[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5235554B2 - Optical displacement measuring device - Google Patents

Optical displacement measuring device Download PDF

Info

Publication number
JP5235554B2
JP5235554B2 JP2008200133A JP2008200133A JP5235554B2 JP 5235554 B2 JP5235554 B2 JP 5235554B2 JP 2008200133 A JP2008200133 A JP 2008200133A JP 2008200133 A JP2008200133 A JP 2008200133A JP 5235554 B2 JP5235554 B2 JP 5235554B2
Authority
JP
Japan
Prior art keywords
light
diffraction grating
diffracted
optical
coherent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008200133A
Other languages
Japanese (ja)
Other versions
JP2010038654A (en
Inventor
正人 今
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DMG Mori Co Ltd
Original Assignee
DMG Mori Co Ltd
Mori Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DMG Mori Co Ltd, Mori Seiki Co Ltd filed Critical DMG Mori Co Ltd
Priority to JP2008200133A priority Critical patent/JP5235554B2/en
Publication of JP2010038654A publication Critical patent/JP2010038654A/en
Application granted granted Critical
Publication of JP5235554B2 publication Critical patent/JP5235554B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Description

本発明は、工作機械や半導体製造装置等の可動部分の相対移動位置を検出する光学式変位測定装置に関する。詳しくは、回折格子で回折された2つの回折光を再度回折格子に照射する反射光学系で、反射光を入射した光軸の方向に戻すコーナーキューブプリズムが配列されるマイクロコーナーキューブプリズム集合ミラーを備えることで、スケール部に異物等が付着した際の光量低下を抑えるものである。   The present invention relates to an optical displacement measuring device that detects a relative movement position of a movable part such as a machine tool or a semiconductor manufacturing apparatus. Specifically, a micro-corner cube prism assembly mirror in which corner cube prisms are arranged in a reflective optical system that irradiates the diffraction grating again with two diffracted lights diffracted by the diffraction grating and returns the reflected light in the direction of the optical axis on which the reflected light is incident. By providing, it suppresses the light quantity fall when a foreign material etc. adhere to a scale part.

従来から、工作機械や半導体製造装置等の可動部分の相対移動位置を検出する装置として、回折格子を用いた光学式の変位測定装置が知られている(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, an optical displacement measuring apparatus using a diffraction grating is known as an apparatus for detecting the relative movement position of a movable part such as a machine tool or a semiconductor manufacturing apparatus (see, for example, Patent Document 1).

図10は、従来の光学式変位測定装置の一例を示す構成図である。従来の光学式変位測定装置200は、可干渉光源201から出射された可干渉光Laがレンズ202で集光され、偏光ビームスプリッタ203で2つの可干渉光La1,La2に分割され、回折格子204に照射される。回折格子204に照射された2つの可干渉光は、回折格子204で回折されて2つの1回回折光Lb1,Lb2が生じる。2つの1回回折光Lb1,Lb2は、平面ミラー205a及び1/4波長板205bを有した反射光学系205で反射されて同じ光路を戻り、偏光方向が変換されて回折格子204に再度照射される。   FIG. 10 is a block diagram showing an example of a conventional optical displacement measuring device. In the conventional optical displacement measuring apparatus 200, the coherent light La emitted from the coherent light source 201 is collected by the lens 202, divided into two coherent lights La1 and La2 by the polarization beam splitter 203, and the diffraction grating 204. Is irradiated. The two coherent lights irradiated on the diffraction grating 204 are diffracted by the diffraction grating 204 to generate two one-time diffracted lights Lb1 and Lb2. The two one-time diffracted beams Lb1 and Lb2 are reflected by the reflection optical system 205 having the plane mirror 205a and the quarter wavelength plate 205b, return the same optical path, the polarization direction is changed, and the diffraction grating 204 is irradiated again. The

回折格子204に照射された2つの1回回折光Lb1,Lb2は、回折格子204で回折されて2つの2回回折光Lc1,Lc2が生じる。2つの2回回折光Lc1,Lc2は、2つの可干渉光La1,La2と同じ光路を戻って偏光ビームスプリッタ203に入射される。偏光ビームスプリッタ203に入射した2つの2回回折光Lc1,Lc2は、偏光ビームスプリッタ203で重ね合わされ、2つの2回回折光Lc1,Lc2を干渉させた干渉光Ldが、受光部206で受光される。   The two one-time diffracted beams Lb1 and Lb2 irradiated on the diffraction grating 204 are diffracted by the diffraction grating 204 to generate two two-time diffracted beams Lc1 and Lc2. The two two-time diffracted beams Lc1 and Lc2 return to the same optical path as the two coherent beams La1 and La2, and enter the polarization beam splitter 203. The two two-time diffracted lights Lc1 and Lc2 incident on the polarization beam splitter 203 are superimposed on each other by the polarization beam splitter 203, and the interference light Ld obtained by causing the two two-time diffracted lights Lc1 and Lc2 to interfere with each other is received by the light receiving unit 206. The

このような構成の光学式変位測定装置200では、可動部分の移動に応じて回折格子204が格子ベクトル方向に移動することにより、2つの2回回折光に位相差が生じる。光学式変位測定装置200では、2つの2回回折光を干渉させて干渉信号を検出し、干渉信号から2つの2回回折光の位相差を求めて、回折格子の移動位置を検出する。   In the optical displacement measuring apparatus 200 having such a configuration, the diffraction grating 204 moves in the grating vector direction in accordance with the movement of the movable part, thereby causing a phase difference between the two twice-diffracted lights. In the optical displacement measuring apparatus 200, two two-time diffracted lights are caused to interfere with each other, an interference signal is detected, a phase difference between the two two-time diffracted lights is obtained from the interference signal, and a moving position of the diffraction grating is detected.

従来の光学式変位測定装置200では、反射光学系205が平面ミラー205aで構成される。また、2つの可干渉光がそれぞれ平面ミラー205aの表面に焦点を結ぶように光学系が構成されていた。   In the conventional optical displacement measuring apparatus 200, the reflection optical system 205 is constituted by a plane mirror 205a. Further, the optical system is configured so that the two coherent lights are focused on the surface of the plane mirror 205a.

上述した課題を解決するため、本発明は、照射された光を回折する回折格子を有し、回折格子の格子ベクトル方向に相対移動するスケール部と、可干渉光を出射する発光部と、発光部により出射された可干渉光を2つの可干渉光に分割して、スケール部の回折格子に各可干渉光を照射し、2つの1回回折光を生じさせると共に、2つの1回回折光を回折格子により回折させて生じさせた2つの2回回折光を干渉させる照射受光光学系と、2つの可干渉光を回折格子により回折させて生じさせた2つの1回回折光をそれぞれ反射して、回折格子に2つの1回回折光を照射する反射光学系と、照射受光光学系により2つの2回回折光を干渉させた干渉光を受光して干渉信号を検出する受光部とを備え、反射光学系は、直角を3つ合成した頂点を持つ三角錐のプリズムで構成されるコーナーキューブプリズムが、縦横に並べて配列されるマイクロコーナーキューブプリズム集合ミラーを有し、入射光を反射して前記入射光の光軸の方向に戻し、反射光学系の各コーナーキューブプリズムは、スケール部に付着する可能性のある異物と同等程度の大きさである光学式変位測定装置である。 In order to solve the above-described problem, the present invention has a diffraction grating that diffracts irradiated light, a scale section that relatively moves in the grating vector direction of the diffraction grating, a light emitting section that emits coherent light, and light emission The coherent light emitted by the unit is divided into two coherent lights, and each coherent light is irradiated to the diffraction grating of the scale unit to generate two one-time diffracted lights and two one-time diffracted lights Irradiates and receives two diffracted lights generated by diffracting the light by a diffraction grating and reflects two one-time diffracted lights generated by diffracting two coherent lights by the diffraction grating. A reflection optical system that irradiates the diffraction grating with two one-time diffracted lights, and a light receiving unit that receives the interference light obtained by interfering the two two-time diffracted lights with the irradiation light-receiving optical system and detects an interference signal. The reflective optical system has a vertex that combines three right angles. Cube-corner prisms formed of triangular pyramid prism has a micro-corner cube prisms collectively mirrors arranged side by side in rows and columns, to return in the direction of the optical axis of the incident light and reflects the incident light, the reflecting optical system Each of the corner cube prisms is an optical displacement measuring device having a size equivalent to a foreign substance that may adhere to the scale portion .

図11及び図12は、従来の光学式変位測定装置の課題を示す動作説明図である。従来の光学式変位測定装置200では、偏光ビームスプリッタ203で分割された光路を往路と帰路で同一として、回折格子204で回折された回折光を偏光ビームスプリッタ203に戻し、干渉光を生成している。このため、反射光学系205で平面ミラー205aを使用すると、平面ミラー205aの取り付け角度がずれると、図11に二点鎖線で示すように光が戻らない。また、平面ミラー205aの取り付け位置が光軸に沿ってずれると焦点位置が変化してしまう。これにより、平面ミラーの取り付けに際しては、微妙な角度及び位置調整が必要となる。   FIG. 11 and FIG. 12 are operation explanatory views showing the problems of the conventional optical displacement measuring device. In the conventional optical displacement measuring apparatus 200, the optical path divided by the polarization beam splitter 203 is the same for the forward path and the return path, and the diffracted light diffracted by the diffraction grating 204 is returned to the polarization beam splitter 203 to generate interference light. Yes. For this reason, when the plane mirror 205a is used in the reflection optical system 205, if the mounting angle of the plane mirror 205a is shifted, light does not return as shown by a two-dot chain line in FIG. Further, if the mounting position of the flat mirror 205a is shifted along the optical axis, the focal position changes. Thereby, when attaching a plane mirror, a delicate angle and position adjustment are required.

また、従来の光学式変位測定装置200では、反射光学系205が平面ミラー205aで構成され、可干渉光が平面ミラー205aの表面に焦点を結ぶように光学系が構成されている。このように焦点を結ぶ光学系の光路では、入射光と反射光は反転することになる。このため、回折格子204に付着した異物D等の影響は、回折格子204への入射時に受ける光の照射領域のものと、平面ミラー205aで反射してから受ける光の照射領域のものがある。これにより、受光部206で検出される光量は、一概に異物等の大きさに対して約2倍の影響を受けることになり、回折格子204に異物等が付着すると、取得できる光量が低下する。   Further, in the conventional optical displacement measuring apparatus 200, the reflection optical system 205 is configured by the plane mirror 205a, and the optical system is configured such that the coherent light is focused on the surface of the plane mirror 205a. In the optical path of the optical system that focuses in this way, the incident light and the reflected light are inverted. For this reason, the influence of the foreign matter D or the like adhering to the diffraction grating 204 includes an irradiation area of light received when entering the diffraction grating 204 and an irradiation area of light received after being reflected by the flat mirror 205a. As a result, the amount of light detected by the light receiving unit 206 is generally about twice as large as the size of foreign matter, and the amount of light that can be acquired decreases when foreign matter or the like adheres to the diffraction grating 204. .

本発明は、このような課題を解決するためになされたもので、光学系の組み立て調整が容易で、かつ、スケール部に異物等が付着した際の光量低下を抑えることが可能な光学式変位測定装置を提供することを目的とする。   The present invention has been made in order to solve such problems, and is an optical displacement that is easy to assemble and adjust the optical system and that can suppress a decrease in light quantity when foreign matter or the like adheres to the scale portion. It aims at providing a measuring device.

