[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0259699A - Operating method for nuclear reactor apparatus cooling equipment - Google Patents

Operating method for nuclear reactor apparatus cooling equipment

Info

Publication number
JPH0259699A
JPH0259699A JP63209375A JP20937588A JPH0259699A JP H0259699 A JPH0259699 A JP H0259699A JP 63209375 A JP63209375 A JP 63209375A JP 20937588 A JP20937588 A JP 20937588A JP H0259699 A JPH0259699 A JP H0259699A
Authority
JP
Japan
Prior art keywords
cooling
reactor
seawater
heat exchanger
reactor equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63209375A
Other languages
Japanese (ja)
Inventor
Takahisa Kondo
近藤 隆久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63209375A priority Critical patent/JPH0259699A/en
Publication of JPH0259699A publication Critical patent/JPH0259699A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To suppress water temperature of a well pool to a low level in the beginning of a periodical inspection by feeding sea water from a sea water pump of the other train to heat exchangers of nuclear reactor apparatus cooling systems of two trains, when a sea water pump of one train stops. CONSTITUTION:When for instance, a nuclear reactor apparatus cooling sea water pump 15a is stopped for the purpose of an inspection, sea water which is brought to intake by a sea water pump 15b of the other train is fed to a nuclear reactor apparatus cooling heat exchanger 11b, and also, fed to a nuclear reactor apparatus cooling heat exchanger 11a of the other train through a sea water supply tie line 17. Pool water which is brought to intake through a surge tank 6 from a fuel pool 2 is cooled by fuel pool cooling and purifying heat exchangers 8a, 8b. Filtered water which is brought to intake from a nuclear reactor pressure vessel 3 is cooled by residual heat eliminating heat exchangers 5a, 5b. Cooling water which is warmed up by the heat exchangers 5a, 5b, 8a and 8b is cooled by the nuclear reactor apparatus cooling heat exchangers 11a, 11b. In such a way, even in the course of inspecting the sea water pump of one train, water of a well pool 1 can be cooled by two sets of residual heat eliminating heat exchangers 5a, 5b.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は原子炉および原子炉機器を冷却する原子炉機器
冷却設備の運転方法に係り、特に原子炉ウェルプール廻
りの作業性改善と定期検査(以下、定検と記す)期間の
短縮を両立させた原子炉機器冷却設備の運転方法に関す
る。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention relates to a method of operating a nuclear reactor equipment cooling facility that cools a nuclear reactor and reactor equipment, and is particularly applicable to operations around a reactor well pool. This invention relates to an operating method for nuclear reactor equipment cooling equipment that achieves both improved performance and shortened periodic inspection (hereinafter referred to as periodic inspection) period.

(従来の技術) 一般に原子力発電プラントでは約1年に1回の割合で定
検および燃料の交換が行なわれる。燃料交換時には原子
炉ウェルと機器仮置プールに水張りが行なわれている。
(Prior Art) Generally, in nuclear power plants, periodic inspections and fuel replacement are performed approximately once a year. During fuel exchange, the reactor well and equipment temporary pool are filled with water.

また燃料を水中で移動させるため燃料プールゲートが開
けられ、原子炉、原子炉ウェルプール。
In addition, the fuel pool gate is opened to move fuel underwater, and the reactor and reactor well pool.

機器仮置プール、燃料プールは一つの大きなプ−ルにな
っている。
The equipment temporary storage pool and fuel pool are one large pool.

原子炉には、炉心燃料が、燃料プールには使用済燃料が
置かれ、各々崩壊熱を発生しているので残留熱除去系と
燃料プール冷却浄化系で連続的に冷却を行っている。最
近のプラントでは原子炉機器冷却系からこの両系に冷却
水を供給している。
The reactor contains core fuel, and the fuel pool contains spent fuel, each of which generates decay heat, so they are continuously cooled by a residual heat removal system and a fuel pool cooling and purification system. In modern plants, cooling water is supplied to both systems from the reactor equipment cooling system.

定検中には各機器の保修点検を実施するが、原子炉停止
直後では崩壊熱が大きいことから2系列で運転する。
During periodic inspections, maintenance and inspection of each equipment will be carried out, but immediately after the reactor is shut down, two trains will be operated due to the large amount of decay heat.

以下、第3図を参照しながら従来の運転方法を説明する
The conventional operating method will be explained below with reference to FIG.

第3図において、符号1は原子炉ウェルプール。In FIG. 3, numeral 1 is the reactor well pool.

2は燃料プールを示している。原子炉圧力容器3から取
水された炉水は残留熱除去ポンプ4(4a4b)、残留
熱除去熱交換器5 (5a、5b>を通り冷却された後
、原子炉圧力容器3に戻される。
2 indicates a fuel pool. Reactor water taken from the reactor pressure vessel 3 is cooled through the residual heat removal pump 4 (4a4b) and the residual heat removal heat exchanger 5 (5a, 5b>), and then returned to the reactor pressure vessel 3.

