[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH01316401A - Pressurized sintering method for powder material - Google Patents

Pressurized sintering method for powder material

Info

Publication number
JPH01316401A
JPH01316401A JP14957988A JP14957988A JPH01316401A JP H01316401 A JPH01316401 A JP H01316401A JP 14957988 A JP14957988 A JP 14957988A JP 14957988 A JP14957988 A JP 14957988A JP H01316401 A JPH01316401 A JP H01316401A
Authority
JP
Japan
Prior art keywords
container
powders
powder
graphite sheet
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14957988A
Other languages
Japanese (ja)
Other versions
JPH0660323B2 (en
Inventor
Ichiro Takasu
一郎 高須
Masaru Yanagimoto
勝 柳本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP63149579A priority Critical patent/JPH0660323B2/en
Publication of JPH01316401A publication Critical patent/JPH01316401A/en
Publication of JPH0660323B2 publication Critical patent/JPH0660323B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To prevent the generation of cracks in sintered parts during the cooling process thereof by interposing a plastic graphite sheet between the inside wall of a metallic container and raw material powder at the tie of putting the powder raw materials prepd. by mixing powders of various kinds of metals and alloys or further powders of ceramics into the metallic container and subjecting the materials to pressurized sintering at a high temp. CONSTITUTION:The powders 5 of various kinds of the metals or alloys or the composite powder 5 prepd. by mixing the nonmetallic powders of the various ceramics, etc., further with the powders of said metals and alloys are packed into the container 1 made from a carbon steel, stainless steel, etc. The plastic graphite sheet 4 having, for example, 0.3-1mm thickness is interposed between the inside wall of the container 1 and the raw material powders. A cap 6 consisting of the same material as the material of the container 1 is welded to the container and the container is put into a die and is subjected to pressurizing and sintering to a prescribed shape at and under a high temp. and high pressure; thereafter, the container is cooled and the molding is taken out of the container. The generation of the cracks in the sintered body is obviated even if the container 11 and the sintered body 15 are cooled at different shrinkage rates by the buffer effect and lubricating effect of the graphite sheet 14.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、粉末材料を焼結する方法にか−り、特に粉
末金属またはこれとセラミック等の非金属との複合粉末
を金属容器に収容して、高温下で加圧圧縮や押出しなど
のキャンニング加工を行って、焼結させる方法に関する
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for sintering powder materials, and in particular, a method for sintering powder materials, in particular, a method for storing powder metal or a composite powder of the same and a non-metal such as ceramic in a metal container. The present invention relates to a method of performing canning processing such as pressure compression or extrusion at a high temperature and sintering.

〈従来の技術〉 従来、偏析がなく均質な材料や、組織の粒径が細かくて
緻密な材料や、所望の形状を有する難加工性材料などを
得る目的で、金属粉末材料またはこれと非金属との複合
粉末材料を金属容器内に封入し、これを加熱して加圧加
工或いは押出加工し、冷却後に容器を開いて内部の焼結
体を取出すキャンニング加工が行われている。
<Conventional technology> Conventionally, in order to obtain homogeneous materials without segregation, dense materials with fine grain sizes, and difficult-to-process materials with desired shapes, metal powder materials or combinations of these with non-metals have been used. A canning process is performed in which a composite powder material with a sintered body is sealed in a metal container, heated and pressurized or extruded, and after cooling, the container is opened and the sintered body inside is taken out.

