using the polarization element 11 and is extracted, and is made incident on the light reception element S2.
Periodic signals are output from 1 and S2 respectively. If the azimuths of the polarization components extracted by the polarization elements 10 and 11 are shifted from each other by 45 °, the timing of the change in brightness of the interference light incident on the light-receiving elements S1 and S2 is 1/4 cycle (1 in the output signal phase).
/ 2π) only shift. Therefore, the amount of change and the direction of displacement of the diffraction grating 5 can be detected by electrically amplifying and binarizing these two-phase periodic signals that are 90 ° out of phase with each other. Since this detection method is a well-known technique, a detailed description thereof will be omitted.

本エンコーダーによれば、たとえ回折格子5のピツチ
が光源1からの光束の波長λと等しくなったとしても、
光束R1及びR2の入射角θ=30゜、±1次回折光(R1
+,R2−)の射出角30゜となり、干渉光を形成するた
めの±1次回折光を容易に取り出すことができる。ま
た、光学系の構成も極めて簡単である。
According to this encoder, even if the pitch of the diffraction grating 5 becomes equal to the wavelength λ of the light beam from the light source 1,
Incident angle θ 0 = 30 ° of light fluxes R 1 and R 2 , ± 1st order diffracted light (R 1
The exit angle of +, R2−) is 30 °, and ± 1st order diffracted light for forming interference light can be easily extracted. Moreover, the configuration of the optical system is extremely simple.

第2図は本発明をロータリーエンコーダーに適応した
第2実施例を示す斜視図であり、同図において、1はレ
ーザーダイオードから成る光源、2はコリメーターレン
ズ、31,32はプリズム、41,42はプリズム31,32中の偏光
ビームスプリツター面、5は回転デイスク板(回折格
子)、63,64,65,66はミラー、71,72,73は1/4波長板、8
は1/2波長板、9は非偏光ビームスプリツター、10,11は
偏光素子(例えば偏光板や偏光プリズム)、S1,S2は受
光素子である。
FIG. 2 is a perspective view showing a second embodiment in which the present invention is applied to a rotary encoder. In FIG. 2, 1 is a light source composed of a laser diode, 2 is a collimator lens, 31 and 32 are prisms, 41 and 42. Is a polarized beam splitter surface in prisms 31, 32, 5 is a rotating disk plate (diffraction grating), 63, 64, 65, 66 are mirrors, 71, 72, 73 are quarter-wave plates, 8
Is a half-wave plate, 9 is a non-polarizing beam splitter, 10 and 11 are polarizing elements (for example, polarizing plates and polarizing prisms), and S1 and S2 are light receiving elements.