一方、燃料プール水はサージタンク6から取水され、燃
料プール用冷却浄化ポンプ7 (7a、7b )から、
燃料プール用冷却浄化熱交換器8(8a。
On the other hand, fuel pool water is taken from the surge tank 6, and from the fuel pool cooling purification pump 7 (7a, 7b).
Fuel pool cooling purification heat exchanger 8 (8a.

8b)で冷却、ろ過脱塩装置9 (9a、9b )で浄
化された後、燃料プール2または原子炉ウェルプール1
に戻されている。
After being cooled in 8b) and purified in filtration and demineralization equipment 9 (9a, 9b), the fuel pool 2 or reactor well pool 1
has been returned to.

残留熱除去熱交換器5 (5a、5b ’)及び燃料プ
ール冷却浄化熱交換器8 (8a、8b )で炉水や燃
料プール水と熱交換を行い、温められた冷却水は各々の
熱交換器5,8を流出した後、原子炉機器冷却ポンプ1
0.原子炉機器冷却熱交換器11 (11a 。
Residual heat removal heat exchanger 5 (5a, 5b') and fuel pool cooling purification heat exchanger 8 (8a, 8b) exchange heat with reactor water and fuel pool water, and the heated cooling water is transferred to each heat exchanger. After flowing out of reactor equipment cooling pump 1
0. Reactor equipment cooling heat exchanger 11 (11a).

11b)を通り冷却されて、再び各々の熱交換器5゜8
へ送られる。前記冷却水は常用負荷12 (12a 。
11b) and cooled again through each heat exchanger 5°8.
sent to. The cooling water is a regular load 12 (12a).

12b)へも送られている。12b).

原子炉機器冷却熱交換器11 (lla、11b)では
前述の冷却水と原子炉機器冷却海水ポンプ15 (15
a。
The reactor equipment cooling heat exchanger 11 (lla, 11b) uses the aforementioned cooling water and the reactor equipment cooling seawater pump 15 (15
a.

15b)から送られた海水との間で熱交換が行なわれ、
温められた海水は海へ放出される。
Heat exchange takes place with the seawater sent from 15b),
The warmed seawater is released into the ocean.

第3図申付号16は海水供給タイライン止め弁、17は
海水供給タイライン、18は戻りタイライン止め弁、1
9は戻りタイライン、20は海水タイラン、20は海水
タイライン止め弁、21は海水タイランイ、22は炉心
燃料、23は使用済燃料をそれぞれ示している。
Figure 3: Notice number 16 is a seawater supply tie line stop valve, 17 is a seawater supply tie line stop valve, 18 is a return tie line stop valve, 1
9 is a return tie line, 20 is a seawater tie line, 20 is a seawater tie line stop valve, 21 is a seawater tie line, 22 is a core fuel, and 23 is a spent fuel.

第3図から明らかなように、海水供給タイライン止め弁
16.戻りタイライン止め弁18及び海水タイライン止
め弁20は閉じ、原子炉圧力容器3から海へ熱が運ばれ
るルートは独立して第1の系列(A)と第2の系列(B
)の2系列となっているが、定期期間中は各機器の保修
点検をする必要がおるため、常に2系列の機器を仝台運
転することはできない。
As is clear from FIG. 3, the seawater supply tie line stop valve 16. The return tie line stop valve 18 and the seawater tie line stop valve 20 are closed, and the routes by which heat is carried from the reactor pressure vessel 3 to the sea are independently divided into the first series (A) and the second series (B).
), but because each piece of equipment needs to be inspected and maintained during a regular period, it is not possible to operate two sets of equipment at all times.

特に原子炉機器冷却海水ポンプ15 (15a、 15
 ’)については海水をポンプ吸込口まで導いている取
水櫓等の保修点検を行う必要がおるため少なくとも片系
列の全てが使用できなくなる。一方、原子炉機器冷却系
は定検中も冷却水の供給が連絡して必要な常用負荷12
があるため、2系列ともに全停止することはできない。
In particular, the reactor equipment cooling seawater pump 15 (15a, 15
Regarding '), it is necessary to perform maintenance and inspection of the water intake turret, etc. that guides seawater to the pump suction port, so at least one series will be unusable. On the other hand, the reactor equipment cooling system remains connected to the cooling water supply even during periodic inspections, and the necessary regular load is 12.
Therefore, it is not possible to completely stop both trains.

そこで、原子炉機器冷却水系には、2系列間に海水タイ
ライン20を設け、次のような運用を定検時に行ってい
る。
Therefore, a seawater tie line 20 is installed between two systems in the reactor equipment cooling water system, and the following operations are performed during periodic inspections.

これを第4図について説明する。第4図中、第3図と同
一部分には同一符号で示し、重複する部分の説明は省略
し、その要点のみ述べる。
This will be explained with reference to FIG. In FIG. 4, the same parts as in FIG. 3 are designated by the same reference numerals, and the explanation of the overlapping parts will be omitted and only the main points will be described.

以下は原子炉機器冷却水系Aを停止した場合を述べるが
、原子炉機器冷却水系Bを停止した場合にはA/Bの状
態が逆になるだけで、全体の機能に相違はない。
The following describes the case where the reactor equipment cooling water system A is stopped, but when the reactor equipment cooling water system B is stopped, the A/B status is simply reversed, and there is no difference in the overall function.