上述した課題を解決するため、本発明は、照射された光を回折する回折格子を有し、回折格子の格子ベクトル方向に相対移動するスケール部と、可干渉光を出射する発光部と、発光部により出射された可干渉光を2つの可干渉光に分割して、スケール部の回折格子に各可干渉光を照射し、2つの1回回折光を生じさせると共に、2つの1回回折光を回折格子により回折させて生じさせた2つの2回回折光を干渉させる照射受光光学系と、2つの可干渉光を回折格子により回折させて生じさせた2つの1回回折光をそれぞれ反射して、回折格子に2つの1回回折光を照射する反射光学系と、照射受光光学系により2つの2回回折光を干渉させた干渉光を受光して干渉信号を検出する受光部とを備え、反射光学系は、直角を3つ合成した頂点を持つ三角錐のプリズムで構成されるコーナーキューブプリズムが、縦横に並べて配列されるマイクロコーナーキューブプリズム集合ミラーを有し、入射光を反射して前記入射光の光軸の方向に戻し、照射受光光学系は、発光部から光源固有の放射角で出射された可干渉光を、ビーム径が広がる所定の放射角に絞って回折格子に照射する光学素子を備える光学式変位測定装置である。 In order to solve the above-described problem, the present invention has a diffraction grating that diffracts irradiated light, a scale section that relatively moves in the grating vector direction of the diffraction grating, a light emitting section that emits coherent light, and light emission The coherent light emitted by the unit is divided into two coherent lights, and each coherent light is irradiated to the diffraction grating of the scale unit to generate two one-time diffracted lights and two one-time diffracted lights Irradiates and receives two diffracted lights generated by diffracting the light by a diffraction grating and reflects two one-time diffracted lights generated by diffracting two coherent lights by the diffraction grating. A reflection optical system that irradiates the diffraction grating with two one-time diffracted lights, and a light receiving unit that receives the interference light obtained by interfering the two two-time diffracted lights with the irradiation light-receiving optical system and detects an interference signal. The reflective optical system has a vertex that combines three right angles. Cube-corner prisms formed of triangular pyramid prism has a micro-corner cube prisms collectively mirrors arranged side by side vertically and horizontally reflects the incident light back in the direction of the optical axis of the incident light, irradiated light receiving optical system Is an optical displacement measuring device including an optical element that irradiates a diffraction grating with coherent light emitted from a light emitting unit at a radiation angle unique to a light source, with a narrowed radiation angle with a wide beam diameter .

本発明の光学式変位測定装置では、発光部から出射された可干渉光が2分割され、スケール部の回折格子に照射される。回折格子で回折された2つの1回回折光は、それぞれマイクロコーナーキューブプリズム集合ミラーで反射され、再度回折格子に照射される。回折格子で回折された2つの2回回折光は、照射受光光学系で重ね合わされ、干渉光が得られる。   In the optical displacement measuring device of the present invention, the coherent light emitted from the light emitting unit is divided into two and irradiated to the diffraction grating of the scale unit. The two one-time diffracted lights diffracted by the diffraction grating are respectively reflected by the micro corner cube prism assembly mirror, and again irradiated to the diffraction grating. The two twice-diffracted lights diffracted by the diffraction grating are superimposed by the irradiation light receiving optical system to obtain interference light.

マイクロコーナーキューブプリズム集合ミラーは、反射光を入射した光軸の方向に戻す機能を有しており、取り付け角度がずれても光が入射方向に戻る。また、マイクロコーナーキューブプリズム集合ミラーは、個々のコーナーキューブプリズム毎に光が入射及び反射され、スケール部に付着した異物等の影響は、個々のコーナーキューブプリズム毎で済み、他の領域に影響を及ぼさない。   The micro corner cube prism assembly mirror has a function of returning the reflected light in the direction of the optical axis on which the reflected light is incident, and the light returns to the incident direction even if the mounting angle is deviated. In addition, the micro-corner cube prism collective mirror receives and reflects light on each corner cube prism, and the influence of foreign matter adhering to the scale is only on each corner cube prism, affecting other areas. Does not reach.

本発明の光学式変位測定装置では、反射光学系にマイクロコーナーキューブプリズム集合ミラーを備えることで、スケール部に付着した異物等の影響を、個々のコーナーキューブプリズム単位で受けることができるので、干渉光の光量低下を抑えることができる。   In the optical displacement measuring device of the present invention, since the reflecting optical system is provided with the micro corner cube prism assembly mirror, it is possible to receive the influence of the foreign matter adhered to the scale portion on an individual corner cube prism basis. A decrease in the amount of light can be suppressed.

また、マイクロコーナーキューブプリズム集合ミラーは、取り付け角度によらず、反射光を入射した光軸の方向に戻すので、組み立て調整と取り付け許容値の改善を図ることができる。   In addition, the micro corner cube prism assembly mirror returns to the direction of the optical axis on which the reflected light is incident, regardless of the mounting angle, so that the assembly adjustment and the mounting allowable value can be improved.

以下、図面を参照して本発明の光学式変位測定装置の実施の形態について説明する。   Hereinafter, embodiments of the optical displacement measuring device of the present invention will be described with reference to the drawings.

<本発明の光学式変位測定装置の原理>
図1は、本発明が適用される光学式変位測定装置の原理を示す構成図である。本発明が適用される光学式変位測定装置100Aは、工作機械等の可動部分に取り付けられ直線移動する例えば透過型の回折格子101Tと、レーザ光等の可干渉光を出射する可干渉光源102を備える。
<Principle of the optical displacement measuring device of the present invention>
FIG. 1 is a block diagram showing the principle of an optical displacement measuring device to which the present invention is applied. An optical displacement measuring apparatus 100A to which the present invention is applied includes a transmissive diffraction grating 101T that is attached to a movable part such as a machine tool and moves linearly, and a coherent light source 102 that emits coherent light such as laser light. Prepare.

光学式変位測定装置100Aは、可干渉光源102から出射された可干渉光を2分して回折格子101Tに照射すると共に、回折格子101Tで回折された回折光を干渉させる照射受光光学系103を備える。   The optical displacement measuring apparatus 100A bisects the coherent light emitted from the coherent light source 102 and irradiates the diffraction grating 101T with the irradiation light receiving optical system 103 that interferes with the diffracted light diffracted by the diffraction grating 101T. Prepare.

照射受光光学系103は、可干渉光源102から出射された可干渉光を分割すると共に、回折格子101Tで回折された回折光を結合する偏光ビームスプリッタ104を備える。また、照射受光光学系103は、可干渉光源102から出射された可干渉光を絞るレンズ105を備える。   The irradiation light receiving optical system 103 includes a polarization beam splitter 104 that splits the coherent light emitted from the coherent light source 102 and combines the diffracted light diffracted by the diffraction grating 101T. The irradiation light receiving optical system 103 includes a lens 105 that narrows down the coherent light emitted from the coherent light source 102.

光学式変位測定装置100Aは、照射受光光学系103で回折格子101Tに照射され、回折格子101Tで回折された回折光を再度回折格子101Tに照射する反射光学系106を備える。   The optical displacement measuring apparatus 100A includes a reflection optical system 106 that irradiates the diffraction grating 101T with the diffracted light that is irradiated onto the diffraction grating 101T by the irradiation light receiving optical system 103 and diffracted by the diffraction grating 101T.

反射光学系106は、回折格子101Tで回折された回折光を、光の入射方向に向けて反射するコーナーキューブプリズム107を備える。また、コーナーキューブプリズム107で反射して往復する光路中に設けられ、偏光方向を変換する1/4波長板108を備える。   The reflection optical system 106 includes a corner cube prism 107 that reflects the diffracted light diffracted by the diffraction grating 101T in the light incident direction. Further, a quarter-wave plate 108 is provided in the optical path that is reflected by the corner cube prism 107 and reciprocates, and converts the polarization direction.

コーナーキューブプリズム107は、直角を3つ合成した頂点を持つ三角錐のプリズムで、直交した3面の内部の全反射によって、入射光が入射方向へ180°折り返され、反射光が必ず入射した光軸の方向に戻る機能を有する。   The corner cube prism 107 is a triangular pyramid prism having apexes composed of three right angles. The incident light is folded back 180 ° in the incident direction by total internal reflection on three orthogonal surfaces, and the reflected light is always incident. It has the function of returning to the direction of the axis.

光学式変位測定装置100Aは、反射光学系106で回折格子101Tに再度照射されて回折格子101Tで回折され、照射受光光学系103で干渉させた干渉光を受光して干渉信号を生成する受光部109を備える。   The optical displacement measuring device 100A is a light receiving unit that receives interference light that is irradiated again by the reflection optical system 106 and diffracted by the diffraction grating 101T and interferes by the irradiation light receiving optical system 103, and generates an interference signal. 109.

次に、本発明が適用される光学式変位測定装置100Aの動作について説明する。光学式変位測定装置100Aは、可干渉光源102から出射された可干渉光Laが、偏光ビームスプリッタ104で2つの可干渉光La1,La2に分割される。偏光ビームスプリッタ104で反射した可干渉光La1はS偏光、透過した可干渉光La2はP偏光となる。偏光ビームスプリッタ104で分割された2つの可干渉光La1,La2は、回折格子101Tに照射される。   Next, the operation of the optical displacement measuring apparatus 100A to which the present invention is applied will be described. In the optical displacement measuring apparatus 100A, the coherent light La emitted from the coherent light source 102 is split into two coherent lights La1 and La2 by the polarization beam splitter 104. The coherent light La1 reflected by the polarizing beam splitter 104 is S-polarized light, and the transmitted coherent light La2 is P-polarized light. The two coherent lights La1 and La2 divided by the polarization beam splitter 104 are irradiated to the diffraction grating 101T.

回折格子101Tに照射された可干渉光La1,La2は回折され、回折格子101Tで回折された1回回折光Lb1,Lb2は、1/4波長板108を通りコーナーキューブプリズム107に入射する。コーナーキューブプリズム107に入射した光は、入射方向へ反射され、反射光が入射した光軸の方向に戻って、1/4波長板108を通る。   The coherent light La1 and La2 irradiated to the diffraction grating 101T are diffracted, and the one-time diffracted lights Lb1 and Lb2 diffracted by the diffraction grating 101T pass through the quarter wavelength plate 108 and enter the corner cube prism 107. The light incident on the corner cube prism 107 is reflected in the incident direction, returns to the direction of the optical axis on which the reflected light is incident, and passes through the quarter wavelength plate 108.

コーナーキューブプリズム107で反射した1回回折光Lb1は、1/4波長板108を2回通ることで、S偏光がP偏光に変換される。また、コーナーキューブプリズム107で反射した1回回折光Lb2は、1/4波長板108を2回通ることで、P偏光がS偏光に変換される。   The one-time diffracted light Lb1 reflected by the corner cube prism 107 passes through the quarter-wave plate 108 twice, so that S-polarized light is converted to P-polarized light. The once-diffracted light Lb2 reflected by the corner cube prism 107 passes through the quarter-wave plate 108 twice, so that P-polarized light is converted to S-polarized light.

コーナーキューブプリズム107で反射した1回回折光Lb1,Lb2は、回折格子101Tに再度照射される。回折格子101Tに照射された1回回折光Lb1,Lb2は回折され、回折格子101Tで回折された2回回折光Lc1,Lc2は、偏光ビームスプリッタ104に入射する。   The one-time diffracted lights Lb1 and Lb2 reflected by the corner cube prism 107 are again irradiated to the diffraction grating 101T. The one-time diffracted lights Lb1 and Lb2 irradiated on the diffraction grating 101T are diffracted, and the two-time diffracted lights Lc1 and Lc2 diffracted by the diffraction grating 101T are incident on the polarization beam splitter 104.

