JPH0354189B2 - - Google Patents
Info
- Publication number
- JPH0354189B2 JPH0354189B2 JP61074051A JP7405186A JPH0354189B2 JP H0354189 B2 JPH0354189 B2 JP H0354189B2 JP 61074051 A JP61074051 A JP 61074051A JP 7405186 A JP7405186 A JP 7405186A JP H0354189 B2 JPH0354189 B2 JP H0354189B2
- Authority
- JP
- Japan
- Prior art keywords
- target material
- powder
- container
- ferromagnetic
- replenishment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000013077 target material Substances 0.000 claims description 64
- 239000000843 powder Substances 0.000 claims description 43
- 239000003302 ferromagnetic material Substances 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 12
- 239000010409 thin film Substances 0.000 claims description 12
- 238000005242 forging Methods 0.000 claims description 10
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- 238000009792 diffusion process Methods 0.000 claims description 7
- 238000001513 hot isostatic pressing Methods 0.000 claims description 7
- 230000005294 ferromagnetic effect Effects 0.000 claims description 6
- 238000004064 recycling Methods 0.000 claims description 3
- 239000000696 magnetic material Substances 0.000 claims 1
- 239000010935 stainless steel Substances 0.000 description 8
- 229910001220 stainless steel Inorganic materials 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000011812 mixed powder Substances 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- -1 iron group metals Chemical class 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 150000002910 rare earth metals Chemical class 0.000 description 3
- 229910017061 Fe Co Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000009991 scouring Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
- Physical Vapour Deposition (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、マグネトロンスパツタリング法に
て光磁気記録薄膜を形成するのにターゲツト材と
して用いられ、スパツタリングによつて消耗し
て、その表面に大きな凹凸が形成されて使用済み
となつた強磁性材製使用済みターゲツト材の再生
方法に関するものである。[Detailed Description of the Invention] [Industrial Application Field] This invention is used as a target material to form a magneto-optical recording thin film by magnetron sputtering method, and is consumed by sputtering to cause the surface The present invention relates to a method for recycling a used target material made of ferromagnetic material that has been used and has large irregularities formed thereon.
従来、一般に、光磁気記録薄膜が、マグネトロ
ンスパツタリング法にて、希土類金属と鉄族金属
からなる強磁性材で構成されたターゲツト材を用
いて形成されることは良く知られるところであ
る。
It is well known that magneto-optical recording thin films are generally formed by magnetron sputtering using a target material made of a ferromagnetic material made of rare earth metals and iron group metals.
また、このような強磁性材製ターゲツト材にス
パツタリングを施すと、例えば第4図のaに示さ
れるように、バツキングプレート2上で均一な厚
さをもつていた円板状ターゲツト材は、スパツタ
リングが進行するにつれて第4図のbに示される
ように表面が不均一に消耗して凹凸が形成される
ようになり、この凹凸が大きくなつてもはや使用
できなくなつたターゲツト材は従来スクラツプと
して処理されている。 Furthermore, when sputtering is applied to such a target material made of ferromagnetic material, the disc-shaped target material, which had a uniform thickness on the backing plate 2, becomes, for example, as shown in FIG. As sputtering progresses, the surface wears out unevenly and unevenness is formed as shown in Figure 4b, and the target material, which has become so large that it can no longer be used, is conventionally scrapped. being processed.