光源1から射出した波長λのレーザー光束をコリメー
ターレンズ2によって平行光束にし、この平行光束をプ
リズム31に入射させてプリズム31の所定箇所に設けたミ
ラー面や偏光ビームスプリツター面41によって対称な光
路L1,L2に沿って進む2光束R1,R2に分割し、各々の光束
R1,R2をミラー63で反射せしめて1/4波長板71を通過させ
てから回転デイスク板5上に設けた格子ピツチPの放射
状回折格子の第1の点(P1)に同時に入射させる。ここ
で、回折格子で回折して点P1から射出する複数の回折光
のうち光束R1の+1次反射回折光と光束R2の−1次反射
回折光が各々元の光路L1,L2を逆進する方向に出射する
ようにあらかじめ光束R1,R2の入射角θをθ=sin-1
(λ/2P)に設定しておく。また光束R1とR2は、偏光ビ
ームスプリツター面41で分割された時点で偏光面が互い
に直交した直線偏光になっているが、1/4波長板71を往
復通過することで光束R1とR2の偏光面が入れ替わる。こ
の1/4波長板71の作用は第1図の実施例の2つの1/4波長
板7のそれと同様であり、光束R1は偏光ビームスプリツ
ター面41を透過した直線偏光(P偏光)であるから光束
R1の+1次回折光(R1+)は1/4波長板71を介してS偏
光となり、偏光ビームスプリツター面41で反射しプリズ
ム31から出射する。また光束R2は偏光ビームスプリツタ
ー面で反射した直線偏光(S偏光)であるから光束R2の
−1次回折光(R2−)は1/4波長板71を介してP偏光と
なり、偏光ビームスプリツター面41を透過しプリズム31
から光束(R1+)と重なりあって出射する。光束R1の+
1次回折光(R1+)と光束R2の−1次回折光(R2−)
は、重なりあったままプリズム3のミラー64,65により
伝送され1/2波長板8を透過してプリズム32に入射す
る。そして、プリズム32の所定箇所に設けたミラー面や
偏光ビームスプリツター面42によって光束(R1+)を光
路L3に沿って進行させ光束(R2−)を光路L4に沿って進
行させ、各々ミラー66で反射せしめて1/4波長板72を通
過させた後に回転デイスク板5上に設けた放射状回折格
子の第2の点(P2)に角度θで入射させる、ここで、
1/2波長板8は+1次回折光(R1+)の偏光面をS偏光
からP偏光に変換し、−1次回折光(R2−)の偏光面を
P偏光からS偏光に変換している。また、点P1とP2は回
転デイスク板5の回転軸0に対して対称な位置関係に設
定しておく。回折格子で反射回折して点Pより出射した
複数の反射回折光のうち、光束(R1+)の+1次再回折
光(R1++)は元の光路L3を逆進し、1/4波長板72を再
び通過してS偏光になりプリズム32内の偏光ビームスプ
リツター面42で反射されプリズム32を射出する。一方、
光束(R2−)の−1次再回折光(R2−−)は元の光路L4
を逆進し1/4波長板72を再び透過してP偏光になりプリ
ズム32内の偏光ビームスプリツター面42を透過して+1
次再回折光(R1++)と重なりあってプリズム32を出射
する。重なりあった2光束は1/4波長板73を通過するこ
とにより互いに偏光面が逆向きに回転する円偏光となる
ので、この互いに逆回りの円偏光同志が合成された光束
の偏光状態は直線偏光となる。この直線偏光光束の偏光
方位は、回転デイスク板5の回転に応じて変化する+1
次再回折光(R1++)と−1次再回折光(R2−−)の波
面の位相差によって決まり、位相差が0,π/4,2π/4,3π
/4,4π/4,5π/4,…,8π/4と変化していくあいだに直線
偏光光束の偏光方位は45゜,67.5゜,90゜,112.5゜,135
゜,157.5゜,…,225゜(45゜)と回転していく。そこ
で、この光束を非偏光ビームスプリツター9にて等光量
の2光束に分割した後、一方の光束を偏光素子10を用い
て特定の偏光成分のみを分離してとりだして受光素子S1
に入射させ、もう一方を偏光素子11を用いて特定の偏光
成分のみを分離して取り出して受光素子S2に入射させれ
ば、受光素子S1,S2からそれぞれ回転デイスク板5の回
転量に応じた周期的な信号が出力される。ここで偏光素
子10と11で取り出す偏光成分を互いに45゜ずらしておけ
ば、受光素子S1,S2に入射する干渉光の明暗変化のタイ
ミングが互いに1/4周期(出力信号の位相でπ/2)だけ
ずれる。従って、第1図の実施例同様、これらの互いに
90゜位相がずれた2相の周期信号を電気的な増幅や二値
化の処理をしてやれば、回転デイスク板5の回転角度や
回転方向を検出することができる。
A collimator lens 2 collimates a laser beam having a wavelength λ emitted from a light source 1, makes the collimated beam incident on a prism 31, and causes a symmetry by a mirror surface or a polarization beam splitter surface 41 provided at a predetermined position of the prism 31. Divided into two light beams R1 and R2 that travel along the optical paths L1 and L2,
R1 and R2 are reflected by the mirror 63 and passed through the quarter-wave plate 71, and are then simultaneously made incident on the first point (P1) of the radial diffraction grating of the grating pitch P provided on the rotating disk plate 5. Here, among the plurality of diffracted lights diffracted by the diffraction grating and emitted from the point P1, the + 1st-order reflected diffracted light of the light beam R1 and the −1st-order reflected diffracted light of the light beam R2 respectively travel backward in the original optical paths L1, L2. The incident angle θ 0 of the light fluxes R1 and R2 is previously set to θ 0 = sin −1 so as to be emitted in the direction.
Set to (λ / 2P). Further, the light fluxes R1 and R2 are linearly polarized lights whose polarization planes are orthogonal to each other at the time of being split by the polarization beam splitter surface 41, but by passing back and forth through the 1/4 wavelength plate 71, the light fluxes R1 and R2 The polarization planes are swapped. The operation of the quarter-wave plate 71 is similar to that of the two quarter-wave plates 7 of the embodiment of FIG. 1, and the light beam R1 is linearly polarized light (P-polarized light) transmitted through the polarization beam splitter surface 41. Because there is a luminous flux
The + 1st-order diffracted light (R1 +) of R1 becomes S-polarized light through the quarter-wave plate 71, is reflected by the polarization beam splitter surface 41, and is emitted from the prism 31. Further, since the light flux R2 is linearly polarized light (S-polarized light) reflected by the polarization beam splitter surface, the −1st-order diffracted light (R2-) of the light flux R2 becomes P-polarized light through the 1/4 wavelength plate 71, and the polarization beam splitter. Prism 31 through surface 41