偏光ビームスプリッタ104で反射したS偏光の可干渉光La1は、P偏光となって戻ってくることで、2回回折光Lc1は偏光ビームスプリッタ104を透過する。一方、偏光ビームスプリッタ104を透過したP偏光の可干渉光La2は、S偏光となって戻ってくることで、2回回折光Lc2は偏光ビームスプリッタ104で反射する。これにより、2回回折光Lc1,Lc2が重ね合わされる。   The S-polarized coherent light La1 reflected by the polarizing beam splitter 104 returns as P-polarized light, so that the twice-diffracted light Lc1 passes through the polarizing beam splitter 104. On the other hand, the P-polarized coherent light La2 transmitted through the polarizing beam splitter 104 returns as S-polarized light, so that the twice-diffracted light Lc2 is reflected by the polarizing beam splitter 104. Thereby, the twice-diffracted lights Lc1 and Lc2 are superimposed.

偏光ビームスプリッタ104で重ね合わされた干渉光Ldは、受光部109に入射され、干渉信号が生成される。   The interference light Ld superimposed by the polarization beam splitter 104 is incident on the light receiving unit 109, and an interference signal is generated.

従来の光学式変位測定装置では、回折格子で回折された回折光を再度回折格子に照射する反射光学系が平面ミラーで構成され、また、光源から出射される可干渉光が平面ミラーの表面に焦点を結ぶように照射光学系が構成されていた。   In the conventional optical displacement measuring device, the reflection optical system that irradiates the diffraction grating with the diffracted light diffracted by the diffraction grating is constituted by a plane mirror, and the coherent light emitted from the light source is applied to the surface of the plane mirror. The irradiation optical system was configured to focus.

光学式変位測定装置では、偏光ビームスプリッタで分割された光路を往路と帰路で同一として、回折格子で回折された回折光を偏光ビームスプリッタに戻し、干渉光を生成している。このため、反射光学系で平面ミラーを使用すると、平面ミラーの取り付け角度がずれると光が戻らず、取り付け位置が光軸に沿ってずれると焦点位置が変化してしまう。これにより、平面ミラーの取り付けに際しては、微妙な角度及び位置調整が必要となる。   In the optical displacement measuring device, the optical path divided by the polarization beam splitter is the same for the forward path and the return path, and the diffracted light diffracted by the diffraction grating is returned to the polarization beam splitter to generate interference light. For this reason, when a flat mirror is used in the reflective optical system, light does not return when the mounting angle of the flat mirror deviates, and the focal position changes when the mounting position deviates along the optical axis. Thereby, when attaching a plane mirror, a delicate angle and position adjustment are required.

これに対して、本発明が適用される光学式変位測定装置100Aでは、反射光学系106にコーナーキューブプリズム107を備えている。コーナーキューブプリズム107は、反射光を必ず入射した光軸の方向に戻すため、取り付け角度がずれても光が所定の方向に戻る。また、可干渉光源102から出射された光を集光しないことで、取り付け位置のずれによる焦点位置の変化が生じない。   On the other hand, in the optical displacement measuring apparatus 100A to which the present invention is applied, the reflection optical system 106 includes a corner cube prism 107. Since the corner cube prism 107 always returns the reflected light in the direction of the incident optical axis, the light returns in a predetermined direction even if the mounting angle is shifted. In addition, since the light emitted from the coherent light source 102 is not collected, the focal position does not change due to the displacement of the mounting position.

このように、反射光学系にコーナーキューブプリズムを使用することで、組み立て調整と取り付け許容値の改善を図ることができる。   As described above, by using the corner cube prism in the reflecting optical system, it is possible to improve the assembly adjustment and the allowable mounting value.

図2は、回折格子上の異物の影響を示す光路説明図である。反射光学系106にコーナーキューブプリズム107を備えた光学式変位測定装置100Aでは、コーナーキューブプリズム107に入射する入射光の光軸中心とコーナーキューブプリズム107の中心が合っている場合、同軸光路上に光が反射される。一方、入射光の光軸中心とコーナーキューブプリズム107の中心が合っていない場合でも、反射光は必ず入射した光軸の方向に戻る。但し、入射光と反射光では光軸が平行にずれる。   FIG. 2 is an explanatory diagram of an optical path showing the influence of foreign matter on the diffraction grating. In the optical displacement measuring apparatus 100A in which the reflection optical system 106 includes the corner cube prism 107, when the center of the optical axis of the incident light incident on the corner cube prism 107 is aligned with the center of the corner cube prism 107, the optical axis is on the coaxial optical path. Light is reflected. On the other hand, even when the center of the optical axis of the incident light and the center of the corner cube prism 107 do not match, the reflected light always returns to the direction of the incident optical axis. However, the optical axes of the incident light and the reflected light are shifted in parallel.

このため、回折格子101Tに付着した異物D等の影響は、回折格子101Tへの入射時に受ける光の照射領域のものと、コーナーキューブプリズム107で反射してから受ける光の照射領域のものがある。これにより、受光部109で検出される光量は、一概に異物等の大きさに対して約2倍の影響を受けることになり、回折格子101Tに異物が付着すると、取得できる光量が低下する。   For this reason, the influence of the foreign matter D or the like adhering to the diffraction grating 101T includes an irradiation area of light received when entering the diffraction grating 101T and an irradiation area of light received after being reflected by the corner cube prism 107. . As a result, the amount of light detected by the light receiving unit 109 is generally about twice as large as the size of the foreign matter, and the amount of light that can be acquired decreases when the foreign matter adheres to the diffraction grating 101T.

そこで、本発明では、微小なコーナーキューブプリズムを配列したマイクロコーナーキューブプリズム集合ミラーを反射光学系に使用して、異物等の影響による光量低下を防ぐ。   Therefore, in the present invention, a micro corner cube prism assembly mirror in which minute corner cube prisms are arrayed is used in a reflection optical system to prevent a decrease in light amount due to the influence of foreign matter or the like.

<第1の実施の形態の光学式変位測定装置の構成例>
図3は、本発明の第1の実施の形態の光学式変位測定装置の一例を示す構成図である。第1の実施の形態の光学式変位測定装置1Aは、工作機械等の可動部分に取り付けられ直線移動または回転するスケール部11Aを備える。スケール部11Aは、本例では透過型の回折格子11Tと、回折格子11Tを保護するガラス等の保護層11G等を備える。
<Configuration Example of Optical Displacement Measuring Device of First Embodiment>
FIG. 3 is a configuration diagram showing an example of the optical displacement measuring apparatus according to the first embodiment of the present invention. The optical displacement measuring apparatus 1A according to the first embodiment includes a scale unit 11A that is attached to a movable part such as a machine tool and linearly moves or rotates. In this example, the scale portion 11A includes a transmission type diffraction grating 11T and a protective layer 11G such as glass for protecting the diffraction grating 11T.

回折格子11Tは、薄板状の素材に狭いスリットや溝等の格子が所定間隔毎に刻まれている。このような回折格子11Tに入射された光は、表面に刻まれたスリット等により回折する。回折により生じる回折光は、光の入射角と格子の間隔と光の波長等で定まる方向に発生する。ここで、回折格子11Tにおいて、図示しない格子が形成された方向に垂直な方向を格子ベクトル方向と呼ぶ。スケール部11Aは、可動部分の移動に伴って、回折格子11Tの格子ベクトル方向に移動する。なお、本例では、格子が所定の間隔で平行に設けられた回折格子を用いているが、本発明では、このような格子が平行に設けられた回折格子を用いなくても良い。例えば、放射状に格子が設けられた回折格子を用いてもよい。このような放射状に格子が設けられた回折格子を用いることにより、所謂ロータリーエンコーダーとして、回転移動をする工作機械の可動部分等の位置検出を行うことができる。また、本発明では、明暗を記録した振幅型の回折格子、屈折率変化や形状変化を記録した位相型の回折格子を用いても良く、その回折格子のタイプは限られない。   In the diffraction grating 11T, a grating such as a narrow slit or groove is carved at a predetermined interval on a thin plate material. The light incident on the diffraction grating 11T is diffracted by a slit or the like carved on the surface. Diffracted light generated by diffraction is generated in a direction determined by the incident angle of light, the interval between gratings, the wavelength of light, and the like. Here, in the diffraction grating 11T, a direction perpendicular to a direction in which a grating (not shown) is formed is referred to as a grating vector direction. The scale unit 11A moves in the direction of the grating vector of the diffraction grating 11T as the movable part moves. In this example, a diffraction grating in which gratings are provided in parallel at a predetermined interval is used. However, in the present invention, it is not necessary to use a diffraction grating in which such gratings are provided in parallel. For example, a diffraction grating provided with radial gratings may be used. By using such a diffraction grating provided with a radial grating, it is possible to detect the position of a movable part or the like of a rotating machine tool as a so-called rotary encoder. In the present invention, an amplitude type diffraction grating in which brightness and darkness are recorded, and a phase type diffraction grating in which changes in refractive index and shape are recorded may be used, and the type of the diffraction grating is not limited.

光学式変位測定装置1Aは、スケール部11Aに照射されるレーザ光等の可干渉光Laを出射する可干渉光源12を備える。可干渉光源12は発光部の一例で、例えば半導体レーザ(LD)で構成され、可干渉光Laが光源固有の放射角で出射される。   The optical displacement measuring apparatus 1A includes a coherent light source 12 that emits coherent light La such as laser light irradiated to the scale unit 11A. The coherent light source 12 is an example of a light emitting unit, and is configured by, for example, a semiconductor laser (LD), and the coherent light La is emitted at an emission angle unique to the light source.

光学式変位測定装置1Aは、可干渉光源12から出射された可干渉光Laを2分してスケール部11Aに照射すると共に、スケール部11Aの回折格子11Tで回折された回折光を干渉させる照射受光光学系13Aを備える。   The optical displacement measuring apparatus 1A divides the coherent light La emitted from the coherent light source 12 into two parts and irradiates the scale part 11A, and also irradiates the diffracted light diffracted by the diffraction grating 11T of the scale part 11A. A light receiving optical system 13A is provided.

照射受光光学系13Aは、可干渉光源12から出射された可干渉光Laを、偏光成分が異なる2つの光に分割すると共に、回折格子11Tで回折された偏光成分が異なる2つの回折光を重ね合わせる偏光ビームスプリッタ(PBS)14を備える。また、照射受光光学系13Aは、可干渉光源12から光源固有の放射角で出射された可干渉光を絞る光学素子としてのレンズ15aを備える。更に、照射受光光学系13Aは、偏光ビームスプリッタ14で重ね合わされた干渉光Ldを絞るレンズ15bを備える。   The irradiation light receiving optical system 13A divides the coherent light La emitted from the coherent light source 12 into two lights having different polarization components, and superimposes two diffracted lights having different polarization components diffracted by the diffraction grating 11T. A polarizing beam splitter (PBS) 14 is provided. Further, the irradiation light receiving optical system 13A includes a lens 15a as an optical element that narrows down the coherent light emitted from the coherent light source 12 at a radiation angle unique to the light source. Further, the irradiation / light receiving optical system 13A includes a lens 15b that narrows down the interference light Ld superimposed by the polarization beam splitter.

