JPS61207997A - Nuclear reactor system facility - Google Patents
Nuclear reactor system facilityInfo
- Publication number
- JPS61207997A JPS61207997A JP60047484A JP4748485A JPS61207997A JP S61207997 A JPS61207997 A JP S61207997A JP 60047484 A JP60047484 A JP 60047484A JP 4748485 A JP4748485 A JP 4748485A JP S61207997 A JPS61207997 A JP S61207997A
- Authority
- JP
- Japan
- Prior art keywords
- reactor
- heat exchanger
- purification
- pump
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Radiation-Therapy Devices (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は残留熱除去系と原子炉冷却材浄化系とを有する
原子炉系設備に係り、特に、定期点検中での原子炉冷却
材の浄化能力を低下させることがないようにした原子炉
系設備に関する。Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to nuclear reactor equipment having a residual heat removal system and a reactor coolant purification system, and in particular, to purification of reactor coolant during periodic inspections. This invention relates to nuclear reactor equipment that does not reduce capacity.
一般に、沸騰水型原子力発電所では、運転機器の信頼性
を保持するために、定期的に原子炉の運転を停止して設
備の総点検を行なうことが義務づけられている。この点
検・検査を実施する間(以下、定検期間と称す)は、原
子炉内の炉心に全ての制御棒を挿入して原子炉を停止す
る。しかし、原子炉を停止しても、炉心からは崩壊熱が
絶えず発生し、炉水を加熱している。そのために、定検
期間中においても、残留熱除去系によって原子炉を冷却
しており、その一方、炉水は、原子炉冷却材浄化系によ
って浄化が継続されている。In general, in boiling water nuclear power plants, in order to maintain the reliability of operating equipment, it is mandatory to periodically stop the operation of the reactor and conduct a comprehensive inspection of the equipment. During this inspection/inspection period (hereinafter referred to as the periodic inspection period), all control rods are inserted into the reactor core and the reactor is shut down. However, even when a nuclear reactor is shut down, decay heat is constantly generated from the reactor core, heating the reactor water. For this reason, even during periodic inspections, the reactor is cooled by the residual heat removal system, while the reactor water continues to be purified by the reactor coolant purification system.
これらの残留熱除去系101および原子炉冷却材浄化系
102は、第2図に示すように構成されている。すなわ
ち、残留熱除去系101は、炉心の崩壊熱によって加熱
された原子炉圧力容器103内の炉水を、吸込配管10
4を通して残留熱除去ポンプ105で昇圧し、残留熱除
去熱交換器106で冷却させた後、熱交換器出口配管1
07、熱交換器戻り配管108を経て原子炉圧力容器1
03に再び戻すように構成されている。これの作動に際
し、炉内温度が急変すると、原子炉圧力容器103の内
外壁に温度差が生じ、大きな熱応力が発生してしまうこ
とがある。そこで、この熱応力から原子炉圧力容器10
3を保護すべく、炉水温度下降率には制限が設けてあり
、現斤では一り5℃/hrである。そのため、原子炉圧
力容器103に戻る炉水温度が低くならないように、残
留熱除去系101の運転時には、熱交換器106をバイ
パスさせる熱交換器バイパス配管109にも炉水を流し
、熱交換器人口弁110、熱交換器バイパス弁111そ
れぞれの開度を調節することにより、炉水の戻り湿度を
調整している。The residual heat removal system 101 and the reactor coolant purification system 102 are constructed as shown in FIG. That is, the residual heat removal system 101 transfers reactor water in the reactor pressure vessel 103 heated by the decay heat of the reactor core to the suction pipe 10.
4 through the residual heat removal pump 105 and cooled by the residual heat removal heat exchanger 106, the heat exchanger outlet piping 1
07, Reactor pressure vessel 1 via heat exchanger return pipe 108
It is configured to return to 03 again. During this operation, if the temperature inside the reactor suddenly changes, a temperature difference may occur between the inner and outer walls of the reactor pressure vessel 103, resulting in large thermal stress. Therefore, due to this thermal stress, the reactor pressure vessel 10
In order to protect No. 3, there is a limit on the rate of decrease in reactor water temperature, which is currently 5°C/hr. Therefore, in order to prevent the temperature of the reactor water returning to the reactor pressure vessel 103 from becoming low, when the residual heat removal system 101 is operating, reactor water is also flowed through the heat exchanger bypass piping 109 that bypasses the heat exchanger 106. By adjusting the opening degrees of the artificial valve 110 and the heat exchanger bypass valve 111, the return humidity of the reactor water is adjusted.