このようにマグネトロンスパツタリングに供さ
れる強磁性材製ターゲツト材は、その一部が光磁
気記録薄膜の形成に供されるだけで、その大部分
はスパツタされないままに残り、スクラツプとし
て処理されてしまうのが現状である。
In this way, the ferromagnetic target material subjected to magnetron sputtering is only partially used for forming a magneto-optical recording thin film, and most of it remains unsputtered and is processed as scrap. The current situation is that
そこで、本発明者等は、上述のような観点か
ら、マグネトロンスパツタリングにて、光磁気記
録薄膜の形成に用いられて使用済みとなつた強磁
性材製ターゲツト材の有効利用を図るべく研究を
行なつた結果、
マグネトロンスパツタリングによつて強磁性材
製ターゲツト材の表面が不均一に消耗して、その
表面に大きな凹凸が形成されている使用済みター
ゲツト材を容器に入れて、前記凹凸が形成されて
いる使用済みターゲツト材の表面に、この使用済
みターゲツト材と同じ組成に調整した、要素粉末
の混合粉末、または要素粉末と合金粉末の混合粉
末、あるいは合金粉末からなる補充粉末を、前記
ターゲツト材の表面が平坦になるように充填し、
前記使用済みターゲツト材と前記補充粉末を前記
容器内に封入した状態で、これに熱間静水圧プレ
ス(HIP)または熱間鍛造を施して、前記補充粉
末を高密度化した成形体とし、引続いて熱処理を
施し、前記使用済みターゲツト材と前記成形体と
を強固に拡散接合して一体化し、最終的に前記容
器を取り除くことにより再生された強磁性材製タ
ーゲツト材は、使用済みターゲツト材部分と粉末
成形体部分とこれらの境界部に形成された拡散接
合部からなるが、全体として未使用の強磁性材製
ターゲツト材と品質的に同じであり、したがつ
て、これにスパツタリングすることにより形成さ
れた光磁気記録薄膜も特性的に同じものとなると
いう研究結果を得たのである。
Therefore, from the above-mentioned viewpoint, the present inventors conducted research to effectively utilize ferromagnetic target materials that have been used to form magneto-optical recording thin films in magnetron sputtering. As a result, the surface of the ferromagnetic target material was unevenly worn away by magnetron sputtering, and the used target material had large irregularities formed on its surface.The used target material was placed in a container and A supplementary powder consisting of a mixed powder of elemental powder, a mixed powder of elemental powder and alloy powder, or alloy powder adjusted to the same composition as the used target material is applied to the surface of the used target material on which the unevenness is formed. , filling the target material so that the surface thereof is flat;
With the used target material and the replenishment powder sealed in the container, hot isostatic pressing (HIP) or hot forging is performed on the used target material and the replenishment powder to make the replenishment powder into a high-density molded body. Subsequently, heat treatment is applied to firmly diffuse bond the used target material and the molded body to integrate them, and finally, by removing the container, the recycled ferromagnetic material target material can be used as a used target material. It consists of a part, a powder compact part, and a diffusion bond formed at the boundary between these parts, but the quality as a whole is the same as that of an unused ferromagnetic material target material, and therefore, sputtering cannot be performed on this. The research results showed that the magneto-optical recording thin film formed by this method had the same characteristics.
この発明は、上記研究結果にもとづいてなされ
たものであつて、
(a) 強磁性材製ターゲツト材の表面が、光磁気記
録薄膜形成のためのマグネトロンスパツタリン
グによつて消耗して、その表面に大きな凹凸が
形成されている強磁性材製使用済みターゲツト
材を、容器に入れ、
(b) 前記凹凸が形成されているターゲツト材表面
に、前記ターゲツト材と同じ組成に調整した補
充粉末を、前記ターゲツト材表面が平坦になる
ように充填し、
(c) 前記使用済みターゲツト材と前記補充粉末を
前記容器内に封入し、
(d) ついで、前記封入容器に、熱間静水圧プレス
または熱間鍛造を施して、前記補充粉末を高密
度化した成形体とし、
(e) さらに前記封入容器に熱処理を施して、前記
使用済みターゲツト材と前記成形体とを強固に
拡散接合し、
(f) 最終的に前記容器を取り除く、
以上、(a)〜(f)の主要工程からなる、光磁気記録
薄膜の形成に用いられた強磁性材製使用済みター
ゲツト材の再生方法、
に特徴を有するものです。 This invention has been made based on the above research results, and provides that (a) the surface of a ferromagnetic target material is consumed by magnetron sputtering for forming a magneto-optical recording thin film; A used target material made of ferromagnetic material having large irregularities formed on its surface is placed in a container, and (b) replenishment powder adjusted to the same composition as the target material is applied to the surface of the target material having the irregularities formed thereon. , filling the target material so that the surface thereof is flat; (c) sealing the used target material and the replenishment powder in the container; (d) then placing the target material in the container using a hot isostatic press or Hot forging is performed to make the replenishment powder into a compact with high density; f) Finally, the container is removed. The method for recycling a used target material made of ferromagnetic material used for forming a magneto-optical recording thin film is characterized by the following main steps (a) to (f). It is something you have.