偏光ビームスプリッタ14は、可干渉光源12から出射され、レンズ15aで絞られた可干渉光Laが入射され、可干渉光源12からの入射光がP成分とS成分に分割され、S偏光の光は反射され、P偏光の光は透過される。ここで、可干渉光源12からの光が直線偏光であれば、偏光方向を45°傾けて偏光ビームスプリッタ14に入射させれば、分割される光の強度は等しくなる。偏光ビームスプリッタ14へ戻ったS偏光の回折光は反射され、P偏光の回折光は透過されて、2つの回折光が重ね合わされる。   The polarization beam splitter 14 is output from the coherent light source 12 and receives coherent light La that is narrowed down by the lens 15a. The incident light from the coherent light source 12 is divided into a P component and an S component. Is reflected, and P-polarized light is transmitted. Here, if the light from the coherent light source 12 is linearly polarized light, the intensity of the divided light becomes equal if the polarization direction is inclined by 45 ° and is incident on the polarization beam splitter 14. The s-polarized diffracted light returned to the polarization beam splitter 14 is reflected, the p-polarized diffracted light is transmitted, and the two diffracted lights are superimposed.

光学式変位測定装置1Aは、照射受光光学系13Aでスケール部11Aに照射され、スケール部11Aの回折格子11Tで回折された回折光を再度スケール部11Aに照射する反射光学系16を備える。   The optical displacement measuring device 1A includes a reflection optical system 16 that irradiates the scale unit 11A with the irradiation light receiving optical system 13A and irradiates the scale unit 11A again with the diffracted light diffracted by the diffraction grating 11T of the scale unit 11A.

反射光学系16は、回折格子11Tで回折された2つの回折光を、それぞれ光の入射方向に向けて反射するマイクロコーナーキューブプリズム集合ミラー17a,17bを備える。また、一方のマイクロコーナーキューブプリズム集合ミラー17aで反射して往復する光路中に設けられ、偏光方向を変換する1/4波長板18aを備える。更に、他方のマイクロコーナーキューブプリズム集合ミラー17bで反射して往復する光路中に設けられ、偏光方向を変換する1/4波長板18bを備える。なお、回折格子11Tとして、放射状に格子が設けられた回折格子が用いられる構成では、円弧状に並ぶ格子に光が照射されるように、照射受光光学系13A及び反射光学系16で光照射角度及び反射角度を円弧に沿って変えれば良い。   The reflective optical system 16 includes micro corner cube prism aggregate mirrors 17a and 17b that reflect the two diffracted lights diffracted by the diffraction grating 11T in the light incident direction, respectively. In addition, a quarter-wave plate 18a is provided in an optical path that is reflected by one microcorner cube prism assembly mirror 17a and reciprocates, and converts the polarization direction. Further, a quarter wavelength plate 18b is provided in the optical path that is reflected by the other micro corner cube prism assembly mirror 17b and reciprocates, and converts the polarization direction. In a configuration in which a diffraction grating having radial gratings is used as the diffraction grating 11T, the irradiation light receiving optical system 13A and the reflection optical system 16 emit light at a light irradiation angle so that light is emitted to the arcs arranged in an arc shape. The reflection angle may be changed along the arc.

図4は、マイクロコーナーキューブプリズム集合ミラーの一例を示す平面図である。マイクロコーナーキューブプリズム集合ミラー17a,17bは、直角を3つ合成した頂点を持つ三角錐のプリズムで構成されるマイクロコーナーキューブプリズム17pの集合体である。マイクロコーナーキューブプリズム集合ミラー17a,17bは、入射される光のビーム領域Rに対して所定の割合で微小なマイクロコーナーキューブプリズム17pが、縦横に並べて配列される。そして、各マイクロコーナーキューブプリズム17pにおいて、直交した3面の内部の全反射によって、入射光が入射方向へ180°折り返され、反射光が必ず入射した光軸の方向に戻る機能を有する。   FIG. 4 is a plan view showing an example of a micro corner cube prism assembly mirror. The micro corner cube prism assembly mirrors 17a and 17b are aggregates of micro corner cube prisms 17p configured by triangular pyramid prisms having apexes obtained by combining three right angles. The micro corner cube prism assembly mirrors 17a and 17b are arranged with micro micro corner cube prisms 17p arranged vertically and horizontally at a predetermined ratio with respect to the beam region R of incident light. Each micro corner cube prism 17p has a function of returning incident light by 180 ° in the incident direction by total internal reflection of three orthogonal surfaces, and returning the reflected light to the incident optical axis direction without fail.

図3に戻り、1/4波長板18aは、光学軸を光の偏光方向に対して45°傾けて配置され、マイクロコーナーキューブプリズム集合ミラー17aで反射されてスケール部11Aに戻るS偏光の光がP偏光に変換される。   Returning to FIG. 3, the ¼ wavelength plate 18a is disposed with its optical axis inclined at 45 ° with respect to the polarization direction of the light, reflected by the micro corner cube prism assembly mirror 17a, and returned to the scale unit 11A. Is converted to P-polarized light.

これにより、可干渉光源12から出射され、偏光ビームスプリッタ14で反射されたS偏光の光は、所定の光路を往復して回折格子11Tで2回回折される。そして、1/4波長板18aを2回通過することでP偏光に変換されて偏光ビームスプリッタ14に戻り、偏光ビームスプリッタ14を透過する。   Thereby, the S-polarized light emitted from the coherent light source 12 and reflected by the polarization beam splitter 14 is diffracted twice by the diffraction grating 11T by reciprocating along a predetermined optical path. Then, the light passes through the quarter-wave plate 18 a twice, is converted to P-polarized light, returns to the polarizing beam splitter 14, and passes through the polarizing beam splitter 14.

同様に、1/4波長板18bは、光学軸を光の偏光方向に対して45°傾けて配置され、マイクロコーナーキューブプリズム集合ミラー17bで反射されてスケール部11Aに戻るP偏光の光がS偏光に変換される。   Similarly, the quarter-wave plate 18b is disposed with the optical axis inclined by 45 ° with respect to the polarization direction of the light, and the P-polarized light reflected by the micro corner cube prism assembly mirror 17b and returning to the scale portion 11A is S. Converted to polarized light.

これにより、可干渉光源12から出射され、偏光ビームスプリッタ14を透過したP偏光の光は、所定の光路を往復して回折格子11Tで2回回折される。そして、1/4波長板18bを2回通過することでS偏光に変換されて偏光ビームスプリッタ14に戻り、偏光ビームスプリッタ14で反射する。   Thereby, the P-polarized light emitted from the coherent light source 12 and transmitted through the polarization beam splitter 14 is diffracted twice by the diffraction grating 11T by reciprocating along a predetermined optical path. Then, the light passes through the quarter-wave plate 18 b twice, is converted to S-polarized light, returns to the polarizing beam splitter 14, and is reflected by the polarizing beam splitter 14.

従って、可干渉光源12から出射され、偏光ビームスプリッタ14で分割されたS偏光の光とP偏光の光は、それぞれ所定の光路を通りスケール部11Aの回折格子11Tで回折され、偏光ビームスプリッタ14に戻って重ね合わされる。   Accordingly, the S-polarized light and the P-polarized light emitted from the coherent light source 12 and split by the polarizing beam splitter 14 pass through predetermined optical paths, respectively, and are diffracted by the diffraction grating 11T of the scale portion 11A, and are then polarized by the polarizing beam splitter 14 Returned to and superimposed.

光学式変位測定装置1Aは、反射光学系16でスケール部11Aに再度照射されて回折格子11Tで回折され、照射受光光学系13Aで干渉させた干渉光を受光して干渉信号を生成する受光部19を備える。   The optical displacement measuring apparatus 1A is a light receiving unit that generates interference signals by receiving interference light that is irradiated again on the scale unit 11A by the reflection optical system 16, diffracted by the diffraction grating 11T, and interfered by the irradiation light receiving optical system 13A. 19 is provided.

受光部19は、偏光ビームスプリッタ14で重ね合わされ、レンズ15bで絞られた干渉光Ldを分割するビームスプリッタ(BS)20を備える。ビームスプリッタ20は、所定の透過率(反射率)を有したハーフミラー等で構成され、偏光ビームスプリッタ14で重ね合わされた光が2分割される。   The light receiving unit 19 includes a beam splitter (BS) 20 that divides the interference light Ld superimposed by the polarization beam splitter 14 and focused by the lens 15b. The beam splitter 20 is composed of a half mirror or the like having a predetermined transmittance (reflectance), and the light superimposed by the polarization beam splitter 14 is divided into two.

受光部19は、ビームスプリッタ20で反射されて入射する光の偏光方向に対して45°傾けられ、入射された光を偏光成分が異なる2つの光に分割する偏光ビームスプリッタ(PBS)21と、偏光ビームスプリッタ21で反射された光が入射する光電変換器(PD)22aと、偏光ビームスプリッタ21を透過した光が入射する光電変換器(PD)22bを備える。   The light receiving unit 19 is inclined by 45 ° with respect to the polarization direction of incident light reflected by the beam splitter 20, and a polarized beam splitter (PBS) 21 that divides the incident light into two lights having different polarization components; A photoelectric converter (PD) 22a on which light reflected by the polarizing beam splitter 21 enters and a photoelectric converter (PD) 22b on which light transmitted through the polarizing beam splitter 21 enters are provided.

受光部19は、ビームスプリッタ20を透過した光の偏光方向に対して光学軸が45°傾けられ、入射した光の偏光状態を変換する1/4波長板23を備える。受光部19は、偏光ビームスプリッタ21に対して45°傾けられ、ビームスプリッタ20を透過し1/4波長板23で偏光状態が変換された光を偏光成分が異なる2つの光に分割する偏光ビームスプリッタ(PBS)24を備える。受光部19は、偏光ビームスプリッタ24で反射された光が入射する光電変換器(PD)25aと、偏光ビームスプリッタ24を透過した光が入射する光電変換器(PD)25bを備える。   The light receiving unit 19 includes a quarter wavelength plate 23 whose optical axis is inclined by 45 ° with respect to the polarization direction of the light transmitted through the beam splitter 20 and converts the polarization state of the incident light. The light receiving unit 19 is tilted by 45 ° with respect to the polarizing beam splitter 21, and is a polarized beam that splits the light that has been transmitted through the beam splitter 20 and whose polarization state has been converted by the quarter wavelength plate 23 into two light components having different polarization components. A splitter (PBS) 24 is provided. The light receiving unit 19 includes a photoelectric converter (PD) 25a on which the light reflected by the polarizing beam splitter 24 enters and a photoelectric converter (PD) 25b on which the light transmitted through the polarizing beam splitter 24 enters.

<第1の実施の形態の光学式変位測定装置の動作例>
次に、各図を参照して、第1の実施の形態の光学式変位測定装置1Aの動作の一例について説明する。
<Operation Example of Optical Displacement Measuring Device of First Embodiment>
Next, an example of the operation of the optical displacement measuring apparatus 1A according to the first embodiment will be described with reference to the drawings.