残留熱除去系は例えば1系列(B側)のみを運転する。For example, only one residual heat removal system (B side) is operated.

原子炉圧力容器3から取水し、残留熱除去ポンプ4b、
残留熱除去熱交換器5bを通して冷却された炉水は圧力
容器3に戻される。
Water intake from the reactor pressure vessel 3, residual heat removal pump 4b,
The cooled reactor water is returned to the pressure vessel 3 through the residual heat removal heat exchanger 5b.

燃料プール冷却浄化系は前述の2系列運転時と同様2系
列を運転する。
Two lines of the fuel pool cooling and purification system are operated in the same way as in the two-line operation described above.

原子炉機器冷却水系Aは原子炉機器冷却ポンプ10aを
停止し、残留熱除去熱交換器出口弁14aは閉じる。原
子炉機器冷却海水系Aは海水ポンプ15aを停止する。
The reactor equipment cooling water system A stops the reactor equipment cooling pump 10a, and the residual heat removal heat exchanger outlet valve 14a closes. The reactor equipment cooling seawater system A stops the seawater pump 15a.

以上により、原子炉機器冷却系Aの冷却水ポンプ10a
、原子炉機器冷却熱交換器11aおよび原子炉機器冷却
海水系Aの海水ポンプ15aは保修点検が可能となる。
As described above, the cooling water pump 10a of the reactor equipment cooling system A
, the reactor equipment cooling heat exchanger 11a and the seawater pump 15a of the reactor equipment cooling seawater system A can be maintained and inspected.

一方、原子炉機器冷却水系B、原子炉機器冷却海水系B
は運転しており、残留熱除去熱交換器5b、燃料プール
冷却浄化熱交換器3b、常用負荷12bでは除熱が行な
われる。同時に原子炉機器冷却熱交換器11b下流から
分岐した海水タイライン21上の海水タイライン止め弁
20と、原子炉機器冷却ポンプ10b上流に接続してい
る戻りタイライン19上の戻りイライン止め弁18を開
けて原子炉機器冷却水系Aにも冷却水を供給する。即ち
、原子炉機器冷却熱交換器11bで冷却された冷却水は
海水タイライン21へ分流し、燃料プール冷却浄化熱交
換器3a、常用負荷12aに送られた俊、合流し、戻り
タイライン19を通じて原子炉機器冷却ポンプ10bに
戻され再び原子炉機器冷却熱交換器11bへ送られる。
On the other hand, reactor equipment cooling water system B, reactor equipment cooling seawater system B
is in operation, and heat is removed in the residual heat removal heat exchanger 5b, the fuel pool cooling purification heat exchanger 3b, and the regular load 12b. At the same time, a seawater tie line stop valve 20 on a seawater tie line 21 branched from the downstream side of the reactor equipment cooling heat exchanger 11b and a return tie line stop valve 18 on a return tie line 19 connected to the upstream side of the reactor equipment cooling pump 10b. Open it to supply cooling water to the reactor equipment cooling water system A as well. That is, the cooling water cooled by the reactor equipment cooling heat exchanger 11b is diverted to the seawater tie line 21, sent to the fuel pool cooling purification heat exchanger 3a, the regular load 12a, and then merged and returned to the tie line 19. It is returned to the reactor equipment cooling pump 10b through the reactor equipment cooling pump 10b and sent again to the reactor equipment cooling heat exchanger 11b.

この場合、前述した様に残留熱除去熱交換器出口弁14
aは閉じているので、残留熱除去熱交換器5aには通水
されない。通水しない理由は同然交換器5aに必要な通
水量がタイライン19゜21を用いない場合の1系列全
体の冷却水量の約50%を占めているためである。即ち
、前述のタイライン運転時に残留熱除去熱交換器5aに
も通水できる様にするには冷却ポンプ10の容量を約5
0%増やす必要があり、経済的に得策でないからである
In this case, as described above, the residual heat removal heat exchanger outlet valve 14
Since point a is closed, no water is passed through the residual heat removal heat exchanger 5a. The reason why water does not flow is that the amount of water required to flow through the exchanger 5a accounts for about 50% of the amount of cooling water in one series as a whole when the tie lines 19.21 are not used. That is, in order to allow water to also flow through the residual heat removal heat exchanger 5a during the aforementioned tie line operation, the capacity of the cooling pump 10 should be increased to approximately 5.
This is because it is necessary to increase the amount by 0%, which is not economically advisable.

ところで、プラントの種類により原子炉機器冷却海水系
間にも海水供給タイラインを設けている場合がある。
Incidentally, depending on the type of plant, a seawater supply tie line may also be provided between the reactor equipment cooling seawater systems.

第4図において、海水ポンプ15a出口から分岐し海水
ポンプ15b出口に接続する海水供給うイン17がそれ
でおる。海水供給タイライン17には海水供給タイライ
ン止め弁16が設けられ通常は使用しないためその止め
弁16は閉じている。
In FIG. 4, there is a seawater supply inlet 17 that branches from the seawater pump 15a outlet and connects to the seawater pump 15b outlet. The seawater supply tie line 17 is provided with a seawater supply tie line stop valve 16, and the stop valve 16 is normally closed because it is not used.