Exits with the light flux (R1 +) overlapping. + Of light flux R1
First-order diffracted light (R1 +) and -1st-order diffracted light of light flux R2 (R2-)
Are transmitted by the mirrors 64 and 65 of the prism 3 while being overlapped with each other, pass through the half-wave plate 8 and enter the prism 32. Then, the light flux (R1 +) is caused to travel along the optical path L3 and the light flux (R2−) is caused to travel along the optical path L4 by the mirror surface or the polarization beam splitter surface 42 provided at a predetermined position of the prism 32, and each of them is reflected by the mirror 66. After being reflected and passed through the quarter-wave plate 72, it is incident on the second point (P2) of the radial diffraction grating provided on the rotating disk plate 5 at an angle θ 0 , where:
The 1/2 wavelength plate 8 converts the polarization plane of the + 1st order diffracted light (R1 +) from S polarization to P polarization, and converts the polarization plane of the -1st order diffracted light (R2-) from P polarization to S polarization. Further, the points P1 and P2 are set in a symmetrical positional relationship with respect to the rotation axis 0 of the rotating disk plate 5. Among the plurality of reflected diffracted lights reflected and diffracted by the diffraction grating and emitted from the point P, the + 1st-order re-diffracted light (R1 ++) of the light flux (R1 +) travels backward in the original optical path L3 and the It passes again and becomes S-polarized light, which is reflected by the polarized beam splitter surface 42 in the prism 32 and exits the prism 32. on the other hand,
The -1st order re-diffracted light (R2−−) of the luminous flux (R2−) is the original optical path L4.
In the reverse direction to pass through the quarter-wave plate 72 again to become P-polarized light and pass through the polarization beam splitter surface 42 in the prism 32,
The second re-diffracted light (R1 ++) overlaps and exits the prism 32. The two overlapping light fluxes become circularly polarized light whose polarization planes rotate in opposite directions by passing through the quarter-wave plate 73. Therefore, the polarization states of the light fluxes obtained by combining the mutually opposite circularly polarized light rays are linear. It becomes polarized light. The polarization azimuth of this linearly polarized light flux changes according to the rotation of the rotating disk plate +1.
It is determined by the phase difference between the wavefronts of the second-order diffracted light (R1 ++) and the -1st-order diffracted light (R2--), and the phase difference is 0, π / 4,2π / 4,3π.
While changing to /4,4π/4,5π/4,...,8π/4, the polarization direction of the linearly polarized light beam is 45 °, 67.5 °, 90 °, 112.5 °, 135
It rotates at ゜, 157.5 ゜,…, 225 ゜ (45 ゜). Therefore, after splitting this light flux into two light fluxes of equal light quantity by the non-polarization beam splitter 9, one of the light fluxes is separated by using the polarization element 10 and only a specific polarization component is taken out to obtain the light receiving element S1.
To the light-receiving element S2 by separating only a specific polarization component from the light-receiving element S2 by using the polarizing element 11 and separating the other into the light-receiving element S2. A periodic signal is output. Here, if the polarization components extracted by the polarization elements 10 and 11 are shifted from each other by 45 °, the timing of the light / dark change of the interference light entering the light receiving elements S1 and S2 becomes 1/4 cycle (π / 2 in the phase of the output signal). ). Therefore, as in the embodiment of FIG.
If the two-phase periodic signals that are 90 ° out of phase are electrically amplified or binarized, the rotation angle and the rotation direction of the rotary disk plate 5 can be detected.