その際、熱交換器106に通水される冷却水の流量は一
定なので、熱交換器106に流ず流量が多いほど除熱量
は大きくなり、原子炉圧力容器103への戻り温度は低
くなる。一方、熱交換器106は、万一の事故時にら原
子炉格納容器内の除熱を行なえる能力を有しているので
、前述のような原子炉の運転停止後の冷即時には、熱交
換器106への通水aは、残留熱除去ポンプ105から
の吐出量に比して小ざく、その結果、熱交換器人口弁f
f107における炉水の温度は非常に低くなっている。At this time, since the flow rate of the cooling water passed through the heat exchanger 106 is constant, the larger the flow rate without flowing through the heat exchanger 106, the greater the amount of heat removed, and the lower the temperature returned to the reactor pressure vessel 103. On the other hand, the heat exchanger 106 has the ability to remove heat from inside the reactor containment vessel in the event of an accident, so it can perform heat exchange immediately after the reactor is shut down as described above. The water flow a to the heat exchanger 106 is small compared to the discharge amount from the residual heat removal pump 105, and as a result, the heat exchanger artificial valve f
The temperature of the reactor water at f107 is extremely low.
また、原子炉冷却材浄化系102は、原子炉圧力容器1
03から導かれた炉水を、浄化ポンプ112にて昇圧し
、再生熱交換器113および非再生熱交換器114にて
それぞれで冷加した後、ろ過1112塩器115にて浄
化し、浄化後の炉水を、再び、再生熱交換器113にて
熱回収し、原子炉圧力容器103に戻すように構成され
ている。このように構成することで、高温に弱いろ過説
塩器115の樹脂を保護すると共に、浄化後は再び加熱
させるから、プラント通常運転中での熱損失を減少させ
、発電所全体の熱効率の低下を防止することができる。In addition, the reactor coolant purification system 102 includes the reactor pressure vessel 1
Reactor water led from 03 is pressurized by a purification pump 112, cooled by a regenerative heat exchanger 113 and a non-regenerative heat exchanger 114, and then purified by a filtration 1112 salter 115. The reactor water is configured to recover heat again in the regenerative heat exchanger 113 and return to the reactor pressure vessel 103. With this configuration, the resin of the filtration chlorinator 115, which is vulnerable to high temperatures, is protected, and since it is heated again after purification, heat loss during normal plant operation is reduced, and the thermal efficiency of the entire power plant is reduced. can be prevented.
このように、原子炉運転停止後における原子炉冷却材の
冷却と、浄化とは別々の系統によって行なわれている。In this way, cooling and purification of the reactor coolant after the nuclear reactor is shut down are performed by separate systems.
そして、前述のように、定検期間中には、その総点検の
1項目として前記浄化ポンプ112の分解点検が行なわ
れることになっている。この浄化ポンプ112は、図示
のように、必要とする送水容量の50%の容量を有する
2台のものを並列に配置し、1台の浄化ポンプ112が
停止しても炉水の浄化は連続的に行なわれるように考慮
してあり、点検期間中での分解点検時にもその1台が運
転される。As described above, during the regular inspection period, the purification pump 112 is to be disassembled and inspected as one item of the general inspection. As shown in the figure, two purification pumps 112 with a capacity of 50% of the required water supply capacity are arranged in parallel, so that even if one purification pump 112 is stopped, the purification of the reactor water continues. One of the machines is also operated during disassembly and inspection during the inspection period.
なお、第2図中、符号116は原子炉圧力容器103内
の炉水を強制循環するための再循環ポンプである。In FIG. 2, reference numeral 116 is a recirculation pump for forcedly circulating reactor water within the reactor pressure vessel 103.