この海水給水タイライン17は何らかの理由で冷却水系
の海水タイライン21.戻りタイライン19が利用でき
ない場合の後備として設置されているが、その様な場合
の発生は希と考えられるため、設置しているプラントと
設置していないプラントがある。
For some reason, this seawater supply tie line 17 is connected to the seawater tie line 21 of the cooling water system. It is installed as a backup in case the return tie line 19 is unavailable, but since such a situation is considered to be rare, some plants have it installed and others do not.

(発明が解決しようとする課題) 最近ではプラントの稼動率を良くするため、定期期間の
短縮を図ることが重要な設計課題となっている。一方、
海水ポンプは保修点検作業に長時間装するが、前述した
様に2系列のうち少なくとも1系列は連続運転が必要な
ため、2系列の海水ポンプの保修・点検の作業期間は多
大なものとなっている。従って、定検短縮の為には、原
子炉停止後から1日でも早く海水ポンプの保修を始める
ことが必要となる。しかし、前述した方法による冷却で
は、海水ポンプの停止時期を早めると、原子炉機器冷却
系全体の冷却能力が低下するため、原子炉ウェルプール
1のピーク水温が上がってしまう。
(Problems to be Solved by the Invention) Recently, in order to improve the operating rate of plants, shortening the regular period has become an important design issue. on the other hand,
Seawater pumps are used for long periods of time for maintenance and inspection work, but as mentioned above, at least one of the two series requires continuous operation, so the maintenance and inspection work period for the two series of seawater pumps is very long. ing. Therefore, in order to shorten periodic inspections, it is necessary to begin maintenance of seawater pumps as early as possible after the nuclear reactor is shut down. However, in the cooling method described above, if the seawater pump is stopped early, the cooling capacity of the entire reactor equipment cooling system decreases, and the peak water temperature of the reactor well pool 1 increases.

この状態を第5図について説明する。第5図は従来の運
転方法によるプール水温を示しており、縦軸に温度を、
横軸に定検日数を示している。
This state will be explained with reference to FIG. Figure 5 shows the pool water temperature according to the conventional operation method, with temperature on the vertical axis,
The horizontal axis shows the number of regular inspection days.

前述したように海水ポンプの停止に合わせて停止系列側
の冷却水ポンプを停止するとともに残留熱除去熱交換器
への通水を停止するため、炉水は残留熱除去熱交換器1
基で除熱することになり、結果として、原子炉ウェルプ
ール水温が上昇する。
As mentioned above, when the seawater pump is stopped, the cooling water pump on the stop train side is stopped and water flow to the residual heat removal heat exchanger is also stopped, so the reactor water is transferred to the residual heat removal heat exchanger 1.
As a result, the reactor well pool water temperature increases.

その後プール水温は燃料の崩壊熱減衰に伴って低下する
ので水温はある時点でピークを生じる。
Thereafter, the pool water temperature decreases as the decay heat of the fuel attenuates, so the water temperature peaks at a certain point.

ピーク温度は崩壊熱が大きい程高くなるので、海水ポン
プの停止時期を早めるとピーク温度も高くなる関係とな
る。
Since the peak temperature increases as the decay heat increases, the sooner the seawater pump is stopped, the higher the peak temperature will become.

定検時には燃料交換等原子炉ウェルプール1の周辺およ
び水面上部で作業が行なわれており、水温の上昇は作業
性の面でマイナスとなる。水温を下げるには熱交換器の
容量をアップすれば良いが、経済的でない。
During regular inspections, work such as fuel exchange is carried out around the reactor well pool 1 and above the water surface, and an increase in water temperature has a negative impact on work efficiency. In order to lower the water temperature, it would be possible to increase the capacity of the heat exchanger, but this is not economical.

本発明はこのような点を考慮してなされたもので、短縮
された定検工程でも熱交換器などの容量をアップするこ
となく、原子炉ウェルプールのピーク水温を低く抑える
ことができかつ作業性を改善し得る原子炉機器冷却設備
の運転方法を提供することにある。
The present invention was developed with these points in mind, and it is possible to keep the peak water temperature of the reactor well pool low even during the shortened periodic inspection process without increasing the capacity of heat exchangers, etc. An object of the present invention is to provide a method of operating a nuclear reactor equipment cooling facility that can improve performance.