本ロータリーエンコーダーにおいても、回転デイスク
板5の放射状回折格子のピツチが光源1からの光束の波
長λと等しくなったとしても、光束R1及びR2の点P1及び
P2に対する入射角を30゜程度にすることができ、また、
±1次回折光及び±1次再回折光の射出角も30゜程度に
することができる。従って、光学系の配置に制約を受け
ることなく高分解能なエンコーダーを作成することが可
能である。
Even in this rotary encoder, even if the pitch of the radial diffraction grating of the rotating disk plate 5 becomes equal to the wavelength λ of the light beam from the light source 1, the points P1 and R2 of the light beams R1 and R2
The incident angle with respect to P2 can be about 30 °, and
The exit angles of the ± 1st-order diffracted light and the ± 1st-order diffracted light can be set to about 30 °. Therefore, it is possible to create a high-resolution encoder without being restricted by the arrangement of the optical system.

更に、本ロータリーエンコーダーは光束R1及びR2を回
転デイスク板5上に互いに対称な点P1,P2で回折させて
いるので、回転デイスク板5の回転中心0と放射状回折
格子の中心(放射中心)の偏心の影響を軽減させた、高
精度の回転状態の検出を達成している。
Further, since the rotary encoder diffracts the light beams R1 and R2 on the rotating disk plate 5 at points P1 and P2 which are symmetrical to each other, the rotation center 0 of the rotating disk plate 5 and the center (radiation center) of the radial diffraction grating are Achieves highly accurate detection of the rotational state with reduced influence of eccentricity.

また、プリズム31からプリズム32へ伝送される±1次
回折光の光路がほぼ共通であるため、周囲の温度変動に
より互いに光路長差が大きく生じることがなく、極めて
安定した検出が行なえる。
Moreover, since the optical paths of the ± 1st-order diffracted lights transmitted from the prism 31 to the prism 32 are almost common, the optical path length difference does not largely occur due to the ambient temperature fluctuation, and extremely stable detection can be performed.

以上の実施例の説明で回折光の次数として+1次や−
1次を用いているが、本願では、±符号は第5図
(A),(B)に示すように、回折格子5の移動方向と
光束の進行方向がずらされる方向が一致するほうを+、
それと逆の場合を−としている因みに、第5図(A)は
第6図の従来例における入射光と回折光の状態を模式的
に表わしており、第5図(B)は第1図の第1実施例に
おける入射光(R2)と回折光の状態を表わしている。両
図を比較すると明らかな通り、従来例では入射光の光路
とは全くはずれた光路に向かって射出する±1次回折光
を用いているのに対し、本発明では入射光の光路とほぼ
同一(同一或はその近くの光路)の光路に向かって射出
する−1次回折光を用いている。このような形にするこ
とで前述した効果を生むのである。上記各実施例のエン
コーダーで用いた回折光の次数1はあくまでも一例であ
って2次でもそれ以上でもよいことは言うまでもない。
また、上記各実施例で2次以上の回折光を用いれば更に
分解能を高めた変位の検出が可能になる。このようなこ
とは後述する他の実施例に対しても当てはまる。
In the above description of the embodiment, as the orders of diffracted light, + 1st order and −
Although the first order is used, in the present application, the ± sign indicates that the moving direction of the diffraction grating 5 and the direction in which the traveling direction of the light beam are displaced are the same as + as shown in FIGS. 5 (A) and 5 (B). ,
5 (A) schematically shows the states of incident light and diffracted light in the conventional example of FIG. 6, and FIG. 5 (B) of FIG. The state of the incident light (R2) and the diffracted light in the first embodiment is shown. As is clear from a comparison between the two figures, in the conventional example, ± 1st order diffracted light emitted toward an optical path that is completely deviated from the optical path of the incident light is used, whereas in the present invention, it is almost the same as the optical path of the incident light ( The −1st order diffracted light emitted toward the optical path of the same or a near optical path is used. With such a shape, the above-mentioned effects are produced. It goes without saying that the order 1 of the diffracted light used in the encoder of each of the above embodiments is merely an example and may be second order or higher.
In addition, in each of the above-described embodiments, if the diffracted light of the second or higher order is used, it is possible to detect the displacement with a higher resolution. This also applies to other embodiments described later.

本発明では、干渉光を形成する回折光として反射回折
光を用いる。従って、回折格子としては反射率の高いも
のが有用である。上記各実施例で用いた回折格子はガラ
ス基板上にクロム等から成る光反射部を周期的に並べ
た、所謂振幅型回折格子であるが、ガラスやプラスチツ
クなどに周期的な溝を形成して凹凸部にAl等に反射膜を
施した、所謂位相型回折格子を使用しても良い。この位
相型回折格子は量産性に優れ、また±1次回折光の回折
効率を上げることができるので、本発明のエンコーダー
に好適である。
In the present invention, reflected diffracted light is used as the diffracted light that forms the interference light. Therefore, a diffraction grating having a high reflectance is useful. The diffraction grating used in each of the above examples is a so-called amplitude type diffraction grating in which light reflecting portions made of chrome or the like are periodically arranged on a glass substrate, but a periodic groove is formed in glass or plastic. It is also possible to use a so-called phase type diffraction grating in which a reflection film of Al or the like is applied to the uneven portion. This phase type diffraction grating is suitable for the encoder of the present invention because it is excellent in mass productivity and can increase the diffraction efficiency of ± first-order diffracted light.