可干渉光源12から出射された可干渉光Laは、レンズ15aによって適当なビームに絞られ、例えば平行光化されて偏光ビームスプリッタ14に入射して、偏光ビームスプリッタ14で2つの光に分割される。   The coherent light La emitted from the coherent light source 12 is narrowed down to an appropriate beam by the lens 15a, for example, converted into parallel light, incident on the polarizing beam splitter 14, and split into two lights by the polarizing beam splitter 14. The

偏光ビームスプリッタ14で反射された可干渉光La1はS偏光、透過した可干渉光La2はP偏光となる。可干渉光源12からの光が直線偏光の光であれば、偏光方向を45°傾けて偏光ビームスプリッタ14に入射させれば分割される光の強度は等しくなる。   The coherent light La1 reflected by the polarizing beam splitter 14 is S-polarized light, and the transmitted coherent light La2 is P-polarized light. If the light from the coherent light source 12 is linearly polarized light, the intensity of the divided light becomes equal if the polarization direction is inclined 45 ° and is incident on the polarization beam splitter 14.

偏光ビームスプリッタ14で反射された可干渉光La1は、スケール部11Aにおいて回折格子11TのP点に入射する。また、偏光ビームスプリッタ14を透過した可干渉光La2は、スケール部11Aにおいて回折格子11TのQ点に入射する。   The coherent light La1 reflected by the polarization beam splitter 14 enters the point P of the diffraction grating 11T in the scale portion 11A. The coherent light La2 that has passed through the polarization beam splitter 14 is incident on the Q point of the diffraction grating 11T in the scale portion 11A.

スケール部11Aの回折格子11Tに入射した2つの可干渉光La1,La2は、以下の(1)式で示される方向に回折される。   The two coherent lights La1 and La2 incident on the diffraction grating 11T of the scale portion 11A are diffracted in the direction shown by the following equation (1).

sinθ1+sinθ2=n・λ/Λ・・・(1)
θ1:入射角
θ2:回折角
Λ:格子ピッチ
λ:光の波長
n:回折次数
sin θ 1 + sin θ 2 = n · λ / Λ (1)
θ 1 : incident angle θ 2 : diffraction angle Λ: grating pitch λ: wavelength of light n: diffraction order

回折格子11Tにおいて、P点への入射角をθ1P、回折角をθ2P、Q点への入射角をθ1Q、回折角をθ2Qとすると、図3の例では、θ1P=θ2P=θ1Q=θ2Qになるように構成している。なお、回折次数はP点及びQ点で同次である。 In the diffraction grating 11T, assuming that the incident angle to the point P is θ 1P , the diffraction angle is θ 2P , the incident angle to the point Q is θ 1Q , and the diffraction angle is θ 2Q , in the example of FIG. 3, θ 1P = θ 2P = Θ 1Q = θ 2Q . The diffraction orders are the same at the P point and the Q point.

回折格子11TのP点で回折された1回回折光Lb1は、1/4波長板18aを通りマイクロコーナーキューブプリズム集合ミラー17aで反射され、1/4波長板18aを通り再び回折格子11TのP点に戻って回折される。上述したように、1/4波長板18aの光学軸は光の偏光方向に対して45°傾けてあるので、回折格子11TのP点に戻った1回回折光Lb1はP偏光となっている。   The one-time diffracted beam Lb1 diffracted at the point P of the diffraction grating 11T passes through the quarter-wave plate 18a, is reflected by the micro corner cube prism assembly mirror 17a, passes through the quarter-wave plate 18a again, and again passes through the P of the diffraction grating 11T. It is diffracted back to the point. As described above, since the optical axis of the quarter-wave plate 18a is inclined by 45 ° with respect to the polarization direction of the light, the one-time diffracted light Lb1 returning to the point P of the diffraction grating 11T is P-polarized light. .

同様に、回折格子11TのQ点で回折された1回回折光Lb2は、1/4波長板18bを通りマイクロコーナーキューブプリズム集合ミラー17bで反射され、1/4波長板18bを通り再び回折格子11TのQ点に戻って回折される。回折格子11TのQ点に戻った1回回折光Lb2はS偏光となっている。   Similarly, the one-time diffracted beam Lb2 diffracted at the Q point of the diffraction grating 11T passes through the quarter-wave plate 18b, is reflected by the micro corner cube prism assembly mirror 17b, and passes again through the quarter-wave plate 18b. Diffracted back to the Q point of 11T. The one-time diffracted light Lb2 returned to the Q point of the diffraction grating 11T is S-polarized light.

回折格子11TのP点及びQ点で再び回折された2回回折光Lc1,Lc2は、偏光ビームスプリッタ14に戻る。回折格子11TのP点で回折された2回回折光Lc1は、P偏光になっているので偏光ビームスプリッタ14を透過する。また、回折格子11TのQ点で回折された2回回折光Lc2は、S偏光になっているので偏光ビームスプリッタ14で反射する。   The twice diffracted beams Lc1 and Lc2 diffracted again at the point P and the point Q of the diffraction grating 11T return to the polarization beam splitter 14. Since the twice-diffracted light Lc1 diffracted at the point P of the diffraction grating 11T is P-polarized light, it passes through the polarization beam splitter 14. Further, the twice-diffracted light Lc2 diffracted at the point Q of the diffraction grating 11T is S-polarized light and is reflected by the polarization beam splitter 14.

これにより、2つの2回回折光Lc1,Lc2は、偏光ビームスプリッタ14で重ね合わされる。偏光ビームスプリッタ14で重ね合わされた干渉光Ldは、レンズ15bによって適当なビームに絞られ、ビームスプリッタ20で2つに分割される。   As a result, the two two-time diffracted beams Lc1 and Lc2 are superimposed by the polarization beam splitter 14. The interference light Ld superimposed by the polarization beam splitter 14 is narrowed down to an appropriate beam by the lens 15 b and is divided into two by the beam splitter 20.

ビームスプリッタ20で反射したS偏光とP偏光の干渉光Ldは、偏光方向に対して45°傾けられた偏光ビームスプリッタ21に入射する。偏光ビームスプリッタ21で反射された光は光電変換器22aに入射し、透過した光は光電変換器22bに入射する。   The S-polarized light and P-polarized interference light Ld reflected by the beam splitter 20 is incident on the polarization beam splitter 21 inclined by 45 ° with respect to the polarization direction. The light reflected by the polarization beam splitter 21 enters the photoelectric converter 22a, and the transmitted light enters the photoelectric converter 22b.

光電変換器22a及び光電変換器22bでは、以下の(2)式に示す干渉信号が得られる。   In the photoelectric converter 22a and the photoelectric converter 22b, an interference signal represented by the following equation (2) is obtained.

Acos(4・K・x+δ)・・・(2)
K=2π/Λ
x:回折格子の移動量
δ:初期位相
Acos (4 · K · x + δ) (2)
K = 2π / Λ
x: Movement amount of diffraction grating δ: Initial phase

これにより、光電変換器22aと光電変換器22bでは、180°位相の異なる信号が得られる。   As a result, signals having a phase difference of 180 ° are obtained in the photoelectric converter 22a and the photoelectric converter 22b.

ビームスプリッタ20を透過したS偏光とP偏光の干渉光Ldは、光学軸が偏光方向に対して45°傾いた1/4波長板23を通過し互いに逆回りの円偏光となる。互いに逆回りの円偏光の光は重ね合わされて直線偏光の光になり、偏光ビームスプリッタ24に入射し、反射した光は光電変換器25aに入射し、透過した光は光電変換器25bに入射する。   The S-polarized and P-polarized interference light Ld transmitted through the beam splitter 20 passes through a quarter-wave plate 23 whose optical axis is inclined by 45 ° with respect to the polarization direction, and becomes circularly polarized light that is opposite to each other. The circularly polarized light beams that are opposite to each other are superposed to form linearly polarized light, which is incident on the polarization beam splitter 24, the reflected light is incident on the photoelectric converter 25a, and the transmitted light is incident on the photoelectric converter 25b. .

この直線偏光の光の偏光方向は回折格子11TがX方向にΛ/2だけ移動すると1回転する。従って、光電変換器25a,25bでは、(2)式と同様な干渉信号を得ることができる。   The polarization direction of the linearly polarized light rotates once when the diffraction grating 11T moves by Λ / 2 in the X direction. Therefore, the photoelectric converters 25a and 25b can obtain an interference signal similar to the expression (2).

光電変換器25a,25bでは180°位相が異なっており、また、偏光ビームスプリッタ24は偏光ビームスプリッタ21に対して45°傾けてあるため、光電変換器25a,25bで得られる信号は、光電変換器22a,22bで得られる信号に対して90°位相が異なっている。   The photoelectric converters 25a and 25b are different in phase by 180 °, and the polarization beam splitter 24 is inclined 45 ° with respect to the polarization beam splitter 21, so that the signals obtained by the photoelectric converters 25a and 25b are photoelectrically converted. The phases of the signals obtained by the devices 22a and 22b are different by 90 °.

差動増幅器26では、光電変換器22a,22bからの電気信号を差動増幅し干渉信号のDC成分をキャンセルした信号を出力する、差動増幅器27は同様に光電変換器25a,25bからの電気信号を差動増幅し干渉信号のDC成分をキャンセルした信号を出力する。従って、差動増幅器26と差動増幅器27からA/B相信号を得ることができ、A/B相信号をインクリメンタル信号発生器28に入力している。   The differential amplifier 26 differentially amplifies the electric signals from the photoelectric converters 22a and 22b and outputs a signal in which the DC component of the interference signal is canceled. The differential amplifier 27 similarly outputs the electric signals from the photoelectric converters 25a and 25b. The signal is differentially amplified and a signal in which the DC component of the interference signal is canceled is output. Therefore, an A / B phase signal can be obtained from the differential amplifier 26 and the differential amplifier 27, and the A / B phase signal is input to the incremental signal generator 28.

<第1の実施の形態の光学式変位測定装置の作用効果例>
第1の実施の形態の光学式変位測定装置1Aでは、図3の垂線Lに対して対称な光学系になっているため、回折格子がY方向に移動しても位置計測の誤差を生じない。また、P点に入射する光路とQ点に入射する光路の光路長を等しくすることにより、光源の波長変動の影響を受けなくなる。
<Examples of effects of the optical displacement measuring device according to the first embodiment>
In the optical displacement measuring apparatus 1A according to the first embodiment, since the optical system is symmetric with respect to the perpendicular L in FIG. 3, no position measurement error occurs even if the diffraction grating moves in the Y direction. . Further, by making the optical path lengths of the optical path incident on the point P and the optical path incident on the point Q equal, it is not affected by the wavelength variation of the light source.

第1の実施の形態の光学式変位測定装置1Aでは、反射光学系16にマイクロコーナーキューブプリズム集合ミラー17a,17bを備えている。マイクロコーナーキューブプリズム集合ミラー17a,17bは、反射光を必ず入射した光軸の方向に戻すため、取り付け角度がずれても光が所定の方向に戻る。また、可干渉光源12から出射された光を集光しないことで、取り付け位置のずれによる焦点位置の変化が生じない。   In the optical displacement measuring apparatus 1A according to the first embodiment, the reflecting optical system 16 includes micro corner cube prism assembly mirrors 17a and 17b. Since the micro-corner cube prism assembly mirrors 17a and 17b always return the reflected light in the direction of the incident optical axis, the light returns in a predetermined direction even if the mounting angle is shifted. In addition, since the light emitted from the coherent light source 12 is not collected, the focal position does not change due to the displacement of the mounting position.

このように、反射光学系16にマイクロコーナーキューブプリズム集合ミラー17a,17bを使用することで、微妙な角度調整が不要となり、反射光学系16の組み立て調整が容易となる。また、スケール部11Aと受光部19の取り付けにおいても、マイクロコーナーキューブプリズム集合ミラー17a,17bからの反射光は入射した光軸方向に戻ることにより、取り付け許容値が大きくなる。   As described above, by using the micro corner cube prism assembly mirrors 17a and 17b in the reflection optical system 16, delicate angle adjustment is not required, and assembly adjustment of the reflection optical system 16 is facilitated. In addition, in the attachment of the scale portion 11A and the light receiving portion 19, the reflected light from the micro corner cube prism assembly mirrors 17a and 17b returns in the direction of the incident optical axis, thereby increasing the attachment allowable value.