〈発明が解決しようとする課題〉 上述の従来のキャンニング加工方法においては、容器の
寸法が熱間圧縮され、これに伴って内部の粉末材料も熱
間圧縮されて焼結する。その場合、容器は内面が平坦な
状態のま\圧縮されず、不規則な凹凸を生じ易い。容器
を形成している金属と内部で造られた焼結体とは、キュ
ーリー点や熱膨張率の違いによって、加工後の冷却時に
は互いに異なった収縮動作を営む、そのために、特に金
属と非金属との複合材料や金属間化合物のような脆い材
料を加工する場合、この冷却過程で、容器の変形が著し
い部分を起点にして、焼結体内部にクラックが発生し易
い、このクラックは、容器の不規則な変形が多い隅角部
分に多発する。
<Problems to be Solved by the Invention> In the conventional canning method described above, the dimensions of the container are hot-pressed, and the powder material inside is also hot-pressed and sintered accordingly. In that case, the inner surface of the container remains flat and is not compressed, which tends to cause irregular irregularities. The metal forming the container and the sintered body made inside contract differently when cooled after processing due to differences in their Curie points and coefficients of thermal expansion. When processing brittle materials such as composite materials and intermetallic compounds, cracks tend to occur inside the sintered body during the cooling process, starting from areas where the container is significantly deformed. It often occurs in corner areas where irregular deformation is common.

この発明は、上述のようなキャンニング加工において、
容器内で粉末材料を加圧焼結させた後の冷却過程で、焼
結体にクラックか発生するのを防止しようとするもので
ある。
In the above-mentioned canning process, this invention provides
This is intended to prevent cracks from forming in the sintered body during the cooling process after the powder material is sintered under pressure in a container.

く課題を解決するための手段〉 この発明は、金属容器内に粉末材料を収容し、容器を密
封して加圧を伴なう熱間加工を行い、冷却後に内部の焼
結体を利用するキャンニング加工法において、金属容器
内に粉末材料を収容する際に、金属容器内壁面と粉末材
料との間に可塑性黒鉛シートを介在させるものである。
Means for Solving the Problems> This invention stores a powder material in a metal container, seals the container, performs hot working accompanied by pressure, and uses the sintered body inside after cooling. In the canning processing method, when a powder material is housed in a metal container, a plastic graphite sheet is interposed between the inner wall surface of the metal container and the powder material.

使用する可塑性黒鉛シートとしては1例えば東洋炭素株
式会社製の「パーマフォイル」が適当であり、0.3〜
1■程度の厚さのものを使用する。
As the plastic graphite sheet to be used, for example, "Permafoil" manufactured by Toyo Tanso Co., Ltd. is suitable, and the
Use one with a thickness of about 1cm.

用法は、予め金属容器の内面の全部または一部、特に焼
結体にクラックが多発する隅角部に重点を置いて貼り付
けておいたり、可塑性黒鉛シートの袋を金属容器内へ予
め納めておいたり、粉末材料を収容した可塑性黒鉛シー
トの袋を金属容器内に入れたり、適宜の方法を選ぶ。
To use it, paste it in advance on all or part of the inner surface of the metal container, focusing on the corners where cracks occur frequently in the sintered compact, or place the bag of plastic graphite sheet inside the metal container in advance. Choose an appropriate method, such as placing the powder material in a plastic graphite sheet bag containing the powder material in a metal container.

なお、加熱の手段としては、雰囲気加熱、抵抗加熱、誘
導加熱など、適宜の方法を採用できるが、短時間内に昇
温するように、加熱に先立って金属容器とと冷間静水圧
プレスなどによって予備圧縮し、内部の粉末材料の空隙
率を減少させてもよい。
In addition, as a means of heating, an appropriate method such as atmospheric heating, resistance heating, induction heating, etc. can be adopted, but in order to raise the temperature within a short time, the metal container must be heated using cold isostatic press, etc. prior to heating. may be pre-compacted to reduce the porosity of the internal powder material.

粉末材料を焼結させるための熱間加圧加工は、金属容器
をシリンダ状のダイス内に収容してパンチで押圧するが
、金属容器の不規則な変形を少くするために、金属容器
の外径はなるべくダイスの内径に近い方かよい。
In hot pressing for sintering powder materials, a metal container is housed in a cylindrical die and pressed with a punch, but in order to reduce irregular deformation of the metal container, The diameter should be as close to the inner diameter of the die as possible.