第3図及び第4図は各々第1及び第2図の実施例の光
学系の光路を一部変更したものである。
FIGS. 3 and 4 are obtained by partially changing the optical paths of the optical systems of the embodiments of FIGS. 1 and 2, respectively.

第3図は、回折格子5に入射する光束R1,R2の入射角
を第1図の場合からわずかに変えて往路の光路(L1,L
2)と復路の光路(L5,L6)をわずかにずらしたもので、
基本構造は第1図の光学系と等しい。第1図において点
P1から射出した光束R1の+1次反射回折光と光束R2の正
反射光(零次回折光)は同一光路L1を進行し、互いに偏
光面の違によって偏光ビームスプリツター4で光束R1の
+1次回折光のみ反射されるはずであるが、光学部品の
不完全さによっては、光束R2の正反射光も偏光ビームス
プリツター4でわずかに反射され受光素子S1,S2側へ導
びかれ、ゴースト光(ノイズ)になってしまう。また、
光束R1の正反射光(零次回折光)が−1次反射回折光の
光路L2を経て偏光ビームスプリツター4をわずかでも透
過すると同様にゴースト光になってしまう。そこで第3
図でL1,L2,L5,L6に示すように光路を設定しておけば、
上記のゴースト光の光路と干渉光を形成する所望の回折
光の光路が互いにずれるので、ゴースト光の受光素子S
1,S2への入射を免れることができる。
FIG. 3 shows that the incident angles of the light beams R1 and R2 incident on the diffraction grating 5 are slightly changed from the case of FIG.
2) and the return optical path (L5, L6) are slightly shifted,
The basic structure is the same as that of the optical system shown in FIG. Points in Figure 1
The + 1st-order diffracted light of the light beam R1 and the specularly-reflected light (zero-order diffracted light) of the light beam R2 emitted from P1 travels in the same optical path L1 and the + 1st-order diffracted light of the light beam R1 is generated by the polarization beam splitter 4 due to the difference in polarization planes. Although it should be reflected only, the specularly reflected light of the luminous flux R2 is slightly reflected by the polarization beam splitter 4 and guided to the light receiving elements S1 and S2 depending on the imperfections of the optical components, and the ghost light (noise) )Become. Also,
Even if the specularly reflected light (zero-order diffracted light) of the light flux R1 passes through the polarized beam splitter 4 through the optical path L2 of the −1st-order reflected diffracted light, it becomes a ghost light as well. So the third
If you set the optical path as shown by L1, L2, L5, L6 in the figure,
Since the optical path of the ghost light and the optical path of the desired diffracted light forming the interference light are deviated from each other, the ghost light receiving element S
It is possible to avoid the incidence on 1, S2.

第4図は回転デイスク板5に入射する光束R1,R2の入
射角を第2図の場合からわずかに変えて往路の光路(L
1,L2,L3,L4)と復路の光路(L5,L6,L7,L8)をわずかに
ずらしたもので、基本的には第2図のエンコーダーと全
く同じ光学部品を使用できる。第2図において点P1から
射出した光束R1の+1次回折光(R1+)と光束R2の正反
射光(零次回折光)は同一光路L1を進行し、偏光ビーム
スプリツター面41にて互いの偏光面の違いによって光束
R1の+1次回折光(R1+)のみ反射されるはずである
が、光学部品の不完全さによっては、光束R2の正反射光
の一部も偏光ビームスプリツター面41で反射され伝送さ
れてしまうので上述の通りゴースト光(ノイズ)が発生
することがある。光束R1の正反射光(零次回折光)、点
P2から射出する光束(R1+)の正反射光(零次再回折
光)、及び光束(R2−)の正反射光(零次再回折光)も
同様である。ところが、第4図でL1,L2,L5,L6,L3,L4,L
7,L8に示すように光路を設定しておけば上記のゴースト
光の光路が干渉光を形成する回折光の光路からずれるの
で、ゴースト光の受光素子S1,S2への入射を免れること
ができる。
In FIG. 4, the incident angles of the light beams R1 and R2 incident on the rotating disk plate 5 are slightly changed from those in the case of FIG.
1, L2, L3, L4) and the optical path of the return path (L5, L6, L7, L8) are slightly shifted, and basically the same optical parts as the encoder of Fig. 2 can be used. In FIG. 2, the + 1st-order diffracted light (R1 +) of the light beam R1 and the specularly reflected light (zero-order diffracted light) of the light beam R2 emitted from the point P1 travels on the same optical path L1, and the polarization planes of the polarization beam splitter surface 41 are mutually polarized. Luminous flux by the difference of
Only the + 1st order diffracted light (R1 +) of R1 should be reflected, but part of the specularly reflected light of the light flux R2 is also reflected and transmitted by the polarized beam splitter surface 41 depending on the imperfections of the optical components. As described above, ghost light (noise) may occur. Specular reflection light (zero-order diffracted light) of light flux R1, point
The same applies to the regular reflection light (zero-order re-diffracted light) of the light flux (R1 +) emitted from P2 and the regular reflection light (zero-order re-diffraction light) of the light flux (R2-). However, in Figure 4, L1, L2, L5, L6, L3, L4, L
If the optical path is set as shown at 7, L8, the optical path of the ghost light deviates from the optical path of the diffracted light that forms the interference light, so that the ghost light can be prevented from entering the light receiving elements S1 and S2. .