以上のように、原子炉冷却材の冷却と浄化とは行なわれ
るも、点検期間中での浄化ポンプ112の分解点検は、
1台ずつ別個に行なうこととしている。ところが、1台
のみの運転では、その送水容量は必要とするものの半分
であるため、系統流量は通常時の半分となり、浄化能力
の低下はさけられず、しかも、別個にそれらに炉水の流
路を切替えて行なうため、1台ずつの分解点検は、当然
に全工程期間を長期化せざるを得ず、種々の問題を生じ
ていた。As mentioned above, although the reactor coolant is cooled and purified, the overhaul of the purification pump 112 during the inspection period is
We plan to do this for each vehicle separately. However, when only one unit is operated, its water supply capacity is half of what is required, so the system flow rate is half of the normal flow rate, which unavoidably reduces the purification capacity. In order to switch roads, disassembling and inspecting each vehicle one by one naturally had to lengthen the entire process, which caused various problems.
そこで、本発明はこのような事情に鑑みてなされたちの
で、点検期間中での原子炉冷却材の浄化能力を低下させ
ることがなく、2台の浄化ポンプの運転を同時に停止さ
せ、これの分解点検を迅速に行なえるようにした原子炉
系設備を提供することを目的とする。Therefore, the present invention has been developed in view of these circumstances, so that the operation of the two purification pumps can be stopped at the same time and the decomposition of the two purification pumps can be stopped simultaneously without reducing the purification ability of the reactor coolant during the inspection period. The purpose is to provide nuclear reactor equipment that allows quick inspection.
上述した目的を達成するため、本発明にあっては、原子
炉系設備に炉内の残留熱を除去する残留熱除去系と、炉
水を浄化する原子炉冷却材浄化系とを有する原子炉系設
備において、上記残留熱除去系の残留熱除去熱交換器の
下流を上記原子炉冷却材浄化系の浄化ポンプの下流に連
通させるバイパス配管を設けることにある。In order to achieve the above-mentioned object, the present invention provides a nuclear reactor having a residual heat removal system for removing residual heat in the reactor and a reactor coolant purification system for purifying reactor water. In the system equipment, a bypass pipe is provided that connects the downstream side of the residual heat removal heat exchanger of the residual heat removal system to the downstream side of the purification pump of the reactor coolant purification system.
以下、第1図を参照して本発明の一実施例を説明する。 An embodiment of the present invention will be described below with reference to FIG.
第1図は本発明の一実施例の要部を示す系統図であり、
1は原子炉圧力容器である。この原子炉圧力容器1は原
子炉運転を停止した後の崩壊熱等の残留熱を除去する残
留熱除去系2と、冷却材である炉水から核分裂生成物や
腐食生成物を除去して浄化する原子炉冷却材浄化系3と
が連結されている。FIG. 1 is a system diagram showing the main parts of an embodiment of the present invention,
1 is a reactor pressure vessel. This reactor pressure vessel 1 includes a residual heat removal system 2 that removes residual heat such as decay heat after the reactor operation is stopped, and a residual heat removal system 2 that removes fission products and corrosion products from reactor water, which is a coolant, for purification. The reactor coolant purification system 3 is connected to the reactor coolant purification system 3.
残留熱除去系2は、原子炉圧力容器1に接続した吸込配
管4に、炉水を昇圧させる残留熱除去ポンプ5を連結し
、この除去ポンプ5からは熱交換器人口弁6を有する熱
交換器入口配管7を接続して残留熱除去熱交J!A器8
に連結し、さらに、この熱交換器8から熱交換器出口配
管9および熱交換鼎戻り配管10を接続して原子炉圧内
容′a1へ至る炉水の流路を形成すると共に、入口配管
7からは熱交換器バイパス弁11を有する熱交換器バイ
パス配管12を接続して戻り配管10に連結している。The residual heat removal system 2 connects a suction pipe 4 connected to the reactor pressure vessel 1 with a residual heat removal pump 5 that boosts the pressure of reactor water. Connect the vessel inlet piping 7 and perform residual heat removal heat exchange J! A device 8
Furthermore, the heat exchanger outlet pipe 9 and the heat exchange return pipe 10 are connected from this heat exchanger 8 to form a flow path for reactor water leading to the reactor pressure content 'a1, and the inlet pipe 7 From there, a heat exchanger bypass pipe 12 having a heat exchanger bypass valve 11 is connected to the return pipe 10 .