図5は、スケール部上の異物の影響を示す光路説明図、図6は、マイクロコーナーキューブプリズム集合ミラーと異物の大きさの関係を示す平面図である。マイクロコーナーキューブプリズム集合ミラー17a,17bを構成するマイクロコーナーキューブプリズム17pは、入射される光のビーム領域Rに対して所定の割合で微小で、付着が想定される異物D等の大きさに対して、同等程度の大きさである。   FIG. 5 is an explanatory diagram of the optical path showing the influence of the foreign matter on the scale portion, and FIG. 6 is a plan view showing the relationship between the micro corner cube prism assembly mirror and the size of the foreign matter. The micro corner cube prism 17p that constitutes the micro corner cube prism assembly mirrors 17a and 17b is very small at a predetermined ratio with respect to the beam region R of incident light, and the size of the foreign matter D or the like that is supposed to be attached thereto. The size is comparable.

これにより、マイクロコーナーキューブプリズム集合ミラー17a,17bでは、個々のマイクロコーナーキューブプリズム17p毎に光が入射及び反射されることになる。このため、スケール部11A上に付着した異物D等の影響は、個々のマイクロコーナーキューブプリズム17p毎で済み、他の領域に影響を及ぼさないので、受光部19で検出される光量の低下を防ぐことができる。従って、スケール部11A上に付着する異物、回折格子11Tの部分的な不良、スケール部11Aを構成する保護層や基材等の気泡、異物混入等の異常に対して、影響を抑えることができる。   Thereby, in the micro corner cube prism assembly mirrors 17a and 17b, light is incident and reflected for each micro corner cube prism 17p. For this reason, the influence of the foreign matter D or the like adhering to the scale portion 11A is not limited to each of the individual micro-corner cube prisms 17p, and does not affect other regions, so that a decrease in the amount of light detected by the light receiving portion 19 is prevented. be able to. Therefore, it is possible to suppress the influence on foreign matters adhering to the scale portion 11A, partial defects of the diffraction grating 11T, bubbles such as protective layers and base materials constituting the scale portion 11A, and foreign matter contamination. .

<第1の実施の形態の光学式変位測定装置の変形例>
図7は、第1の実施の形態の光学式変位測定装置の変形例を示す構成図である。なお、以下の説明で、第1の実施の形態の光学式変位測定装置1Aと同じ構成の要素については、同じ番号を付して説明する。
<Modification of Optical Displacement Measuring Device of First Embodiment>
FIG. 7 is a configuration diagram illustrating a modification of the optical displacement measuring device according to the first embodiment. In the following description, the same components as those in the optical displacement measuring apparatus 1A according to the first embodiment will be described with the same reference numerals.

第1の実施の形態の変形例の光学式変位測定装置1Bは、ビーム内の波面状態を維持して光路長を均一にする波面調整光学素子として波面調整回折格子30を備える。波面調整回折格子30は、スケール部11Aと反射光学系16の間に設置され、スケール部11Aの回折格子11Tで回折され、反射光学系16で反射して往復する1回回折光Lb1,Lb2を所定の方向に回折する。   The optical displacement measuring apparatus 1B according to the modification of the first embodiment includes a wavefront adjusting diffraction grating 30 as a wavefront adjusting optical element that maintains the wavefront state in the beam and makes the optical path length uniform. The wavefront adjusting diffraction grating 30 is installed between the scale portion 11A and the reflection optical system 16, and is diffracted by the diffraction grating 11T of the scale portion 11A and reflected by the reflection optical system 16 to reciprocate once diffracted beams Lb1 and Lb2. Diffraction in a predetermined direction.

波面調整回折格子30は、本例では回折格子11Tにおける回折方向と逆方向に回折光が発生するように構成され、光路L1(A)と光路L1(B)及び光路L2(A)と光路L2(B)を等しくしている。   In this example, the wavefront adjusting diffraction grating 30 is configured to generate diffracted light in a direction opposite to the diffraction direction of the diffraction grating 11T, and the optical path L1 (A), the optical path L1 (B), the optical path L2 (A), and the optical path L2. (B) is made equal.

図8は、第1の実施の形態の光学式変位測定装置の他の変形例を示す構成図である。なお、以下の説明で、第1の実施の形態の光学式変位測定装置1Aと同じ構成の要素については、同じ番号を付して説明する。   FIG. 8 is a configuration diagram illustrating another modification of the optical displacement measuring apparatus according to the first embodiment. In the following description, the same components as those in the optical displacement measuring apparatus 1A according to the first embodiment will be described with the same reference numerals.

第1の実施の形態の他の変形例の光学式変位測定装置1Cは、ビーム内の波面状態を維持して光路長を均一にする波面調整光学素子として波面調整プリズム31を備える。波面調整プリズム31は、スケール部11Aと反射光学系16の間に設置され、スケール部11Aの回折格子11Tで回折され、反射光学系16で反射して往復する1回回折光Lb1,Lb2の光路を所定の方向に曲げる。   An optical displacement measuring apparatus 1C according to another modification of the first embodiment includes a wavefront adjusting prism 31 as a wavefront adjusting optical element that maintains the wavefront state in the beam and makes the optical path length uniform. The wavefront adjusting prism 31 is installed between the scale unit 11A and the reflection optical system 16, is diffracted by the diffraction grating 11T of the scale unit 11A, is reflected by the reflection optical system 16, and travels back and forth. Is bent in a predetermined direction.

波面調整プリズム31は、本例では回折格子11Tにおける回折方向と逆方向に光路を曲げるように構成され、光路L1(A)と光路L1(B)及び光路L2(A)と光路L2(B)を等しくしている。   In this example, the wavefront adjusting prism 31 is configured to bend the optical path in the direction opposite to the diffraction direction in the diffraction grating 11T, and the optical path L1 (A), the optical path L1 (B), the optical path L2 (A), and the optical path L2 (B). Are equal.

<第2の実施の形態の光学式変位測定装置の構成例>
図9は、第2の実施の形態の光学式変位測定装置の一例を示す構成図である。なお、以下の説明で、第1の実施の形態の光学式変位測定装置1Aと同じ構成の要素については、同じ番号を付して説明する。
<Configuration Example of Optical Displacement Measuring Device of Second Embodiment>
FIG. 9 is a configuration diagram illustrating an example of the optical displacement measuring apparatus according to the second embodiment. In the following description, the same components as those in the optical displacement measuring apparatus 1A according to the first embodiment will be described with the same reference numerals.

第2の実施の形態の光学式変位測定装置1Dは、工作機械等の可動部分に取り付けられ直線移動するスケール部11Bを備える。スケール部11Bは、本例では反射型の回折格子11Rと、回折格子11Rを保護するガラスや樹脂等の保護層11Gと、ガラスや金属等で構成される回折格子11Rの基材11H等を備える。   The optical displacement measuring device 1D of the second embodiment includes a scale unit 11B that is attached to a movable part such as a machine tool and moves linearly. In this example, the scale portion 11B includes a reflective diffraction grating 11R, a protective layer 11G made of glass or resin for protecting the diffraction grating 11R, a base 11H of the diffraction grating 11R made of glass, metal, or the like. .

光学式変位測定装置1Dは、スケール部11Bに照射されるレーザ光等の可干渉光Laを出射する可干渉光源12を備える。可干渉光源12は、例えば半導体レーザ(LD)で構成され、可干渉光Laが光源固有の放射角で出射される。例えば、半導体レーザの放射角は、水平方向が約8.5°、垂直方向が約35°程度である。   The optical displacement measuring device 1D includes a coherent light source 12 that emits coherent light La such as laser light irradiated to the scale unit 11B. The coherent light source 12 is composed of, for example, a semiconductor laser (LD), and coherent light La is emitted at a radiation angle unique to the light source. For example, the radiation angle of the semiconductor laser is about 8.5 ° in the horizontal direction and about 35 ° in the vertical direction.

光学式変位測定装置1Bは、可干渉光源12から出射された可干渉光Laを2分してスケール部11Bに照射すると共に、スケール部11Bの回折格子11Rで回折された回折光を干渉させる照射受光光学系13Bを備える。   The optical displacement measuring device 1B divides the coherent light La emitted from the coherent light source 12 into two parts and irradiates the scale part 11B, and also irradiates the diffracted light diffracted by the diffraction grating 11R of the scale part 11B. A light receiving optical system 13B is provided.

照射受光光学系13Bは、可干渉光源12から出射された可干渉光Laを、偏光成分が異なる2つの光に分割すると共に、回折格子11Rで回折された偏光成分が異なる2つの回折光を重ね合わせる偏光ビームスプリッタ(PBS)14を備える。また、照射受光光学系13Bは、可干渉光源12から光源固有の放射角で出射された可干渉光を絞る光学素子としてのレンズ15cを備える。なお、照射受光光学系13Bは、偏光ビームスプリッタ14で重ね合わされた干渉光Ldを絞るレンズ15bを備えても良い。レンズ15cは、可干渉光源12から光源固有の放射角で出射された可干渉光を、偏光ビームスプリッタ14に入射可能で、かつビーム径が広がるような所定の放射角に絞る。   The irradiation light receiving optical system 13B divides the coherent light La emitted from the coherent light source 12 into two lights having different polarization components, and superimposes two diffracted lights having different polarization components diffracted by the diffraction grating 11R. A polarizing beam splitter (PBS) 14 is provided. Further, the irradiation light receiving optical system 13B includes a lens 15c as an optical element that narrows down the coherent light emitted from the coherent light source 12 at a radiation angle unique to the light source. The irradiation light receiving optical system 13B may include a lens 15b that narrows down the interference light Ld superimposed by the polarization beam splitter 14. The lens 15c reduces the coherent light emitted from the coherent light source 12 at a radiation angle unique to the light source to a predetermined radiation angle that can be incident on the polarization beam splitter 14 and the beam diameter is widened.

偏光ビームスプリッタ14は、可干渉光源12から出射され、レンズ15cで絞られた直線偏光の可干渉光Laが、偏光方向を45°傾けて入射され、可干渉光源12からの入射光がP成分とS成分に分割され、S偏光の光は反射され、P偏光の光は透過される。偏光ビームスプリッタ14へ戻ったS偏光の回折光は反射され、P偏光の回折光は透過されて、2つの回折光が重ね合わされる。   The polarization beam splitter 14 emits linearly polarized coherent light La emitted from the coherent light source 12 and narrowed by the lens 15c, with the polarization direction inclined by 45 °, and the incident light from the coherent light source 12 is P component. The S-polarized light is reflected and the P-polarized light is transmitted. The s-polarized diffracted light returned to the polarization beam splitter 14 is reflected, the p-polarized diffracted light is transmitted, and the two diffracted lights are superimposed.

光学式変位測定装置1Dは、照射受光光学系13Bでスケール部11Bに照射され、スケール部11Bの回折格子11Rで回折された回折光を再度スケール部11Bに照射する反射光学系16を備える。   The optical displacement measuring apparatus 1D includes a reflection optical system 16 that irradiates the scale unit 11B with the diffracted light that is irradiated to the scale unit 11B by the irradiation light receiving optical system 13B and diffracted by the diffraction grating 11R of the scale unit 11B.