[発明の構成] (課題を解決するための手段) 本発明は原子炉圧力容器内の炉水の一部をその下部から
取水して残留熱除去用熱交換器により冷却し再び原子炉
圧力容器に戻す残留熱除去系を2系列有し、前記残留熱
除去用熱交換器を冷却して温められた冷却水を原子炉機
器冷却熱交換器により冷却した後、再び前記残留除去用
熱交換器に送る原子炉機器冷却系を2系列有し、原子炉
機器冷却海水ポンプから海水を取水し前記原子炉機器冷
却熱交換器に送って冷却する原子炉機器冷却海水系を2
系列有し、前記原子炉機器冷却系の第1の原子炉機器冷
却海水ポンプの出口側と第2の系列の原子炉機器冷却海
水ポンプの出口側を海水供給タイラインにより連絡させ
てなる原子炉機器冷却設備の運転方法に6いて、前記第
1の系列の原子炉機器冷却海水ポンプを停止し、前記第
2の系列の原子炉機器冷却海水ポンプから取水した海水
を前記第2の系列の原子炉機器冷却熱交換器と前記海水
供給タイラインを通して前記第1の系列の原子炉機器冷
却熱交換器に送り冷却することを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) The present invention takes a part of the reactor water in the reactor pressure vessel from the lower part, cools it with a heat exchanger for removing residual heat, and then returns it to the reactor pressure vessel. It has two lines of residual heat removal systems that return the residual heat removal system to the residual heat removal heat exchanger, and after cooling the heated cooling water by cooling the residual heat removal heat exchanger with the reactor equipment cooling heat exchanger, the residual heat removal system returns to the residual heat removal heat exchanger. The reactor equipment cooling seawater system has two lines, which take seawater from the reactor equipment cooling seawater pump and send it to the reactor equipment cooling heat exchanger for cooling.
A nuclear reactor having a reactor equipment cooling system, the outlet side of the first reactor equipment cooling seawater pump of the reactor equipment cooling system and the outlet side of the second reactor equipment cooling seawater pump of the reactor equipment cooling system are connected by a seawater supply tie line. In step 6 of the operating method for equipment cooling equipment, the reactor equipment cooling seawater pump of the first series is stopped, and the seawater taken from the reactor equipment cooling seawater pump of the second series is transferred to the reactor equipment cooling seawater pump of the second series. It is characterized in that the seawater is sent to the reactor equipment cooling heat exchanger of the first series through the reactor equipment cooling heat exchanger and the seawater supply tie line for cooling.

(作 用) 1基列の原子炉機器冷却海水ポンプ15a(t5b)か
ら同系列の原子炉機器冷却熱交換器11a(llb)と
海水供給タイライン17を通じて他系列の原子炉機器冷
却熱交換器11b(lla)との双方に海水を供給する
と同時に原子炉機器冷却系2系列、残留熱除去系2系列
を運転する。これにより定検初期の原子炉ウェルプール
水温を低く抑えることができる。
(Function) From the reactor equipment cooling seawater pump 15a (t5b) of one series to the reactor equipment cooling heat exchanger 11a (llb) of the same series and the seawater supply tie line 17 to the reactor equipment cooling heat exchanger of other series. At the same time, two lines of reactor equipment cooling systems and two lines of residual heat removal systems are operated. This makes it possible to keep the reactor well pool water temperature low at the beginning of periodic inspections.

すなわち、原子炉ウェルプールの水は1基列の海水ポン
プ保修点検中でも残留熱除去熱交換器2基により冷却さ
れるので、水温を低く保つことができる。その後、1基
運転に切替る時期を原子炉停止後からより遅くできるの
で切替時のピーク温度を低く抑えることができる。
That is, since the water in the reactor well pool is cooled by the two residual heat removal heat exchangers even during maintenance and inspection of one row of seawater pumps, the water temperature can be kept low. Thereafter, the timing of switching to single-unit operation can be delayed from after the nuclear reactor has stopped, so the peak temperature at the time of switching can be kept low.

(実施例) 第1図および第2図を参照しながら本発明に係る原子炉
機器冷却設備の運転方法の一実施例を説明する。
(Example) An example of the method of operating a nuclear reactor equipment cooling facility according to the present invention will be described with reference to FIGS. 1 and 2.

なお、第1図中第3図と同一部分には同一符号を付しで
ある。
Note that the same parts in FIG. 1 as in FIG. 3 are given the same reference numerals.

第1図において、原子炉圧力容器3.原子炉ウェルプー
ル1および燃料プール2間に障壁はなく一つのプールと
なっている。
In FIG. 1, reactor pressure vessel 3. There is no barrier between the reactor well pool 1 and the fuel pool 2, and they form one pool.

原子炉圧力容器3の下部からは残留熱除去ポンプ4 (
4a、4b ) 、残留熱除去熱交換器5(5a。
A residual heat removal pump 4 (
4a, 4b), residual heat removal heat exchanger 5 (5a.

5b)を介して原子炉圧力d器に戻る残留熱除去系プー
ルが形成ざ机でいる。
A residual heat removal system pool is formed which returns to the reactor pressure reactor via 5b).

燃料プール2にはサージタンク6が隣接して設置されて
いる。サージタンク6からは燃料プール冷却浄化ポンプ
7 (7a、7b ) 、燃料プール冷却浄化熱交換器
8 (8a、8b ) 、ろ過説塩装置9(9a、9b
 )を経て燃料プール2.原子炉ウェルプール1に連絡
している。
A surge tank 6 is installed adjacent to the fuel pool 2. From the surge tank 6 are a fuel pool cooling purification pump 7 (7a, 7b), a fuel pool cooling purification heat exchanger 8 (8a, 8b), and a filtration chlorination device 9 (9a, 9b).
) to the fuel pool 2. Contacting reactor well pool 1.