〈作 用〉 圧縮に際しては、容器の底及び蓋は比較的に変形が少な
いが、容器の周壁、特にこれと底及び蓋との境界部分は
大きく変形するために、内壁面に凹凸を生じがちである
。この内壁面に粉末材料が直接に接触して焼結が行われ
た場合は、焼結体はこの凹凸に食込んで形成されるため
、冷却時に金属容器が焼結体とは異なる収縮挙動をする
ときは、その食込み部分に大きな応力が現われ、これを
起点として焼結体内にクラックが発生する。
<Function> During compression, the bottom and lid of the container are relatively less deformed, but the peripheral wall of the container, especially the boundary between this and the bottom and lid, is significantly deformed, which tends to cause unevenness on the inner wall surface. It is. When sintering is performed by directly contacting the powder material with this inner wall surface, the sintered body is formed by digging into these irregularities, so the metal container exhibits a shrinkage behavior different from that of the sintered body when cooled. When this occurs, a large stress appears at the biting part, and this causes cracks to occur in the sintered body.

この発明においては、圧縮時に容器の内壁面に凹凸を生
じても、この凹凸に順応して可塑性黒鉛シートが焼結体
との間に介在する。そして、冷却時には、可塑性黒鉛シ
ートの緩衝作用と潤滑作用とにより、焼結体が容器と異
なる収縮動作を営むことが可能になるため、応力を軽減
し、クラックの発生を少なくすることができる。その結
果、従来加工が極めて難かしかった金属間化合物のよう
な材料でも、粉末を原料にして、クラックを生ずること
なく焼結させることができる。
In this invention, even if the inner wall surface of the container is uneven during compression, the plastic graphite sheet is interposed between the sintered body and the plastic graphite sheet to adapt to the unevenness. During cooling, the buffering and lubricating effects of the plastic graphite sheet allow the sintered body to contract in a manner different from that of the container, thereby reducing stress and reducing the occurrence of cracks. As a result, even materials such as intermetallic compounds, which were conventionally extremely difficult to process, can be sintered from powder without causing cracks.

〈実施例〉 実施例1 Nd2Fe+Jの原子%組成を有する合金を、冷却ロー
ラ上に溶射して平均厚さ30μの急冷薄帯を造り、これ
を粉砕して、最大粒子寸法500p、平均粒子寸法23
0ルの粉末にした。この粉末は、空気中で自然に燃焼す
ることなく、かなりの耐酸化性が認められた。
<Example> Example 1 An alloy having an atomic % composition of Nd2Fe+J was thermally sprayed onto a cooling roller to form a quenched ribbon with an average thickness of 30μ, and this was crushed to obtain a maximum particle size of 500p and an average particle size of 23p.
It was made into a powder of 0 liters. This powder did not spontaneously combust in air and was found to have considerable oxidation resistance.

この粉末を、第1表に示す4通りの金属容器A、B、C
,Dに、容器内壁面との間に厚さ0.4■の可塑性黒鉛
シートを介在させて、第1図(a)または第2図(a)
のように充填し、金属容器A、B及びCの場合は電子ビ
ーム溶接により内部を排気して蓋を施こし、金属容器り
の場合はアルゴン溶接によって蓋を施こした後に、容器
内を脱気した。なお1図中、lは容器で、2はその周壁
、3はその底であり、4は可塑性黒鉛シート、5は原料
粉末、6は蓋である。
This powder was poured into four types of metal containers A, B, and C shown in Table 1.
, D, a plastic graphite sheet with a thickness of 0.4 cm is interposed between it and the inner wall surface of the container as shown in FIG. 1(a) or FIG. 2(a).
In the case of metal containers A, B, and C, the inside is evacuated by electron beam welding and a lid is applied, and in the case of a metal container, after the lid is applied by argon welding, the inside of the container is evacuated. I felt it. In Figure 1, l is a container, 2 is its peripheral wall, 3 is its bottom, 4 is a plastic graphite sheet, 5 is a raw material powder, and 6 is a lid.