〔発明の効果〕〔The invention's effect〕

以上説明したように、回折格子に入射させる2つの光
束の入射角を適切に設定して、所望の回折光を実質的に
元の光路(入射時の光路)に戻すことで、回折格子の格
子ピツチが光の波長オーダーになっても干渉光を形成す
るための回折光を容易に取り出すことができる。従っ
て、高精度、高分解能なエンコーダーが実現される。更
に、回折格子に光束を導く光学部品と回折格子から生じ
た所望の回折光を取り出す光学部品を共用できるので、
回折格子の読み取り光学系が非常に簡単かつ小型にまと
まるといった効果がある。
As described above, by appropriately setting the incident angles of the two light beams incident on the diffraction grating and substantially returning the desired diffracted light to the original optical path (optical path at the time of incidence), the grating of the diffraction grating Even if the pitch is on the order of the wavelength of light, the diffracted light for forming the interference light can be easily extracted. Therefore, a highly accurate and high resolution encoder is realized. Furthermore, since the optical component that guides the light beam to the diffraction grating and the optical component that extracts the desired diffracted light generated from the diffraction grating can be shared,
The reading optical system of the diffraction grating is very simple and compact.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す概略図。第2図は本発
明のロータリーエンコーダーへ適応した第2実施例を示
す斜視図。第3図及び第4図は各々第1図及び第2図の
実施例の変形例を示す図。第5図(A),(B)は回折
光の回折次数の符号を説明するための説明図。第6図は
回折光の干渉を利用した従来のエンコーダーを示す説明
図。 1……光源 2……コリメーターレンズ 3,31,32……プリズム 4……偏光ビームスプリツター 41,42……偏光ビームスプリツター面 5……回折格子または回転デイスク板 61,62,63,64,65,66……ミラー 7,71,72,73……1/4波長板 8……1/2波長板 9……非偏光ビームスプリツター 10,11……偏光素子 S1,S2……受光素子
FIG. 1 is a schematic diagram showing one embodiment of the present invention. FIG. 2 is a perspective view showing a second embodiment adapted to the rotary encoder of the present invention. FIGS. 3 and 4 are views showing modified examples of the embodiment of FIGS. 1 and 2, respectively. FIGS. 5A and 5B are explanatory views for explaining the signs of the diffraction orders of diffracted light. FIG. 6 is an explanatory view showing a conventional encoder utilizing interference of diffracted light. 1 ...... Light source 2 ...... Collimator lens 3, 31, 32 ...... Prism 4 ...... Polarization beam splitter 41, 42 …… Polarization beam splitter surface 5 …… Diffraction grating or rotating disk plate 61, 62, 63, 64,65,66 …… Mirror 7,71,72,73 …… 1/4 wave plate 8 …… 1/2 wave plate 9 …… Non-polarized beam splitter 10,11 …… Polarizing element S1, S2 …… Light receiving element