残留熱除去系は2系列設けられてあり、残留熱除去熱交
換器5 (5a、5b )は2基設置されている。燃料
プール冷却浄化系も各機器2基有しており、燃料プール
冷却浄化熱交換器8 (8a、8b )も2基設置され
ている。2基ずつの熱交換器5゜8はA、B系列に分か
れて、やはり2基列の原子炉機器冷却系に配管されてい
る。
Two residual heat removal systems are provided, and two residual heat removal heat exchangers 5 (5a, 5b) are installed. The fuel pool cooling purification system also has two units of each device, and two fuel pool cooling purification heat exchangers 8 (8a, 8b) are also installed. The two heat exchangers 5.8 are divided into A and B series, which are also piped to the reactor equipment cooling system in two series.

原子炉機器冷却ポンプ10 (10a、10b )から
は原子炉機器冷却熱交換器11 (lla、11b )
を経て、各熱交換器5,8および常用負荷12 (12
a、12b ’)に対して並列に配管されており、下流
側も並列に合流した後原子炉冷却ポンプ10に接続して
いる。
From the reactor equipment cooling pumps 10 (10a, 10b) to the reactor equipment cooling heat exchangers 11 (lla, 11b)
through each heat exchanger 5, 8 and regular load 12 (12
a, 12b'), and the downstream side is also connected to the reactor cooling pump 10 after merging in parallel.

残留熱除去熱交換器5の冷却水側配管には残留熱除去熱
交換器人口弁13 (13a、13b )と残留熱除去
熱交換器出口弁14 (14a、14b )が設けられ
ている。原子炉機器冷却海水ポンプ15 (15a、1
5b )は原子炉機器冷却熱交換器11 (lla、1
1b )を経て海水の放出配管を出口に接続している。
The cooling water side piping of the residual heat removal heat exchanger 5 is provided with residual heat removal heat exchanger artificial valves 13 (13a, 13b) and residual heat removal heat exchanger outlet valves 14 (14a, 14b). Reactor equipment cooling seawater pump 15 (15a, 1
5b) is the reactor equipment cooling heat exchanger 11 (lla, 1
1b), the seawater discharge piping is connected to the outlet.

本発明では、原子炉機器冷却海水ポンプ15aを保修点
検のため停止した後、同系からの機器の保修点検を始め
るまでの間数の運転を行う。
In the present invention, after the reactor equipment cooling seawater pump 15a is stopped for maintenance inspection, it is operated several times until maintenance inspection of equipment from the same system is started.

原子炉圧力容器3の下部から取水された炉水は、残留熱
除去ポンプ4で昇圧された後残留熱除去熱交換器5で冷
却され原子炉圧力容器3へ戻される。
Reactor water taken from the lower part of the reactor pressure vessel 3 is pressurized by the residual heat removal pump 4, cooled by the residual heat removal heat exchanger 5, and returned to the reactor pressure vessel 3.

また、燃料プール2からサージタンク6を経て取水され
たプール水は燃料プール冷却浄化ポンプ7 (7a、7
b )で昇圧された後、燃料プール冷却浄化熱交換器8
 (8a、8b )で冷却され、ろ過脱塩装置9 (9
a、9b )で浄化され、原子炉ウェルプール1または
燃料プール2に戻される。
In addition, the pool water taken from the fuel pool 2 via the surge tank 6 is supplied to the fuel pool cooling purification pump 7 (7a, 7
After being pressurized in b), the fuel pool cooling purification heat exchanger 8
(8a, 8b), and is cooled by the filtration and desalination equipment 9 (9
a, 9b) and returned to the reactor well pool 1 or fuel pool 2.

残留熱除去熱交換器5 (5a、5b )および燃料プ
ール冷却浄化熱交換器8 (8a、8b )で熱交換し
、温められた冷却水は常用負荷12で温められた冷却水
と合流し、原子炉機器冷却ポンプ10 (10a。
The cooled water heated by exchanging heat with the residual heat removal heat exchanger 5 (5a, 5b) and the fuel pool cooling purification heat exchanger 8 (8a, 8b) joins the cooled water warmed by the regular load 12, Reactor equipment cooling pump 10 (10a.

10t) )で昇圧、原子炉機器冷却熱交換器11で冷
却され、再び残留熱除去熱交換器5.燃料プール冷却浄
化熱交換器8 (8a、8b )で常用負荷12へ送ら
れる。
10t)), cooled by the reactor equipment cooling heat exchanger 11, and then transferred again to the residual heat removal heat exchanger 5. The fuel is sent to the regular load 12 through the fuel pool cooling purification heat exchanger 8 (8a, 8b).

原子炉機器冷却海水ポンプ15bで昇圧された海水は原
子炉機器冷却熱交換器11bに送られると同時に海水供
給タイライン17を通じて他系統の原子炉機器冷却熱交
換器11aにも送られ、熱交換して温められた後、海へ
放出される。
The seawater pressurized by the reactor equipment cooling seawater pump 15b is sent to the reactor equipment cooling heat exchanger 11b, and at the same time is also sent to the reactor equipment cooling heat exchanger 11a of another system through the seawater supply tie line 17, where heat exchange is performed. After being heated, it is released into the ocean.