第 1 表 (容器諸元) 粉末材料を封入した容器A、B及びCは、これをホット
プレス用のダイス内に収容し、ダイスを誘導加熱するこ
とにより容器内の原料粉末を700℃に昇温させ、縦型
100トン圧縮プレス機を用いて、上記ダイス内で圧縮
した。
Table 1 (Container specifications) Containers A, B, and C filled with powder materials are placed in a hot press die, and the raw material powder in the containers is heated to 700°C by induction heating the die. The mixture was heated and compressed in the die using a vertical 100 ton compression press.

粉末材料を封入した容器りは、誘導加熱により内部の粉
末材料を700℃に加熱し、押出口を閉塞した横型20
00 )−ン熱間押出機に装填して圧縮した。
The container containing the powder material is heated to 700°C by induction heating, and the container is a horizontal type 20 with the extrusion port closed.
00 )-n hot extruder and compressed.

圧縮後の、各容器の外部寸法及び焼結体の寸法を第2表
に示す。なお、図中、11は圧縮された容器、12はそ
の周壁、13はその底、14は可塑性黒鉛シート、15
は焼結体、16は容器の蓋である。
The external dimensions of each container and the dimensions of the sintered body after compression are shown in Table 2. In addition, in the figure, 11 is a compressed container, 12 is its peripheral wall, 13 is its bottom, 14 is a plastic graphite sheet, and 15
is a sintered body, and 16 is a lid of the container.

第 2 表 (実施例1) 比較例1 比較のために、実施例1と同じ粉末材料を、第1表に示
す容器A、B、C及びDに直かに充填し、実施例1と同
手段で加熱圧縮した結果を第3表に示す。
Table 2 (Example 1) Comparative Example 1 For comparison, the same powder material as in Example 1 was directly filled into containers A, B, C, and D shown in Table 1, and the same powder materials as in Example 1 were filled. The results of heating and compression are shown in Table 3.

第 3 表 (比較例1) 実施例2 Nd2Fe14Bの原子%組成を有する合金を、アルゴ
ンガスアトマイズ法により粉末化(平均粒径150μ)
シ、この粉末を実施例1と同様に、第1表に示した金属
容器A、B、C及びDに、容器内壁面との間に厚さ0.
4mmの可塑性黒鉛シートを介在させて充填し、実施例
1と全く同じ手法により封止し、加熱し、圧縮した。圧
縮後の各部の寸法な第第 4 表 (実施例2) 比較例2 比較のために、実施例2と同じ粉末材料を、第1表に示
す容器A、B、C及びDに直かに充填し、実施例1と同
手段で加熱圧縮した結果を第5表に示す。
Table 3 (Comparative Example 1) Example 2 An alloy having an atomic percent composition of Nd2Fe14B was powdered by an argon gas atomization method (average particle size 150μ)
Similarly to Example 1, this powder was placed in metal containers A, B, C, and D shown in Table 1, with a thickness of 0.0 mm between the inner wall surface of the container and the metal containers A, B, C, and D shown in Table 1.
It was filled with a 4 mm plastic graphite sheet interposed therebetween, sealed, heated, and compressed in exactly the same manner as in Example 1. Table 4 (Example 2) Comparative Example 2 For comparison, the same powder material as in Example 2 was placed directly into containers A, B, C, and D shown in Table 1. Table 5 shows the results of filling and heating and compressing in the same manner as in Example 1.

第 5 表 (比較例2) 実施例3 名目上Mn −Anの原子%組成を有する合金を、アル
ゴンガスアトマイズ法により粉末化(平均粒径 150
p)Lz、この粉末を実施例1と同様に、第1表に示し
た金属容器A、B、C及びDに、容器内壁面との間に厚
さ0.41■の可塑性黒鉛シートを介在させて充填し、
実施例1と全く同じ手法により封止し、加熱し、圧縮し
た。圧縮後の各部の寸法を第6表に示す。
Table 5 (Comparative Example 2) Example 3 An alloy nominally having an atomic % composition of Mn-An was powdered by an argon gas atomization method (average particle size 150
p) Lz, this powder was placed in the metal containers A, B, C, and D shown in Table 1 in the same manner as in Example 1, with a plastic graphite sheet having a thickness of 0.41 cm interposed between the inner wall surface of the container. Let it fill and fill it.
It was sealed, heated, and compressed in exactly the same manner as in Example 1. Table 6 shows the dimensions of each part after compression.