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光束R1と光束R2を回折格子に入射せしめ、
該光束R1が該回折格子で反射回折されて生じる第1回折
光と該光束R2が該回折格子で反射回折されて生じる第2
回折光とを干渉させて干渉光を形成し、該干渉光を光電
変換することにより該光束R1及びR2と該回折格子の相対
的な変位を検出するエンコーダーにおいて、該光束R1
該回折格子に入射する時の光路とほぼ同じ光路へ向かっ
て該第1回折光が射出し、該光束R2が該回折格子に入射
する時の光路とほぼ同じ光路に向かって該第2回折光が
射出するよう該光束R1及びR2を該回折格子に入射せしめ
る光学手段を有することを特徴とするエンコーダー。
1. A light beam R 1 and a light beam R 2 are made incident on a diffraction grating,
The first diffracted light produced by the light beam R 1 being reflected and diffracted by the diffraction grating and the second diffracted light produced by the light beam R 2 being reflected and diffracted by the diffraction grating.
In the encoder that detects the relative displacement of the light beams R 1 and R 2 and the diffraction grating by photoelectrically converting the interference light by forming interference light by interfering with the diffracted light, the light beam R 1 is The first diffracted light is emitted toward an optical path that is substantially the same as the optical path when entering the diffraction grating, and the second diffracted light is directed toward an optical path that is substantially the same as the optical path when the light beam R 2 enters the diffraction grating. An encoder having optical means for causing the light beams R 1 and R 2 to enter the diffraction grating so that the light beam is emitted.
【請求項2】前記光束R1及びR2の波長をλ、前記回折格
子の格子ピツチをPとする時、前記光学手段が、前記光
束R1及びR2をθ=sin-1(λ/2P)なる入射角θで前
記回折格子に入射せしめることを特徴とする特許請求の
範囲第(1)項記載のエンコーダー。
2. When the wavelengths of the light beams R 1 and R 2 are λ, and the grating pitch of the diffraction grating is P, the optical means outputs the light beams R 1 and R 2 by θ 0 = sin −1 (λ The encoder according to claim (1), wherein the encoder is incident on the diffraction grating at an incident angle θ 0 of / 2P).
【請求項3】前記光束R1及びR2の波長をλ,前記回折格
子の格子ピツチをPとする時、前記光学手段が、前記光
束R1及びR2をθ=sin-1(λ/2P)なる入射角θとは
異なる入射角で前記回折格子に入射せしめることを特徴
とする特許請求の範囲第(1)項記載のエンコーダー。
3. When the wavelengths of the light beams R 1 and R 2 are λ, and the grating pitch of the diffraction grating is P, the optical means outputs the light beams R 1 and R 2 by θ 0 = sin −1 (λ The encoder according to claim (1), wherein the encoder is made to enter the diffraction grating at an incident angle different from an incident angle θ 0 of / 2P).
【請求項4】前記光学手段が、レーザーと該レーザーか
らのレーザー光を前記光束R1と前記光束R2とに分割する
ビームスプリツターと該ビームスプリツターからの前記
光束R1を反射して前記回折格子に向ける第1反射鏡と該
ビームスプリツターからの前記光束R2を反射して前記回
折格子に向ける第2反射鏡とを有し、前記第1回折光が
該第1反射鏡を介して該ビームスプリツターに向けら
れ、前記第2回折光が該第2反射鏡を介して該ビームス
プリツターに向けられ、該ビームスプリツターで前記第
1及び第2回折光の光路が重畳せしめられることを特徴
とする特許請求の範囲第(1)項記載のエンコーダ。
4. The optical means reflects a laser and a beam splitter for splitting a laser beam from the laser into the light beam R 1 and the light beam R 2 and the light beam R 1 from the beam splitter. It has a first reflecting mirror for directing to the diffraction grating and a second reflecting mirror for reflecting the luminous flux R 2 from the beam splitter and directing it toward the diffraction grating, and the first diffracted light is reflected by the first reflecting mirror. Is directed to the beam splitter, the second diffracted light is directed to the beam splitter via the second reflecting mirror, and the beam splitter causes the optical paths of the first and second diffracted lights to overlap with each other. The encoder according to claim (1), characterized in that:
【請求項5】光束R1と光束R2を回折格子に入射せしめ、
該光束R1が該回折格子で反射回折されて生じる第1回折
光と該光束R2が該回折格子で反射回折されて生じる第2
回折光とを干渉させて干渉光を形成し、該干渉光を光電
変換することにより該光束R1及びR2と該回折格子の相対
的な検出を測定するエンコーダーにおいて、該回折格子
を回転物体の円周上に形成し、該光束R1が該回折格子に
入射する時の光路とほぼ同じ光路へ向かって該第1回折
光が射出し、該光束R2が該回折格子に入射する時の光路
とほぼ同じ光路に向かって該第2回折光が射出するよう
該光束R1及びR2を該回折格子上の点P1に入射せしめる第
1光学手段と、該第1回折光が該回折格子に入射する時
の光路とほぼ光路へ向かって第1再回折光が射出し、該
第2回折光が該回折格子に入射する時の光路とほぼ同じ
光路へ向かって第2再回折光が射出するよう該第1及び
第2回折光を該回転物体の回転中心に関して該点P1と略
対称な位置にある該回折格子上の点P2に入射させて反射
回折せしめる第2光学手段とを有し、該第1及び第2再
回折光を干渉させて干渉光を形成し、該干渉光を光電変
換することにより前記回転物体の回転状態を検出するこ
とを特徴とするエンコーダー。
5. A light beam R 1 and a light beam R 2 are made incident on a diffraction grating,
The first diffracted light produced by the light beam R 1 being reflected and diffracted by the diffraction grating and the second diffracted light produced by the light beam R 2 being reflected and diffracted by the diffraction grating.
In the encoder for measuring the relative detection of the light fluxes R 1 and R 2 and the diffraction grating by photoelectrically converting the interference light by interfering with the diffracted light, the diffraction grating is rotated. When the first diffracted light is emitted toward the optical path substantially the same as the optical path when the light beam R 1 enters the diffraction grating and the light beam R 2 enters the diffraction grating. The first diffracted light and the first optical means for making the light beams R 1 and R 2 incident on the point P 1 on the diffraction grating so that the second diffracted light is emitted toward the almost same optical path as The first re-diffracted light is emitted toward almost the optical path when entering the diffraction grating, and the second re-diffracted light is directed toward the almost same optical path as when the second diffracted light enters the diffraction grating. in the point P 1 and substantially symmetrical positions with respect but the rotation center of the rotating object a first and second diffracted light to exit A point on the diffraction grating is incident on P 2 and a second optical means allowed to reflection diffraction, by interfering the first and second re-diffracted light interference light formed by, for photoelectrically converting the interference light that An encoder for detecting the rotation state of the rotating object by means of.
JP12004689A 1989-05-12 1989-05-12 encoder Expired - Fee Related JP2683098B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP12004689A JP2683098B2 (en) 1989-05-12 1989-05-12 encoder
US07/522,051 US5146085A (en) 1989-05-12 1990-05-11 Encoder with high resolving power and accuracy
EP90108932A EP0397202B1 (en) 1989-05-12 1990-05-11 Encoder
DE69011188T DE69011188T2 (en) 1989-05-12 1990-05-11 Encoder.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12004689A JP2683098B2 (en) 1989-05-12 1989-05-12 encoder