反射光学系16は、回折格子11Rで回折された2つの回折光を、それぞれ光の入射方向に向けて反射するマイクロコーナーキューブプリズム集合ミラー17a,17bを備える。また、一方のマイクロコーナーキューブプリズム集合ミラー17aで反射して往復する光路中に設けられ、偏光方向を変換する1/4波長板18aを備える。更に、他方のマイクロコーナーキューブプリズム集合ミラー17bで反射して往復する光路中に設けられ、偏光方向を変換する1/4波長板18bを備える。   The reflection optical system 16 includes micro corner cube prism assembly mirrors 17a and 17b that reflect the two diffracted lights diffracted by the diffraction grating 11R toward the light incident direction, respectively. In addition, a quarter-wave plate 18a is provided in an optical path that is reflected by one microcorner cube prism assembly mirror 17a and reciprocates, and converts the polarization direction. Further, a quarter wavelength plate 18b is provided in the optical path that is reflected by the other micro corner cube prism assembly mirror 17b and reciprocates, and converts the polarization direction.

マイクロコーナーキューブプリズム集合ミラー17a,17bは、レンズ15cで絞られて所定の放射角を持ってビーム径が広がる1回回折光Lb1,Lb2が入射できる大きさを有する。マイクロコーナーキューブプリズム集合ミラー17a,17bは、図4に示すように、入射される光のビーム領域Rに対して所定の割合で微小なマイクロコーナーキューブプリズム17pが、縦横に並べて配列される。そして、各マイクロコーナーキューブプリズム17pにおいて、直交した3面の内部の全反射によって、入射光が入射方向へ180°折り返され、反射光が必ず入射した光軸の方向に戻る機能を有する。これにより、所定の放射角を持ってビーム径が広がる1回回折光Lb1,Lb2が入射されると、反射光は同じ光路を戻るため集光される。   The micro-corner cube prism assembly mirrors 17a and 17b have a size that allows the one-time diffracted beams Lb1 and Lb2 that are narrowed down by the lens 15c and have a predetermined radiation angle and the beam diameter to expand. As shown in FIG. 4, the micro corner cube prism assembly mirrors 17a and 17b are arranged with micro micro cube cube prisms 17p arranged vertically and horizontally at a predetermined ratio with respect to the beam region R of incident light. Each micro corner cube prism 17p has a function of returning incident light by 180 ° in the incident direction by total internal reflection of three orthogonal surfaces, and returning the reflected light to the incident optical axis direction without fail. As a result, when the one-time diffracted lights Lb1 and Lb2 whose beam diameter is widened with a predetermined radiation angle are incident, the reflected lights are collected because they return on the same optical path.

可干渉光源12から出射され、偏光ビームスプリッタ14で反射されたS偏光の光は、マイクロコーナーキューブプリズム集合ミラー17aで反射することで、所定の光路を往復して回折格子11Rで2回回折される。そして、光学軸を光の偏光方向に対して45°傾けて配置された1/4波長板18aを2回通過することでP偏光に変換されて偏光ビームスプリッタ14に戻り、偏光ビームスプリッタ14を透過する。   The S-polarized light emitted from the coherent light source 12 and reflected by the polarization beam splitter 14 is reflected by the micro-corner cube prism assembly mirror 17a, and is diffracted twice by the diffraction grating 11R by reciprocating along a predetermined optical path. The Then, the light passes through the quarter-wave plate 18a disposed with the optical axis inclined at 45 ° with respect to the polarization direction of the light, and is converted to P-polarized light by returning twice, and returns to the polarization beam splitter 14, and the polarization beam splitter 14 is To Penetrate.

同様に、可干渉光源12から出射され、偏光ビームスプリッタ14を透過したP偏光の光は、マイクロコーナーキューブプリズム集合ミラー17bで反射することで、所定の光路を往復して回折格子11Rで2回回折される。そして、光学軸を光の偏光方向に対して45°傾けて配置された1/4波長板18bを2回通過することでS偏光に変換されて偏光ビームスプリッタ14に戻り、偏光ビームスプリッタ14で反射する。   Similarly, the P-polarized light emitted from the coherent light source 12 and transmitted through the polarization beam splitter 14 is reflected by the micro corner cube prism assembly mirror 17b so as to reciprocate in a predetermined optical path twice by the diffraction grating 11R. Diffracted. Then, the light passes through the quarter-wave plate 18 b disposed with the optical axis inclined by 45 ° with respect to the polarization direction of the light, and is converted into S-polarized light by returning twice to the polarization beam splitter 14. reflect.

これにより、可干渉光源12から出射され、偏光ビームスプリッタ14で分割されたS偏光の光とP偏光の光は、それぞれ所定の光路を通りスケール部11Bの回折格子11Rで回折され、偏光ビームスプリッタ14に戻って重ね合わされる。   Thereby, the S-polarized light and the P-polarized light emitted from the coherent light source 12 and divided by the polarization beam splitter 14 pass through predetermined optical paths, respectively, and are diffracted by the diffraction grating 11R of the scale unit 11B. It returns to 14, and is overlaid.

光学式変位測定装置1Bは、反射光学系16でスケール部11Bに再度照射されて回折格子11Rで回折され、照射受光光学系13Bで干渉させた干渉光を受光して干渉信号を生成する受光部19を備える。なお、受光部19の構成は、第1の実施の形態の光学式変位測定装置1Aと同じでよい。   The optical displacement measuring apparatus 1B is a light receiving unit that generates interference signals by receiving interference light that is irradiated again on the scale unit 11B by the reflection optical system 16, diffracted by the diffraction grating 11R, and interfered by the irradiation light receiving optical system 13B. 19 is provided. The configuration of the light receiving unit 19 may be the same as that of the optical displacement measuring apparatus 1A of the first embodiment.

<第2の実施の形態の光学式変位測定装置の動作例>
次に、各図を参照して、第2の実施の形態の光学式変位測定装置1Dの動作の一例について説明する。
<Operation Example of Optical Displacement Measuring Device of Second Embodiment>
Next, an example of the operation of the optical displacement measuring apparatus 1D according to the second embodiment will be described with reference to the drawings.

可干渉光源12から出射された可干渉光Laは、レンズ15cによって適当なビームに絞られ、所定の放射角で広がりながら偏光ビームスプリッタ14に入射して、偏光ビームスプリッタ14で2つの光に分割される。偏光ビームスプリッタ14で反射された可干渉光La1はS偏光、透過した可干渉光La2はP偏光となって、スケール部11Bの回折格子11Rに入射する。   The coherent light La emitted from the coherent light source 12 is narrowed down to an appropriate beam by the lens 15c, enters the polarizing beam splitter 14 while spreading at a predetermined radiation angle, and is split into two lights by the polarizing beam splitter 14. Is done. The coherent light La1 reflected by the polarizing beam splitter 14 becomes S-polarized light, and the transmitted coherent light La2 becomes P-polarized light, and enters the diffraction grating 11R of the scale portion 11B.

回折格子11Rで回折された1回回折光Lb1は、1/4波長板18aを通りマイクロコーナーキューブプリズム集合ミラー17aで反射され、1/4波長板18aを通り再び回折格子11Rに戻って回折される。1/4波長板18aを2回通ることで、回折格子11Rに戻った1回回折光Lb1はP偏光となっている。また、マイクロコーナーキューブプリズム集合ミラー17aは、反射光が必ず入射した光軸の方向に戻る機能を有する。これにより、所定の放射角を持ってビーム径が広がる1回回折光Lb1が入射されると、反射光は同じ光路を戻るため集光される。   The one-time diffracted beam Lb1 diffracted by the diffraction grating 11R passes through the quarter-wave plate 18a, is reflected by the micro corner cube prism assembly mirror 17a, passes through the quarter-wave plate 18a, and returns to the diffraction grating 11R to be diffracted again. The By passing through the quarter-wave plate 18a twice, the one-time diffracted light Lb1 returned to the diffraction grating 11R is P-polarized light. Further, the micro corner cube prism assembly mirror 17a has a function of returning to the direction of the optical axis on which the reflected light is necessarily incident. Thus, when the one-time diffracted light Lb1 having a predetermined radiation angle and a widened beam diameter is incident, the reflected light is collected to return on the same optical path.

同様に、回折格子11Rで回折された1回回折光Lb2は、1/4波長板18bを通りマイクロコーナーキューブプリズム集合ミラー17bで反射され、1/4波長板18bを通り再び回折格子11Rに戻って回折される。1/4波長板18bを2回通ることで、回折格子11Rに戻った1回回折光Lb2はS偏光となっている。また、マイクロコーナーキューブプリズム集合ミラー17bは、反射光が必ず入射した光軸の方向に戻る機能を有する。これにより、所定の放射角を持ってビーム径が広がる1回回折光Lb2が入射されると、反射光は同じ光路を戻るため集光される。   Similarly, the one-time diffracted beam Lb2 diffracted by the diffraction grating 11R passes through the quarter-wave plate 18b, is reflected by the micro corner cube prism assembly mirror 17b, returns to the diffraction grating 11R again through the quarter-wave plate 18b. Is diffracted. By passing through the quarter-wave plate 18b twice, the one-time diffracted light Lb2 returned to the diffraction grating 11R is S-polarized light. Further, the micro corner cube prism assembly mirror 17b has a function of returning to the direction of the optical axis on which the reflected light is necessarily incident. As a result, when the one-time diffracted light Lb2 having a predetermined radiation angle and a widened beam diameter is incident, the reflected light is collected to return on the same optical path.

回折格子11Rで再び回折された2回回折光Lc1,Lc2は、偏光ビームスプリッタ14に戻る。回折格子11Rで回折された2回回折光Lc1は、P偏光になっているので偏光ビームスプリッタ14を透過する。また、回折格子11Rで回折された2回回折光Lc2は、S偏光になっているので偏光ビームスプリッタ14で反射する。   The twice-diffracted lights Lc1 and Lc2 diffracted again by the diffraction grating 11R return to the polarization beam splitter 14. Since the twice-diffracted light Lc1 diffracted by the diffraction grating 11R is P-polarized light, it passes through the polarization beam splitter 14. Further, since the twice-diffracted light Lc2 diffracted by the diffraction grating 11R is S-polarized light, it is reflected by the polarization beam splitter 14.

これにより、2つの2回回折光Lc1,Lc2は、偏光ビームスプリッタ14で重ね合わされる。偏光ビームスプリッタ14で重ね合わされた干渉光Ldは受光部19に入射し、上述したように干渉信号が得られる。   As a result, the two two-time diffracted beams Lc1 and Lc2 are superimposed by the polarization beam splitter 14. The interference light Ld superimposed by the polarization beam splitter 14 enters the light receiving unit 19, and an interference signal is obtained as described above.

<第2の実施の形態の光学式変位測定装置の作用効果例>
第2の実施の形態の光学式変位測定装置1Dでは、反射光学系16にマイクロコーナーキューブプリズム集合ミラー17a,17bを備えている。マイクロコーナーキューブプリズム集合ミラー17a,17bでは、所定の放射角を持ってビーム径が広がる光が入射されると、反射光は同じ光路を戻るため集光される。
<Examples of effects of the optical displacement measuring apparatus according to the second embodiment>
In the optical displacement measuring apparatus 1D of the second embodiment, the reflecting optical system 16 includes micro corner cube prism assembly mirrors 17a and 17b. In the micro corner cube prism assembly mirrors 17a and 17b, when light having a predetermined radiation angle and a beam diameter expanding is incident, the reflected light is collected because it returns on the same optical path.