さらに、この発明の方法を構成する要件につい
て詳述する。 Furthermore, the requirements constituting the method of this invention will be explained in detail.
(1) 補充粉末
補充粉末は、強磁性材製使用済みターゲツト
材と同じ組成をもつように成分調整してあれ
ば、その形態は、要素粉末の混合粉末でも、要
素粉末と合金粉末の混合粉末でも、さらに合金
粉末でもよく、望ましくは希土類金属粉末:30
〜50重量%、鉄族金属:残りからなる配合組成
あるいは成分組成をもつように調整するのがよ
い。(1) Replenishment powder If the replenishment powder is adjusted to have the same composition as the used target material made of ferromagnetic material, its form can be a mixed powder of elemental powder or a mixed powder of elemental powder and alloy powder. However, alloy powder may also be used, preferably rare earth metal powder: 30
It is preferable to adjust the blending composition or component composition to consist of ~50% by weight, iron group metal: the remainder.
(2) 容器
使用済みターゲツト材と、これの表面に特に
マグネトロンスパツタリングにより形成された
大きな凹凸の平坦化のために充填された補充粉
末を入れる容器としては、例えばステンレス鋼
やニツケル鋼などの耐酸化性金属材料を用いる
のが望ましい。また、この容器への封入は、第
1図に概略断面図で例示されるように、胴部外
周面の所定個所にステンレス鋼製パイプ4が取
付けられているフランジ付きの丸くて浅いステ
ンレス鋼製缶3内に、使用済みターゲツト材1
aを入れ、これに補充粉末1bを充填し、つい
でステンレス鋼製蓋5を溶接装着して密閉した
後、容器内の空気を前記パイプ4を通して抜き
出して真空とし、このパイプ4を加熱圧着する
ことによつて行われる。(2) Container A container made of stainless steel, nickel steel, etc., for containing the used target material and the replenishment powder filled to flatten the large irregularities formed on its surface by magnetron sputtering is recommended. It is desirable to use oxidation-resistant metallic materials. Moreover, as illustrated in the schematic cross-sectional view in FIG. Used target material 1 in can 3
a, fill it with supplementary powder 1b, then weld a stainless steel lid 5 on to seal it, draw out the air inside the container through the pipe 4 to create a vacuum, and heat and press the pipe 4. It is carried out by.
(3) 熱間鍛造またはHIP
通常、上記封入容器に対する熱間鍛造は、上
記使用済みターゲツト材および補充粉末が希土
類金属と鉄族金属からなる強磁性材で構成され
ているので、加熱温度を400〜600℃とし、厚み
方向に5〜10ton/cm2の圧力で行なうのが望ま
しく、またHIPは通常の条件、すなわち温度:
650℃、圧力:2000気圧の条件でよく、これに
よつて理論密度比がほぼ100%に達し、高密度
化した成形体とすることができる。なお、熱間
鍛造には油圧プレスの使用が望ましい。(3) Hot forging or HIP Normally, hot forging of the above-mentioned sealed container is performed at a heating temperature of 400°C because the used target material and supplementary powder are composed of ferromagnetic materials consisting of rare earth metals and iron group metals. It is preferable to perform HIP at a temperature of ~600℃ and a pressure of 5 to 10 tons/ cm2 in the thickness direction, and HIP is performed under normal conditions, that is, temperature:
Conditions of 650° C. and 2000 atm pressure are sufficient, whereby the theoretical density ratio reaches approximately 100% and a highly densified molded article can be obtained. Note that it is desirable to use a hydraulic press for hot forging.
(4) 拡散接合熱処理
熱間鍛造またはHIP処理後の封入容器に、温
度:500〜700℃に、5〜50時間保持の条件で熱
処理を施すと、成形体を構成する粉末が冶金的
に一体化すると共に、使用済みターゲツト材と
成形体との間で拡散接合が起つて両者は強固に
結合するようになる。(4) Diffusion bonding heat treatment When heat treatment is applied to the sealed container after hot forging or HIP treatment at a temperature of 500 to 700°C for 5 to 50 hours, the powder constituting the compact becomes metallurgically integrated. At the same time, diffusion bonding occurs between the used target material and the molded body, and the two become firmly bonded.