したがって、原子炉圧力容器1中の炉水は、熱交換器8
において外部からの冷却水13と熱交換して冷却される
一方、バイパス配管12からの冷却前の炉水との適当量
の混合によって、炉水温度の大きな低下が防止できる。Therefore, the reactor water in the reactor pressure vessel 1 is transferred to the heat exchanger 8
While it is cooled by heat exchange with cooling water 13 from the outside, a large drop in the temperature of the reactor water can be prevented by mixing it with an appropriate amount of uncooled reactor water from the bypass piping 12.
一方、原子炉冷却材浄化系3は、原子炉圧力容器1に接
続した原子炉下部ドレン配管14に、浄化ポンプ入口弁
15、浄化ポンプ16、浄化ポンプ出口弁17を並列に
接続し、浄化ポンプ出口弁17から接続した浄化ポンプ
出口管18に再生熱交換器19を連結している。この再
生熱交換器19から接続した熱交換器連絡配管20にて
非再生熱交換器21を連結し、さらに、この非再生熱交
換器21から接続したろ通説増器入口配管22にてろ通
説増器入口弁23を介してろ通説J!!24を連絡して
いる。このろ通説石器24からは戻り連絡配管25を接
続して前記再生熱交換器19に再び連結し、この再生熱
交換器19から接続した戻り配管26にて原子炉圧力容
器1に連結している。したがって、原子炉圧力容器1中
の炉水は、非再生熱交換器19において外部からの冷却
材27にて冷却された後、ろ過説塩器24にて浄化され
る一方、ろ、通説増器24内の樹脂は高温から保護され
、また、全体の熱効率の低下を防止することができる。On the other hand, the reactor coolant purification system 3 has a purification pump inlet valve 15, a purification pump 16, and a purification pump outlet valve 17 connected in parallel to a lower reactor drain pipe 14 connected to the reactor pressure vessel 1. A regenerative heat exchanger 19 is connected to a purification pump outlet pipe 18 connected from the outlet valve 17. A non-regenerative heat exchanger 21 is connected to the heat exchanger connection piping 20 connected from the regenerative heat exchanger 19, and a filtration general increaser is connected to the filtration general increaser inlet piping 22 connected from the non-regenerative heat exchanger 21. Common theory J! ! 24. A return connecting pipe 25 is connected from this filter stone tool 24 to connect it again to the regenerative heat exchanger 19, and a return pipe 26 connected from the regenerative heat exchanger 19 connects it to the reactor pressure vessel 1. . Therefore, the reactor water in the reactor pressure vessel 1 is cooled by the external coolant 27 in the non-regenerative heat exchanger 19, and then purified by the filtration salt generator 24. The resin within 24 is protected from high temperatures and can also prevent a decrease in overall thermal efficiency.
そして、残留熱除去系2の熱交換器8から冷却材浄化系
3のろ通説石器24に炉水を送る浄化ポンプバイパス配
管28を設けである。このバイパス配管28は、前記出
口配管9の途中から分岐さゼ、図示のように、ろ通説塩
型24上流側、すなわちろ通説塩お人口弁23の上流側
に接続さVてあり、また、仕切弁29を設けて流路の開
開が行なえるようになっている。A purification pump bypass pipe 28 is provided to send reactor water from the heat exchanger 8 of the residual heat removal system 2 to the filtration stone 24 of the coolant purification system 3. This bypass pipe 28 is branched from the middle of the outlet pipe 9, and as shown in the figure, is connected to the upstream side of the filter salt mold 24, that is, the upstream side of the filter salt valve 23, and, A gate valve 29 is provided so that the flow path can be opened and opened.
また、図示を省略したが、出口配管9から分岐接続させ
たバイパス配管28は、再生熱交換器19の上流側であ
る浄化ポンプ出口配管18、あるいは非再生熱交換器2
1の上流側である熱交換器連絡配管20に連結してもよ
い。これによれば、ろ過説塩!24内の樹脂の保護の万
全性を期すことができると共に、全体の熱効率の低下を
一層防止することができる。Although not shown, the bypass pipe 28 branched from the outlet pipe 9 can be connected to the purification pump outlet pipe 18 upstream of the regenerative heat exchanger 19 or to the non-regenerative heat exchanger 2.