しかして、海水ポンプの保修に要する期間は他の機器に
比較して長いので海水系を片系列停止した時点から何日
間かは他の機器を運転できる。海水ポンプか保修点検開
示が遅れてもクリティカルにはならない。この間海水系
はタイライン運転。
However, since the period required for maintenance of seawater pumps is longer than that of other equipment, other equipment can be operated for several days after one part of the seawater system is stopped. Even if there is a delay in disclosing the maintenance and inspection of the seawater pump, it will not become critical. During this time, the seawater system is in tie-line operation.

冷却水系は2系列運転を行えば海水系の片系列全停止ま
での時間が稼げるので崩壊熱の減衰に見合ったピーク温
度の低減効果が得られる。すなわち、定検短縮のため海
水ポンプの停止時期を早くした場合、従来例のように片
系列の原子炉機器冷却ポンプと原子炉機器冷却海水系を
同時に停止すると停止時の原子炉ウェルプール水のピー
ク温度は第5図に示すように高いものになるが本実施例
によれば第2図に示すようにピーク温度を低く抑えるこ
とができる。
If the cooling water system is operated in two lines, time can be acquired until one line of the seawater system is completely shut down, so that the effect of reducing the peak temperature commensurate with the attenuation of decay heat can be obtained. In other words, if the seawater pumps are stopped earlier to shorten periodic inspections, if the reactor equipment cooling pump and the reactor equipment cooling seawater system of one train are stopped at the same time as in the conventional example, the reactor well pool water at the time of shutdown will be reduced. Although the peak temperature is high as shown in FIG. 5, according to this embodiment, the peak temperature can be kept low as shown in FIG.

[発明の効果] 本発明によれば定検短縮のために海水ポンプの停止時期
を早くした場合でも設備容量をアップすることなく停止
時の原子炉ウェルプール水のピーク温度を低く抑えるこ
とができる。また、原子炉ウェルプール廻りの作業性を
改善し定検短縮を達成できる。
[Effects of the Invention] According to the present invention, even if the seawater pump is stopped earlier in order to shorten periodic inspections, the peak temperature of the reactor well pool water at the time of shutdown can be kept low without increasing the equipment capacity. . Additionally, workability around the reactor well pool can be improved and periodic inspections can be shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る原子炉機器冷却設備の運転方法の
一実施例を説明するための系統図、第2図は本発明の運
転方法によるプール水温を示す特性図、第3図および第
4図はそれぞれ従来の運転方法を説明するための系統図
、第5図は従来の運転方法によるプール水温を示す特性
図でおる。 1・・・原子炉ウェルプール 2・・・燃料プール 3・・・原子炉圧力容器 4・・・残留熱除去ポンプ 5・・・残留熱除去熱交換器 6・・・サージタンク 7・・・燃料プール冷却浄化ポンプ 8・・・燃料プール冷却浄化熱交換器 9・・・ろ過脱塩装置 10・・・原子炉機器冷却ポンプ 11・・・原子炉機器冷却熱交換器 12・・・常用負荷 13・・・残留熱除去熱交換器人口弁 14・・・残留熱除去熱交換器出口弁 15・・・原子炉機器冷却海水ポンプ 16・・・海水供給タイライン止め弁 17・・・海水供給タイライン 18・・・戻りタイライン止め弁 19・・・戻りタイライン 20・・・海水タイライン止め弁 21・・・海水タイライン 22・・・炉心燃料 23・・・使用済燃料 (8733)代理人 弁理士 猪 股 祥 晃(ばか 
1名) 第1/1死月(A) 才2の系列(B) 第 3 図 湯度 ¥4図
FIG. 1 is a system diagram for explaining an embodiment of the method of operating a nuclear reactor equipment cooling equipment according to the present invention, FIG. 2 is a characteristic diagram showing pool water temperature according to the method of operating the present invention, and FIGS. 4 is a system diagram for explaining the conventional operating method, and FIG. 5 is a characteristic diagram showing the pool water temperature according to the conventional operating method. 1... Reactor well pool 2... Fuel pool 3... Reactor pressure vessel 4... Residual heat removal pump 5... Residual heat removal heat exchanger 6... Surge tank 7... Fuel pool cooling purification pump 8... Fuel pool cooling purification heat exchanger 9... Filtration desalination device 10... Reactor equipment cooling pump 11... Reactor equipment cooling heat exchanger 12... Regular load 13... Residual heat removal heat exchanger population valve 14... Residual heat removal heat exchanger outlet valve 15... Reactor equipment cooling seawater pump 16... Seawater supply tie line stop valve 17... Seawater supply Tie line 18... Return tie line stop valve 19... Return tie line 20... Seawater tie line stop valve 21... Seawater tie line 22... Core fuel 23... Spent fuel (8733) Agent Patent Attorney Yoshiaki Inomata (Baka
1 person) 1st/1st death month (A) 2nd grade series (B) 3rd figure Yudo ¥4 figure

Claims (1)