ついで、この発明の方法を実施例により具体的
に説明する。
Next, the method of the present invention will be specifically explained with reference to Examples.
実施例 1
(a) 第1図に示される容器、すなわち胴部外周面
に外径:12.7mm×長さ:550mm×肉厚:1mmの
寸法をもつたステンレス鋼製パイプ4が取り付
けられた、内径:125mm×深さ:5mm×肉厚:
1mmのフランジ付き丸型ステンレス鋼製缶3
と、直径:130mm×厚さ1mmのステンレス鋼製
蓋5からなる容器を用意し、この容器内に、外
径:125mm×中心部厚さ:約2.5mmの寸法をも
ち、表面の外周より35mm内側のところには、マ
グネトロンスパツタリングにより形成された
幅:約30mm×深さ:約2.4mmの断面V形のリン
グ状溝があり、さらにTb23Fe69Co8組成
(Tb:希土類金属、FeおよびCo:鉄族金属)
をもつ重量:150gの強磁性材製使用済みター
ゲツト材1aを装着した。Example 1 (a) A stainless steel pipe 4 having dimensions of outer diameter: 12.7 mm x length: 550 mm x wall thickness: 1 mm was attached to the outer peripheral surface of the container shown in FIG. 1, that is, the body. Inner diameter: 125mm x depth: 5mm x wall thickness:
Round stainless steel can with 1mm flange 3
Prepare a container consisting of a stainless steel lid 5 with a diameter of 130 mm and a thickness of 1 mm. Inside this container, the container has dimensions of an outer diameter of 125 mm and a center thickness of approximately 2.5 mm, with a diameter of 35 mm from the outer periphery of the surface. On the inside, there is a ring-shaped groove with a V-shaped cross section with a width of about 30 mm and a depth of about 2.4 mm formed by magnetron sputtering. Fe and Co: iron group metals)
A used target material 1a made of ferromagnetic material with a weight of 150 g was attached.
(b) 一方、原料粉末として、いずれも100μmの
平均粒径を有するTb粉末、Fe−Co合金
(Co:25%含有)粉末、およびFe粉末を用い、
これら原料粉末を、上記使用済みターゲツト材
と同一の組成をもつように、Tb粉末:45.81
%、Fe−Co粉末:22.70%、Fe粉末:31.49%
の組成(以上重量%)に配合し、通常の条件で
混合して補充粉末を調製し、この補充粉末:80
gを、上記容器内の使用済みターゲツト材の上
面に、これの表面に形成された大きな凹凸を埋
め、かつこれより約0.5mmの厚さに盛つた状態
に充填した。(b) On the other hand, using Tb powder, Fe-Co alloy (Co: 25% content) powder, and Fe powder, all of which have an average particle size of 100 μm, as raw material powders,
Tb powder: 45.81
%, Fe-Co powder: 22.70%, Fe powder: 31.49%
(more than 80% by weight) and mix under normal conditions to prepare replenishment powder.
g was filled into the upper surface of the used target material in the container to fill in the large irregularities formed on the surface and to a thickness of about 0.5 mm.
(c) ついで、上記充填缶3に上記蓋5をかぶせ、
フランジの部分を溶接して密閉し、この状態で
前記パイプ4を通して容器内を真空引きし、そ
の内圧を2×10-5torrとした後、前記パイプを
加熱圧着することにより前記使用済みターゲツ
ト材と補充粉末を前記容器内に封入した。(c) Next, cover the filling can 3 with the lid 5,
The flange part is welded and sealed, and in this state, the inside of the container is evacuated through the pipe 4 to bring the internal pressure to 2 × 10 -5 torr, and the pipe is heat-pressed to remove the used target material. and supplementary powder were sealed in the container.