It may be connected to the heat exchanger connection pipe 20 which is on the upstream side of the heat exchanger 1. According to this, filtered salt! It is possible to ensure complete protection of the resin within 24, and further prevent a decrease in the overall thermal efficiency.
なお、第1図中、符号30は原子炉圧力容器1内の炉水
を強制循環するための再循環ポンプである。In FIG. 1, reference numeral 30 is a recirculation pump for forcedly circulating reactor water within the reactor pressure vessel 1.
次に、本実施例の定検期間中での運転を説明すると、原
子炉圧力容器1から吸込配管4を通り除去ポンプ5にて
昇圧された炉水は、その一部は熱交換器8に送られ、他
はバイパス配管28を通り、ろ通説石器24にて浄化さ
れた後、戻り配管26にて原子炉圧力容器1に戻される
ものである。その際の熱交換器8通水聞とバイパス配管
28送水b1との配分は、原子炉圧力容器1の温度下降
率を監視している運転員によって、熱交換器人口弁6と
熱交換器バイパス弁11とを操作することで決定される
。Next, to explain the operation during the regular inspection period of this embodiment, reactor water that passes from the reactor pressure vessel 1 through the suction pipe 4 and is pressurized by the removal pump 5 is partially transferred to the heat exchanger 8. The remaining part passes through the bypass pipe 28 and is purified by the filtration quartz 24, and then returned to the reactor pressure vessel 1 through the return pipe 26. At that time, the distribution between the heat exchanger 8 water flow valve 6 and the heat exchanger bypass pipe 28 is determined by the operator who is monitoring the temperature drop rate of the reactor pressure vessel 1. It is determined by operating the valve 11.
また、熱交換器8にて冷却されてバイパス配管28にて
送られる炉水流jは、原子炉冷却材浄化系3における通
常流量、すなわち前記2台の浄化ポンプ16運転時の送
水流量に等しくしてろ通説石器24に送られる。これに
より、通常運転時における浄化能力と全く同一にして行
なうことができ、運転の障害となることはない。Further, the reactor water flow j cooled by the heat exchanger 8 and sent through the bypass pipe 28 is equal to the normal flow rate in the reactor coolant purification system 3, that is, the water flow rate when the two purification pumps 16 are in operation. Sent to Tero Common Theory Stoneware 24. This allows the purification capacity to be exactly the same as that during normal operation, and does not interfere with the operation.
バイパス配管28によりろ逸脱石器24に送られ、浄化
された炉水は、戻り配管26にて原子炉圧力容器1に戻
され、バイパスしない炉水と合流される。The purified reactor water is sent to the filtration stone tool 24 through the bypass piping 28 and is returned to the reactor pressure vessel 1 through the return piping 26, where it is combined with the reactor water that is not bypassed.
したがって、浄化ポンプ16を経ることなく、残留熱除
去系2にて冷却された炉水をろ逸脱石器24に送ること
ができる。そのため、浄化ポンプ16の上流側にある人
口弁15および下流側にある出口弁17それぞれを開鎖
すれば、浄化ポンプ16を隔離することができる。Therefore, the reactor water cooled in the residual heat removal system 2 can be sent to the filtration stone tool 24 without passing through the purification pump 16. Therefore, by opening and closing each of the artificial valve 15 on the upstream side of the purification pump 16 and the outlet valve 17 on the downstream side, the purification pump 16 can be isolated.
本発明は以上説明したように、残留熱除去系の残留熱除
去熱交換器から原子炉冷却材浄化系のろ逸脱石器に炉水
を送る浄化ポンプバイパス配管を設けであるから、浄化
ポンプを停止させても原子炉冷却材浄化系の浄化能力は
通常運転時を劣ることなく、その浄化を行なうことがで
きる。ずなわら、従来のようす浄化ポンプの分解点検時
の浄化能力の低下を防止でき、従来では容認せざるを得
なかった浄化ポンプ分解点検時の浄化能力を回避できる
。As explained above, the present invention is provided with a purification pump bypass piping that sends reactor water from the residual heat removal heat exchanger of the residual heat removal system to the filtration stone tool of the reactor coolant purification system, so that the purification pump is stopped. Even if the reactor coolant purification system is operated, the purification ability of the reactor coolant purification system is not inferior to that during normal operation, and the purification can be carried out. Moreover, it is possible to prevent a decrease in the purifying capacity during disassembly and inspection of the conventional purifying pump, and it is possible to avoid the deterioration of the purifying capacity during disassembly and inspection of the purifying pump, which has conventionally been forced to be accepted.