第 6 表 (実施例3) 比較例3 比較のために、実施例3と同じ粉末材料を、第1表に示
す容器A、B、C及びDに直かに充填し、実施例1と同
手段で加熱圧縮した結果を第7表に示す。
Table 6 (Example 3) Comparative Example 3 For comparison, the same powder materials as in Example 3 were directly filled into containers A, B, C and D shown in Table 1, and the same powder materials as in Example 1 were filled. Table 7 shows the results of heating and compression.

第 7 表 (比較例3) 比較結果 」二記各実施例及び各比較例による焼結体を、冷却後に
容器から取出してクラックの有無を検査し第 8 表 
(比較結果) 0・・・・焼結体にクラックなし △・・・・焼結体に痕跡程度のクラックあり×・・・・
焼結体にクラックあり 以上のように、金属間化合物のようなりラックを発生し
易い材料の場合でも、クラックを発生させずに粉末材料
をキャンニング加工によって焼結させることができた。
Table 7 (Comparative Example 3) Comparison Results The sintered bodies according to each Example and each Comparative Example were taken out from the container after cooling and inspected for the presence of cracks.
(Comparison results) 0... No cracks in the sintered body △... Traces of cracks in the sintered body ×...
Cracks in the sintered body As described above, even in the case of materials that tend to generate racks, such as intermetallic compounds, the powder material could be sintered by canning processing without generating cracks.

〈発明の効果〉 以上のようにこの発明によるときは、粉末材料をキャン
ニング加工により焼結させるに際し、焼結体にクラック
が発生するのを効果的に防止することかできる。よって
、特に金属と非金属の複合材料や、金属間化合物のよう
な、クラックを発生し易い材料の焼結加工に極めて好適
である。
<Effects of the Invention> As described above, according to the present invention, it is possible to effectively prevent cracks from occurring in a sintered body when sintering a powder material by canning processing. Therefore, it is particularly suitable for sintering materials that are prone to cracking, such as metal-nonmetal composite materials and intermetallic compounds.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例における粉末を充填した容器
の熱間加圧前及び熱間加圧後の縦断面図、第2図はこの
発明の実施例における粉末を充填した異なる形状の容器
の熱間加圧前及び熱間加圧後の縦断°面図である。 l及び11・・・・金属容器、4及び14・・・・可塑
性黒鉛シート、5・・・・粉末材料、15・・・・焼結
体。 特許出願人  山陽特殊製鋼株式会社 代  理  人   清  水   哲   ほか2名
才1図 才2図 (d)        (J、)
FIG. 1 is a longitudinal sectional view of a container filled with powder in an embodiment of the present invention before and after hot pressing, and FIG. 2 is a container of a different shape filled with powder in an embodiment of the present invention. FIG. 3 is a vertical cross-sectional view of before and after hot pressing. 1 and 11...Metal container, 4 and 14...Plastic graphite sheet, 5...Powder material, 15...Sintered body. Patent applicant: Sanyo Special Steel Co., Ltd. Agent: Satoshi Shimizu and 2 others

Claims (1)