これにより、ビーム径を拡げた光(可干渉光La1,La2)をスケール部11Bに照射すると共に、マイクロコーナーキューブプリズム集合ミラー17a,17bによる戻り光(2回回折光Lc1,Lc2)を集光して受光部19に入射させることができる。   As a result, light having a larger beam diameter (coherent light La1 and La2) is irradiated onto the scale portion 11B, and return light (twice diffracted light Lc1 and Lc2) by the micro corner cube prism assembly mirrors 17a and 17b is condensed. Thus, the light can be incident on the light receiving unit 19.

従って、簡単な光学系で、スケール部11Bの回折格子11Rに照射される光のビーム径を広げることができる。回折格子11Rに照射される光のビーム径を広げることで、スケール部11Bに付着した異物等の大きさに対して、光が照射される領域を広げることができ、スケール部11Bに付着した異物等の影響をより一層少なくして、光量の低下を防ぐことができる。   Therefore, the beam diameter of the light irradiated to the diffraction grating 11R of the scale portion 11B can be expanded with a simple optical system. By expanding the beam diameter of the light irradiated to the diffraction grating 11R, the area irradiated with light can be expanded with respect to the size of the foreign matter attached to the scale portion 11B, and the foreign matter attached to the scale portion 11B. Etc. can be further reduced to prevent the light quantity from decreasing.

本発明は、工作機械等の可動部分の位置検出を行う装置に適用される。   The present invention is applied to an apparatus for detecting the position of a movable part such as a machine tool.

本発明が適用される光学式変位測定装置の原理を示す構成図である。It is a block diagram which shows the principle of the optical displacement measuring device with which this invention is applied. 回折格子上の異物の影響を示す光路説明図である。It is optical path explanatory drawing which shows the influence of the foreign material on a diffraction grating. 本発明の第1の実施の形態の光学式変位測定装置の一例を示す構成図である。It is a block diagram which shows an example of the optical displacement measuring device of the 1st Embodiment of this invention. マイクロコーナーキューブプリズム集合ミラーの一例を示す平面図である。It is a top view which shows an example of a micro corner cube prism assembly mirror. スケール部上の異物の影響を示す光路説明図である。It is optical path explanatory drawing which shows the influence of the foreign material on a scale part. マイクロコーナーキューブプリズム集合ミラーと異物の大きさの関係を示す平面図である。It is a top view which shows the relationship between the size of a micro corner cube prism assembly mirror and a foreign material. 第1の実施の形態の光学式変位測定装置の変形例を示す構成図である。It is a block diagram which shows the modification of the optical displacement measuring device of 1st Embodiment. 第1の実施の形態の光学式変位測定装置の他の変形例を示す構成図である。It is a block diagram which shows the other modification of the optical displacement measuring device of 1st Embodiment. 本発明の第2の実施の形態の光学式変位測定装置の一例を示す構成図である。It is a block diagram which shows an example of the optical displacement measuring device of the 2nd Embodiment of this invention. 従来の光学式変位測定装置の一例を示す構成図である。It is a block diagram which shows an example of the conventional optical displacement measuring device. 従来の光学式変位測定装置の課題を示す動作説明図である。It is operation | movement explanatory drawing which shows the subject of the conventional optical displacement measuring device. 従来の光学式変位測定装置の課題を示す動作説明図である。It is operation | movement explanatory drawing which shows the subject of the conventional optical displacement measuring device.

符号の説明Explanation of symbols

1A,1B,1C,1D・・・光学式変位測定装置、11A,11B・・・スケール部、11T,11R・・・回折格子、12・・・可干渉光源、13A,13B・・・照射受光光学系、14・・・偏光ビームスプリッタ、15a〜15c・・・レンズ、16・・・反射光学系、17a,17b・・・マイクロコーナーキューブプリズム集合ミラー、17p・・・マイクロコーナーキューブプリズム、18a,18b・・・1/4波長板、19・・・受光部   1A, 1B, 1C, 1D ... Optical displacement measuring device, 11A, 11B ... Scale section, 11T, 11R ... Diffraction grating, 12 ... Coherent light source, 13A, 13B ... Irradiation reception Optical system 14... Polarizing beam splitter, 15 a to 15 c... Lens, 16... Reflecting optical system, 17 a and 17 b. , 18b... Quarter-wave plate, 19.

Claims (3)

照射された光を回折する回折格子を有し、前記回折格子の格子ベクトル方向に相対移動するスケール部と、
可干渉光を出射する発光部と、
前記発光部により出射された可干渉光を2つの可干渉光に分割して、前記スケール部の前記回折格子に各可干渉光を照射し、2つの1回回折光を生じさせると共に、2つの1回回折光を前記回折格子により回折させて生じさせた2つの2回回折光を干渉させる照射受光光学系と、
2つの可干渉光を前記回折格子により回折させて生じさせた2つの1回回折光をそれぞれ反射して、前記回折格子に2つの1回回折光を照射する反射光学系と、
前記照射受光光学系により2つの2回回折光を干渉させた干渉光を受光して干渉信号を検出する受光部とを備え、
前記反射光学系は、直角を3つ合成した頂点を持つ三角錐のプリズムで構成されるコーナーキューブプリズムが、縦横に並べて配列されるマイクロコーナーキューブプリズム集合ミラーを有し、入射光を反射して前記入射光の光軸の方向に戻し、
前記照射受光光学系は、前記発光部から光源固有の放射角で出射された可干渉光を、ビーム径が広がる所定の放射角に絞って前記回折格子に照射する光学素子を備える
光学式変位測定装置。
A scale part that has a diffraction grating that diffracts the irradiated light and moves relatively in the direction of the grating vector of the diffraction grating;
A light emitting unit for emitting coherent light;
The coherent light emitted from the light emitting unit is divided into two coherent lights, each coherent light is irradiated to the diffraction grating of the scale unit to generate two one-time diffracted lights, and two An irradiation light receiving optical system for causing interference between two two-time diffracted lights generated by diffracting one-time diffracted light by the diffraction grating;
A reflective optical system that reflects two one-time diffracted lights generated by diffracting two coherent lights by the diffraction grating, and irradiates the diffraction grating with two one-time diffracted lights;
A light receiving unit that receives interference light obtained by interfering two two-time diffracted lights by the irradiation light receiving optical system and detects an interference signal;
The reflection optical system has a micro-cube cube prism assembly mirror in which corner cube prisms composed of triangular pyramid prisms having apexes composed of three right angles are arranged side by side to reflect incident light. Return to the direction of the optical axis of the incident light,
The irradiation light receiving optical system includes an optical displacement measurement device including an optical element that irradiates the diffraction grating with a coherent light emitted from the light emitting unit at a radiation angle unique to a light source with a predetermined radiation angle with a wide beam diameter. apparatus.
前記回折格子は反射型である請求項記載の光学式変位測定装置。 The diffraction grating is an optical displacement measuring apparatus according to claim 1, wherein a reflection type. ビーム内の波面状態を維持して光路長を均一にする波面調整光学素子を備えた
請求項1又は2に記載の光学式変位測定装置。
Optical displacement measuring apparatus according to claim 1 or 2 including a wavefront adjusting optical element to uniform the optical path length while maintaining the wavefront state of the beam.
JP2008200133A 2008-08-01 2008-08-01 Optical displacement measuring device Active JP5235554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008200133A JP5235554B2 (en) 2008-08-01 2008-08-01 Optical displacement measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008200133A JP5235554B2 (en) 2008-08-01 2008-08-01 Optical displacement measuring device

Publications (2)

Publication Number Publication Date
JP2010038654A JP2010038654A (en) 2010-02-18
JP5235554B2 true JP5235554B2 (en) 2013-07-10

Family

ID=42011368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008200133A Active JP5235554B2 (en) 2008-08-01 2008-08-01 Optical displacement measuring device

Country Status (1)

Country Link
JP (1) JP5235554B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011082156A1 (en) * 2010-12-16 2012-06-21 Dr. Johannes Heidenhain Gmbh Optical position measuring device
JP5905729B2 (en) * 2011-10-26 2016-04-20 Dmg森精機株式会社 Displacement detector
CN106289336B (en) 2011-11-09 2019-07-09 齐戈股份有限公司 Bilateral interferometry encoder system
JP5890531B2 (en) * 2011-11-09 2016-03-22 ザイゴ コーポレーションZygo Corporation Small encoder head for interferometric encoder systems
WO2013073538A1 (en) * 2011-11-17 2013-05-23 株式会社ニコン Encoder device, movement amount measurement method, optical device, and exposure method and device
JP7497122B2 (en) 2020-04-14 2024-06-10 株式会社ミツトヨ Optical Displacement Sensor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119623B2 (en) * 1986-01-14 1995-12-20 キヤノン株式会社 Displacement measuring device
JPH07119626B2 (en) * 1986-02-27 1995-12-20 キヤノン株式会社 Rotary encoder
JPS63231217A (en) * 1987-03-19 1988-09-27 Omron Tateisi Electronics Co Measuring instrument for movement quantity
JP3806769B2 (en) * 1999-11-15 2006-08-09 独立行政法人科学技術振興機構 Position measuring device
JP2003028673A (en) * 2001-07-10 2003-01-29 Canon Inc Optical encoder, semiconductor manufacturing apparatus, device manufacturing method, semiconductor manufacturing plant and maintaining method for semiconductor manufacturing apparatus
US7075097B2 (en) * 2004-03-25 2006-07-11 Mitutoyo Corporation Optical path array and angular filter for translation and orientation sensing
JP4722474B2 (en) * 2004-12-24 2011-07-13 株式会社ミツトヨ Displacement detector
JP2006243618A (en) * 2005-03-07 2006-09-14 Three M Innovative Properties Co Cube cornered double-sided retroreflective element

Also Published As

Publication number Publication date
JP2010038654A (en) 2010-02-18

Similar Documents

Publication Publication Date Title
US8687202B2 (en) Displacement detecting device
US9175987B2 (en) Displacement detecting device
JP4852318B2 (en) Displacement detector, polarizing beam splitter, and diffraction grating
JP5235554B2 (en) Optical displacement measuring device
JP6322069B2 (en) Displacement detector
JP5095475B2 (en) Optical displacement measuring device
KR101822566B1 (en) Position detection device
JP2004144581A (en) Displacement detecting apparatus
JP5695478B2 (en) Optical displacement measuring device
US6166817A (en) Optical displacement measurement system for detecting the relative movement of a machine part
JP4023923B2 (en) Optical displacement measuring device
JP7064425B2 (en) Optical encoder
US8797546B2 (en) Interferometric distance measurement device using a scanning plate and transparent carrier substrate containing a reflector element
JP4023917B2 (en) Optical displacement measuring device
JP5421677B2 (en) Displacement measuring device using optical interferometer
JP7141313B2 (en) Displacement detector
JP6786442B2 (en) Displacement detector
JP5918592B2 (en) Position detection device
JP5936399B2 (en) Position detection device
JP2003035570A (en) Diffraction interference type linear scale
JP2006349382A (en) Phase shift interferometer
JP5969274B2 (en) Position detection device
JP7042183B2 (en) Displacement detector
JP4154038B2 (en) Optical displacement measuring device
JPS63309817A (en) Linear encoder

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091111

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100910

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100913

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130326

R150 Certificate of patent or registration of utility model

Ref document number: 5235554

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250