Publications (2)

Publication Number Publication Date
JPH02298816A JPH02298816A (en) 1990-12-11
JP2683098B2 true JP2683098B2 (en) 1997-11-26

Family

ID=14776556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12004689A Expired - Fee Related JP2683098B2 (en) 1989-05-12 1989-05-12 encoder

Country Status (1)

Country Link
JP (1) JP2683098B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5862857B2 (en) * 2011-07-15 2016-02-16 株式会社ニコン Encoder device, optical device, and exposure device
KR101521146B1 (en) * 2011-11-09 2015-05-18 지고 코포레이션 Double pass interferometric encoder system

Also Published As

Publication number Publication date
JPH02298816A (en) 1990-12-11

Similar Documents

Publication Publication Date Title
JP2603305B2 (en) Displacement measuring device
JP2586120B2 (en) encoder
JPH056853B2 (en)
JP3495783B2 (en) Encoder
US5000542A (en) Optical type encoder
JP2683117B2 (en) encoder
JPH0778433B2 (en) Rotary encoder
US5017777A (en) Diffracted beam encoder
JPH05157583A (en) Rotary encoder
JP2683098B2 (en) encoder
JPS62200225A (en) Rotary encoder
JP3247791B2 (en) Encoder device
JP2003097975A (en) Origin detecting device for rotary encoder and measurement device for rotation information
JPH04130220A (en) Encoder
JP2600888B2 (en) Encoder
JP2774568B2 (en) Rotary encoder
JP2003035570A (en) Diffraction interference type linear scale
JPH02298804A (en) Interferometer
JPH07117426B2 (en) Optical encoder
JP3728310B2 (en) Encoder
JPS62200226A (en) Rotary encoder
JPH07119623B2 (en) Displacement measuring device
JPH045142B2 (en)
JP3517506B2 (en) Optical displacement measuring device
JP2629606B2 (en) encoder

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070808

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20080808

LAPS Cancellation because of no payment of annual fees