また、浄化ポンプは、その全てを停止しても全く支障が
ないので、分解点検は全てを同時に行なうことができ点
検工程に要する時間を大きく短縮・ でき、しかも、定
検期間中は浄化ポンプを全く作動せず、停止させておく
ことが可能なので、その分解点検は、例えば炉水の浄化
能力を持続させなければならないときでも、自由な時期
に実施でき、作業計画を自由に組むことができる。In addition, since there is no problem even if all of the purification pumps are stopped, disassembly and inspection can be done all at the same time, greatly reducing the time required for the inspection process. Since it does not operate at all and can be stopped, its overhaul can be carried out at any time, even when the reactor water purification ability needs to be maintained, and work plans can be made freely. .
【図面の簡単な説明】
第1図は本発明に係る原子炉系設備の一実施例における
系統図であり、第2図は従来例にお番プる系統図である
。
1・・・原子炉圧力容器、2・・・残留熱除去系、3・
・・原子炉冷却材浄化系、4・・・吸込配管、5・・・
残留熱除去ポンプ、6・・・熱交換器人口弁、7・・・
熱交換器入口配管、8・・・残留熱除去熱交換器、9・
・・熱交換器出口配管、10・・・熱交換器戻り配管、
11・・・熱交換器バイパス弁、12・・・熱交換器バ
イパス配管、13・・・冷却水、14・・・原子炉下部
ドレン配管、15・・・浄化ポンプ人口弁、16・・・
浄化ポンプ、17・・・浄化ポンプ出口弁、18・・・
浄化ポンプ出口配管、19・・・再生熱交換器、20・
・・熱交換器連絡配管、21・・・非再生熱交換器、2
2・・・ろ通説石器入口配管、23・・・ろ過説塩入口
弁、24・・・ろ通説石器、25・・・戻り連絡配管、
26・・・戻り配管、27・・・冷却材、28・・・浄
化ポンプバイパス配管、29・・・仕切弁、30・・・
再循環ポンプ、101・・・残留熱除去系、102・・
・原子炉冷却材浄化系、103・・・原子炉圧力容器、
104・・・吸込配管、105・・・残留熱除去ポンプ
、106・・・残留熱除去熱交換器、107・・・熱交
換器出口配管、108・・・熱交換器戻り配管、109
・・・熱交換器バイパス配管、110・・・熱交換器人
口弁、111・・・熱交換器バイパス弁、112・・・
浄化ポンプ、113・・・再生熱交換器、114・・・
非再生熱交換器、115・・・ろ逸脱石器。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a system diagram of an embodiment of nuclear reactor equipment according to the present invention, and FIG. 2 is a system diagram of a conventional example. 1... Reactor pressure vessel, 2... Residual heat removal system, 3...
...Reactor coolant purification system, 4...Suction piping, 5...
Residual heat removal pump, 6... Heat exchanger artificial valve, 7...
Heat exchanger inlet piping, 8... Residual heat removal heat exchanger, 9.
...Heat exchanger outlet piping, 10...Heat exchanger return piping,
DESCRIPTION OF SYMBOLS 11... Heat exchanger bypass valve, 12... Heat exchanger bypass piping, 13... Cooling water, 14... Reactor lower drain piping, 15... Purification pump artificial valve, 16...
Purification pump, 17...Purification pump outlet valve, 18...
Purification pump outlet piping, 19... regenerative heat exchanger, 20.
・・Heat exchanger connection piping, 21 ・・Non-regenerative heat exchanger, 2
2... filtration theory stoneware inlet piping, 23... filtration theory salt inlet valve, 24... filtration theory stoneware, 25... return connection piping,
26... Return piping, 27... Coolant, 28... Purification pump bypass piping, 29... Gate valve, 30...
Recirculation pump, 101... Residual heat removal system, 102...