(d) 引続いて、前記封入容器に、650℃に加熱し
た状態で、厚み方向に5ton/cmの圧力(全荷
重:620ton)を付加する熱間鍛造を施し、これ
によつて前記補充粉末を理論密度比:100%を
有する高密度成形体とした。(d) Subsequently, the sealed container is heated to 650°C and subjected to hot forging by applying a pressure of 5 ton/cm (total load: 620 ton) in the thickness direction, thereby removing the supplementary powder. was made into a high-density molded body having a theoretical density ratio of 100%.
(e) さらに、上記熱間鍛造後の封入容器に、通常
の拡散接合機を用い、圧力:2×10-5torrの真
空中、温度:670℃に50時間保持の条件で拡散
接合熱処理を施して、使用済みターゲツト材と
成形体の完全一体化をはかつた。(e) Furthermore, the sealed container after hot forging was subjected to diffusion bonding heat treatment using a normal diffusion bonding machine under the conditions of holding the temperature at 670℃ for 50 hours in a vacuum at a pressure of 2×10 -5 torr. The used target material was completely integrated with the molded object.
(f) 最終的に、ステンレス鋼製容器を旋盤とシエ
ーパを用いて取り除き、さらに2.5mmの強磁性
材製ターゲツト材に仕上げ加工することにより
本発明方法を実施した。(f) Finally, the stainless steel container was removed using a lathe and a shaper, and the method of the present invention was carried out by further processing it into a 2.5 mm ferromagnetic target material.
この結果得られた強磁性材製再生ターゲツト材
における使用済みターゲツト材部分と粉末成形体
部分(充填材)との界面部の金属顕微鏡による組
織写真(倍率:200倍)およびそれの要部説明図
をそれぞれ第2図および第3図に示した。 A metallographic photograph (magnification: 200x) of the interface between the used target material portion and the powder compact portion (filler) in the resulting regenerated target material made of ferromagnetic material, and an explanatory diagram of its main parts. are shown in FIGS. 2 and 3, respectively.
第2図および第3図に示される通り、上記再生
ターゲツト材においては、使用済みターゲツト材
部分と粉末成形体部分とが拡散接合して、完全に
一体化しており、かつこれら両部分は上記の通り
同じ組成を有すると共に、図示される通り同じ組
織をもつもので、これをマグネトロンスパツタリ
ングにて光磁気記録薄膜の形成に用いた場合に
も、再生品でない新しいターゲツト材を用いて形
成した場合と特性的に同じ薄膜を形成することが
できる。 As shown in Figures 2 and 3, in the recycled target material, the used target material part and the powder compact part are completely integrated by diffusion bonding, and these two parts are They have the same composition and the same structure as shown in the figure, and even when this is used to form a magneto-optical recording thin film by magnetron sputtering, it is formed using a new target material that is not a recycled product. It is possible to form a thin film with the same characteristics as in the conventional case.
実施例 2
組成および重量がそれぞれTb20Fe80および140
gからなる使用済みターゲツト材を用い、補充粉
末の配合組成を、重量%でTb粉末:41.57%、Fe
粉末:58.43%とし、さらに熱間鍛造に代つて
HIP処理を用い、その条件を窒素雰囲気中、温
度:650℃、圧力:2000気圧とする以外は、実施
例1におけると同一の条件で本発明方法を実施
し、再生ターゲツト材を製造した。Example 2 Composition and weight of Tb 20 Fe 80 and 140 respectively
The composition of the replenishment powder was changed to Tb powder: 41.57%, Fe
Powder: 58.43%, and in place of hot forging
A recycled target material was produced by carrying out the method of the present invention under the same conditions as in Example 1, except that HIP treatment was used in a nitrogen atmosphere, temperature: 650° C., and pressure: 2000 atmospheres.
この結果得られた強磁性材製再生ターゲツト材
も実施例1で製造された強磁性材製再生ターゲツ
ト材と同様の特性および組織を有し、光磁気記録
薄膜の形成にも同様な結果を示した。 The ferromagnetic material reproduction target material obtained as a result also had the same characteristics and structure as the ferromagnetic material reproduction target material produced in Example 1, and showed similar results in forming a magneto-optical recording thin film. Ta.