【特許請求の範囲】[Claims] (1)金属容器内に、この金属容器内壁面との間に可塑
性黒鉛シートを挟んで粉末材料を収容し、この容器を密
封して加圧を伴なう熱間加工を行なうことを特徴とする
粉末材料の加圧焼結方法。
(1) A powder material is stored in a metal container with a plastic graphite sheet sandwiched between it and the inner wall surface of the metal container, and the container is sealed to perform hot working accompanied by pressurization. Pressure sintering method for powder materials.
JP63149579A 1988-06-16 1988-06-16 Pressure sintering method for powder material Expired - Lifetime JPH0660323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63149579A JPH0660323B2 (en) 1988-06-16 1988-06-16 Pressure sintering method for powder material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63149579A JPH0660323B2 (en) 1988-06-16 1988-06-16 Pressure sintering method for powder material

Publications (2)

Publication Number Publication Date
JPH01316401A true JPH01316401A (en) 1989-12-21
JPH0660323B2 JPH0660323B2 (en) 1994-08-10

Family

ID=15478283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63149579A Expired - Lifetime JPH0660323B2 (en) 1988-06-16 1988-06-16 Pressure sintering method for powder material

Country Status (1)

Country Link
JP (1) JPH0660323B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212144A (en) * 1975-07-19 1977-01-29 Boehringer Mannheim Gmbh Production of phenylacetic acid derivatives and pharmaceutical agent having blood sugagar and lipid lowerling activities
JPS5212145A (en) * 1975-07-17 1977-01-29 Sumitomo Chem Co Ltd Improved process for preparation of aromatic sulfonic acid alkali salt
JPS62142703A (en) * 1985-12-17 1987-06-26 Kobe Steel Ltd Hot hydrostatic pressing method
JPS637132U (en) * 1986-06-28 1988-01-18
JPS6345305A (en) * 1986-08-12 1988-02-26 Kobe Steel Ltd Hot hydrostatic pressing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212145A (en) * 1975-07-17 1977-01-29 Sumitomo Chem Co Ltd Improved process for preparation of aromatic sulfonic acid alkali salt
JPS5212144A (en) * 1975-07-19 1977-01-29 Boehringer Mannheim Gmbh Production of phenylacetic acid derivatives and pharmaceutical agent having blood sugagar and lipid lowerling activities
JPS62142703A (en) * 1985-12-17 1987-06-26 Kobe Steel Ltd Hot hydrostatic pressing method
JPS637132U (en) * 1986-06-28 1988-01-18
JPS6345305A (en) * 1986-08-12 1988-02-26 Kobe Steel Ltd Hot hydrostatic pressing method

Also Published As

Publication number Publication date
JPH0660323B2 (en) 1994-08-10

Similar Documents

Publication Publication Date Title
US4673549A (en) Method for preparing fully dense, near-net-shaped objects by powder metallurgy
US4050143A (en) Method of producing dense metal tubes or the like
US3992200A (en) Method of hot pressing using a getter
US3356496A (en) Method of producing high density metallic products
US5445787A (en) Method of extruding refractory metals and alloys and an extruded product made thereby
GB1424109A (en) Method of manufacturing high speed steel from powdered metallic material
US4069042A (en) Method of pressing and forging metal powder
US4143208A (en) Method of producing tubes or the like and capsule for carrying out the method as well as blanks and tubes according to the method
US3728111A (en) Method of manufacturing billets from powder
JPS646241B2 (en)
JPH01316401A (en) Pressurized sintering method for powder material
JPH0354189B2 (en)
JP3252446B2 (en) Capsule for hot isostatic pressing and method of hot isostatic pressing
GB2140825A (en) Method of consolidating a metallic or ceramic body
US4980126A (en) Process for HIP canning of composites
JPS6152201B2 (en)
US4534937A (en) Process for sintering aluminum alloy powders under pressure
JP2752858B2 (en) Manufacturing method of powder alloy billet
JPS61190008A (en) Production of hot extruded clad metallic pipe by powder metallurgical method
JP2528461B2 (en) High temperature fluid pressure compression method for materials
JP2024013999A (en) Manufacturing method of titanium sintered material
JPS6131161B2 (en)
GB1362396A (en) Method of manufacturing billets from powder
JPS6238401B1 (en)
JPS6229484B2 (en)