【特許請求の範囲】[Claims] 原子炉圧力容器内の炉水の一部をその下部から取水して
残留熱除去用熱交換器により冷却し再び原子炉圧力容器
に戻す残留熱除去系を2系列有し、前記残留熱除去用熱
交換器を冷却して温められた冷却水を原子炉機器冷却熱
交換器により冷却した後、再び前記残留熱除去用熱交換
器に送る原子炉機器冷却系を2系列有し、原子炉機器冷
却海水ポンプから海水を取水し前記原子炉機器冷却熱交
換器に送つて冷却する原子炉機器冷却海水系を2系列有
し、前記原子炉機器冷却系の第1の系列の原子炉機器冷
却海水ポンプの出口側と第2の系列の原子炉機器冷却海
水ポンプの出口側を海水供給タイラインにより連絡させ
ている原子炉機器冷却設備の運転方法において、前記第
1の系列の原子炉機器冷却海水ポンプを停止し、第2の
系列の原子炉機器冷却海水ポンプから取水した海水を第
2の系列の原子炉機器冷却熱交換器と前記海水供給タイ
ラインを通して前記第1の系列の原子炉機器冷却熱交換
器に送り冷却することを特徴とする原子炉機器冷却設備
の運転方法。
It has two residual heat removal systems that take in part of the reactor water in the reactor pressure vessel from its lower part, cool it with a heat exchanger for residual heat removal, and return it to the reactor pressure vessel again. It has two lines of reactor equipment cooling systems, in which the cooling water heated by cooling the heat exchanger is cooled by the reactor equipment cooling heat exchanger and then sent again to the residual heat removal heat exchanger. It has two series of reactor equipment cooling seawater systems that take seawater from a cooling seawater pump and send it to the reactor equipment cooling heat exchanger for cooling, and the reactor equipment cooling seawater in the first series of the reactor equipment cooling system. In the method of operating a reactor equipment cooling facility in which the outlet side of the pump and the outlet side of the reactor equipment cooling seawater pump of the second series are connected by a seawater supply tie line, the reactor equipment cooling seawater of the first series is connected to the outlet side of the reactor equipment cooling seawater pump of the second series. The pump is stopped, and the seawater taken from the seawater pump for cooling the reactor equipment of the second train is passed through the reactor equipment cooling heat exchanger of the second train and the seawater supply tie line to cool the reactor equipment of the first train. A method of operating a nuclear reactor equipment cooling equipment characterized by cooling equipment sent to a heat exchanger.
JP63209375A 1988-08-25 1988-08-25 Operating method for nuclear reactor apparatus cooling equipment Pending JPH0259699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63209375A JPH0259699A (en) 1988-08-25 1988-08-25 Operating method for nuclear reactor apparatus cooling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63209375A JPH0259699A (en) 1988-08-25 1988-08-25 Operating method for nuclear reactor apparatus cooling equipment

Publications (1)

Publication Number Publication Date
JPH0259699A true JPH0259699A (en) 1990-02-28

Family

ID=16571885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63209375A Pending JPH0259699A (en) 1988-08-25 1988-08-25 Operating method for nuclear reactor apparatus cooling equipment

Country Status (1)

Country Link
JP (1) JPH0259699A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5375151A (en) * 1991-12-09 1994-12-20 General Electric Company Reactor water cleanup system
CN101976589A (en) * 2010-09-14 2011-02-16 中广核工程有限公司 Nuclear island cooling system for double reactor units and cooling method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5375151A (en) * 1991-12-09 1994-12-20 General Electric Company Reactor water cleanup system
CN101976589A (en) * 2010-09-14 2011-02-16 中广核工程有限公司 Nuclear island cooling system for double reactor units and cooling method thereof

Similar Documents

Publication Publication Date Title
JP3226383B2 (en) Reactor
JPS6323519B2 (en)
JPS6138308A (en) Recirculator for secondary cooling material fo steam generator
EP0546798B1 (en) Reactor water cleanup and cooling system
JPH0259699A (en) Operating method for nuclear reactor apparatus cooling equipment
JP3667525B2 (en) Steam generator-attached nuclear power generation turbine facility
US4216057A (en) Purifying plant for water to be vaporized in a steam generator of a nuclear reactor
CN209843262U (en) Nuclear power plant nuclear fuel waste heat derivation system
JP2000275380A (en) Emergency core cooling system and its water intake equipment
JP2001091684A (en) Fuel pool cooling equipment
JPH03170095A (en) Coolant cleaning system for nuclear reactor
JP2001074874A (en) Cooling equipment for nuclear reactor or the like
JPH029720B2 (en)
JP5513846B2 (en) Nuclear power plant and method for operating the same
JP4351794B2 (en) Replenishment water facilities for nuclear power plants
JP2573284B2 (en) Operation method of reactor well pool cooling system
JPS61207997A (en) Nuclear reactor system facility
JPH04282497A (en) Method of controlling operation of auxiliary coolant sea water system of nuclear power plant
JPS62190496A (en) Purifier for coolant of nuclear reactor
JPS61231492A (en) Auxiliary facility for nuclear reactor
JPS62245083A (en) Auxiliary equipment cooling system
JPH0345800B2 (en)
JPS5882193A (en) Device for cleaning residual heat removal pipeline
CN111933321A (en) Heavy water reactor radioactive waste liquid discharge loop system and method
JPH05157489A (en) Operation control method of cooling sea water system