・Reactor coolant purification system, 103...Reactor pressure vessel,
104... Suction piping, 105... Residual heat removal pump, 106... Residual heat removal heat exchanger, 107... Heat exchanger outlet piping, 108... Heat exchanger return piping, 109
...Heat exchanger bypass piping, 110...Heat exchanger artificial valve, 111...Heat exchanger bypass valve, 112...
Purification pump, 113... Regeneration heat exchanger, 114...
Non-regenerative heat exchanger, 115...filtration deviation stone tool.
Claims (1)
系と、炉水を浄化する原子炉冷却材浄化系とを有する原
子炉系設備において、上記残留熱除去系の残留熱除去熱
交換器の下流を上記原子炉冷却材浄化系の浄化ポンプの
下流に連通させるバイパス配管を設けることを特徴とす
る原子炉系設備。 2、バイパス管にて送られる炉水流量は、原子炉冷却材
浄化系における通常流量に等しくしてある特許請求の範
囲第1項記載の原子炉系設備。 3、バイパス配管は、原子炉冷却材浄化系の再生熱交換
器、あるいは非再生熱交換器、あるいはろ過脱塩器の上
流に連結されている特許請求の範囲第1項または第2項
記載の原子炉系設備。[Claims] 1. In nuclear reactor equipment having a residual heat removal system for removing residual heat in the reactor after the reactor is shut down and a reactor coolant purification system for purifying reactor water, 1. Nuclear reactor system equipment, characterized in that a bypass piping is provided that connects the downstream side of the residual heat removal heat exchanger of the system to the downstream side of the purification pump of the reactor coolant purification system. 2. The reactor system equipment according to claim 1, wherein the flow rate of reactor water sent through the bypass pipe is equal to the normal flow rate in the reactor coolant purification system. 3. The bypass piping is connected upstream of a regenerative heat exchanger, a non-regenerative heat exchanger, or a filtration demineralizer in the reactor coolant purification system, according to claim 1 or 2. Nuclear reactor equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60047484A JPS61207997A (en) | 1985-03-12 | 1985-03-12 | Nuclear reactor system facility |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60047484A JPS61207997A (en) | 1985-03-12 | 1985-03-12 | Nuclear reactor system facility |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61207997A true JPS61207997A (en) | 1986-09-16 |
Family
ID=12776399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60047484A Pending JPS61207997A (en) | 1985-03-12 | 1985-03-12 | Nuclear reactor system facility |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61207997A (en) |
-
1985
- 1985-03-12 JP JP60047484A patent/JPS61207997A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3976541A (en) | Secondary coolant purification system with demineralizer bypass | |
JPS6323519B2 (en) | ||
JPH056082B2 (en) | ||
US5375151A (en) | Reactor water cleanup system | |
US4043864A (en) | Nuclear power plant having a pressurized-water reactor | |
JPS61207997A (en) | Nuclear reactor system facility | |
US4699755A (en) | Ultrafiltration circuit for the primary cooling fluid of a pressurized-water nuclear reactor | |
JP2001091684A (en) | Fuel pool cooling equipment | |
JPS62180295A (en) | Nuclear power plant | |
JPH0259699A (en) | Operating method for nuclear reactor apparatus cooling equipment | |
JPS5941155B2 (en) | Reactor shutdown cooling system | |
JPS62190496A (en) | Purifier for coolant of nuclear reactor | |
JPS61231492A (en) | Auxiliary facility for nuclear reactor | |
JPH0479438B2 (en) | ||
JPH03170095A (en) | Coolant cleaning system for nuclear reactor | |
JPH0222354B2 (en) | ||
JPS61218994A (en) | Purifier for water for nuclear reactor | |
JPS62280689A (en) | Nuclear reactor coolant purifying system | |
JPH0648311B2 (en) | Reactor coolant purification device | |
JPH0679073B2 (en) | Reactor coolant purification system | |
JPS60178394A (en) | Refrigerant purifying system of nuclear reactor | |
JPS6189591A (en) | Purifier for coolant of nuclear reactor | |
JPS5882193A (en) | Device for cleaning residual heat removal pipeline | |
JPH0213758B2 (en) | ||
JPH03237395A (en) | Nuclear furnace accessory cooling facility |