この発明の方法によれば、上記実施例から明ら
かなように、1枚の使用済みターゲツト材を再生
するのに原料粉末はターゲツト材全体に占める割
合の約30%ですみ、使用済みターゲツト材がスク
ラツプとして処理されたり、あるいは再精練など
多くの工程を経て処理されることなく、簡単な工
程で、品質および特性において未使用の新しい強
磁性材製ターゲツトと比べて何ら遜色のない強磁
性材製ターゲツト材に再生することができるので
ある。
According to the method of the present invention, as is clear from the above embodiments, in order to recycle one piece of used target material, the raw material powder only accounts for about 30% of the total target material, and the used target material can be recycled. It is made of ferromagnetic material that is not processed as scrap or processed through many steps such as re-scouring, but is comparable in quality and properties to new ferromagnetic material targets in a simple process. It can be recycled into target material.
第1図はこの発明の方法における容器への封入
態様を示す概略断面図、第2図および第3図は再
生ターゲツト材の使用済みターゲツト材部分と粉
末成形体部分(充填材)との界面部を示す金属顕
微鏡による組織写真図およびそれの要部説明図、
第4図aおよびbはそれぞれ使用前と使用後のタ
ーゲツト材の状態を示す側面図である。
1……ターゲツト材、1a……使用済みターゲ
ツト材、1b……補充粉末、2……バツキングプ
レート、3……ステンレス鋼製缶、5……ステン
レス鋼製蓋。
Fig. 1 is a schematic cross-sectional view showing how the regenerated target material is packed into a container in the method of the present invention, and Figs. 2 and 3 show the interface between the used target material portion of the recycled target material and the powder compact portion (filler). A microstructure photograph taken with a metallurgical microscope and an explanatory diagram of its main parts,
Figures 4a and 4b are side views showing the state of the target material before and after use, respectively. 1... Target material, 1a... Used target material, 1b... Replenishment powder, 2... Backing plate, 3... Stainless steel can, 5... Stainless steel lid.
Claims (1)
気記録薄膜形成のためのマグネトロンスパツタ
リングによつて消耗して、その表面に大きな凹
凸が形成されている強磁性材製使用済みターゲ
ツト材を、容器に入れ、 (b) 前記凹凸が形成されているターゲツト材表面
に、前記ターゲツト材と同じ組成に調整した補
充粉末を、前記ターゲツト材表面が平坦になる
ように充填し、 (c) 前記使用済みターゲツト材と前記補充粉末を
前記容器内に封入し、 (d) ついで、前記封入容器に、熱間静水圧プレス
または熱間鍛造を施して、前記補充粉末を高密
度化した成形体とし、 (e) さらに前記封入容器に熱処理を施して、前記
使用済みターゲツト材と前記成形体とを強固に
拡散接合し、 (f) 最終的に前記容器を取り除く、 以上、(a)〜(f)の主要工程からなることを特徴と
する光磁気記録薄膜の形成に用いられた強磁性材
製使用済みターゲツト材の再生方法。[Claims] 1 (a) A ferromagnetic target material whose surface is worn away by magnetron sputtering for forming a magneto-optical recording thin film, and large irregularities are formed on the surface. A used target material made of magnetic material is placed in a container, and (b) replenishment powder adjusted to the same composition as the target material is applied to the surface of the target material where the unevenness is formed so that the surface of the target material becomes flat. (c) enclosing the used target material and the replenishment powder in the container; (d) then subjecting the enclosing container to hot isostatic pressing or hot forging to remove the replenishment powder. (e) further heat-treating the enclosed container to firmly diffusion bond the used target material and the molded object; (f) finally removing the container; A method for recycling a used target material made of ferromagnetic material used for forming a magneto-optical recording thin film, characterized by comprising the main steps (a) to (f) as described above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7405186A JPS62230967A (en) | 1986-03-31 | 1986-03-31 | Method for generating used target |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7405186A JPS62230967A (en) | 1986-03-31 | 1986-03-31 | Method for generating used target |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62230967A JPS62230967A (en) | 1987-10-09 |
JPH0354189B2 true JPH0354189B2 (en) | 1991-08-19 |
Family
ID=13535999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7405186A Granted JPS62230967A (en) | 1986-03-31 | 1986-03-31 | Method for generating used target |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62230967A (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003025244A2 (en) * | 2001-09-17 | 2003-03-27 | Heraeus, Inc. | Refurbishing spent sputtering targets |
US20080145688A1 (en) | 2006-12-13 | 2008-06-19 | H.C. Starck Inc. | Method of joining tantalum clade steel structures |
US8197894B2 (en) | 2007-05-04 | 2012-06-12 | H.C. Starck Gmbh | Methods of forming sputtering targets |
US7871563B2 (en) * | 2007-07-17 | 2011-01-18 | Williams Advanced Materials, Inc. | Process for the refurbishing of a sputtering target |
US8246903B2 (en) | 2008-09-09 | 2012-08-21 | H.C. Starck Inc. | Dynamic dehydriding of refractory metal powders |
JP4348396B1 (en) | 2008-12-26 | 2009-10-21 | 田中貴金属工業株式会社 | Reproduction target manufacturing method |
CN102747329A (en) * | 2011-04-20 | 2012-10-24 | 光洋应用材料科技股份有限公司 | Regenerated sputtering target and its manufacturing method |
JP2013001971A (en) * | 2011-06-17 | 2013-01-07 | Solar Applied Materials Technology Corp | Reproduced sputtering target and manufacturing method therefor |
WO2013049274A2 (en) | 2011-09-29 | 2013-04-04 | H.C. Starck, Inc. | Large-area sputtering targets and methods of manufacturing large-area sputtering targets |
JP6532219B2 (en) * | 2013-11-25 | 2019-06-19 | 株式会社フルヤ金属 | Method of regenerating sputtering target and regenerating sputtering target |
CN114477992B (en) * | 2022-01-18 | 2023-04-28 | 宁波江丰热等静压技术有限公司 | Regeneration method of indium tin oxide target after sputtering |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6043404A (en) * | 1983-08-16 | 1985-03-08 | Mitsubishi Metal Corp | Regenerating method of annular member made of sintered hard alloy |
-
1986
- 1986-03-31 JP JP7405186A patent/JPS62230967A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6043404A (en) * | 1983-08-16 | 1985-03-08 | Mitsubishi Metal Corp | Regenerating method of annular member made of sintered hard alloy |
Also Published As
Publication number | Publication date |
---|---|
JPS62230967A (en) | 1987-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5863398A (en) | Hot pressed and sintered sputtering target assemblies and method for making same | |
US4568516A (en) | Method of manufacturing an object of a powdered material by isostatic pressing | |
JPH0354189B2 (en) | ||
US2359361A (en) | Composite metal element and method of making same | |
CN103567444A (en) | Tungsten target manufacturing method | |
JPH0768612B2 (en) | Alloy powder for rare earth metal-iron group metal target, rare earth metal-iron group metal target, and methods for producing the same | |
US5445787A (en) | Method of extruding refractory metals and alloys and an extruded product made thereby | |
JP2003226964A (en) | Method of producing tungsten target for sputtering | |
FR2292544A1 (en) | Thin brittle metal flakes for powder metallurgy - suitable for hot isostatic pressing of high speed steel parts (SW210676) | |
JP3113144B2 (en) | Method for producing high density sintered titanium alloy | |
GB2085032A (en) | Isostatic Pressing of Chromium Sputtering Targets | |
JPH0119447B2 (en) | ||
JPH05148631A (en) | Target for sputtering | |
US3724050A (en) | Method of making beryllium shapes from powder metal | |
JPH0119448B2 (en) | ||
JPS6195788A (en) | Compound target material and its production | |
JPH029641B2 (en) | ||
JP2000328240A (en) | Sputtering target for forming magneto-optical recording medium film and its production | |
US5108698A (en) | Method of making plate-shaped material | |
JPS6350469A (en) | Manufacture of alloy target for sputtering | |
JP2561517B2 (en) | Sintered product manufacturing method and sintered product | |
JP2681807B2 (en) | Manufacturing method of metal compact by hot isostatic pressing | |
JPH0663002B2 (en) | Sintering method of rare earth metal | |
JPH04160104A (en) | Production of tungsten target | |
JPH01306507A (en) | Manufacture of plate-like material |