JPS6152201B2 - - Google Patents
Info
- Publication number
- JPS6152201B2 JPS6152201B2 JP56120857A JP12085781A JPS6152201B2 JP S6152201 B2 JPS6152201 B2 JP S6152201B2 JP 56120857 A JP56120857 A JP 56120857A JP 12085781 A JP12085781 A JP 12085781A JP S6152201 B2 JPS6152201 B2 JP S6152201B2
- Authority
- JP
- Japan
- Prior art keywords
- capsule
- metal powder
- pressure
- hip
- hot isostatic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000843 powder Substances 0.000 claims description 37
- 239000002775 capsule Substances 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 31
- 229910052751 metal Inorganic materials 0.000 claims description 28
- 239000002184 metal Substances 0.000 claims description 28
- 238000011282 treatment Methods 0.000 claims description 23
- 239000004519 grease Substances 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 9
- 238000000280 densification Methods 0.000 claims description 8
- 238000011049 filling Methods 0.000 claims description 8
- 238000007789 sealing Methods 0.000 claims description 6
- 229910001209 Low-carbon steel Inorganic materials 0.000 claims description 2
- 238000001513 hot isostatic pressing Methods 0.000 claims 5
- 239000012611 container material Substances 0.000 claims 1
- 239000007789 gas Substances 0.000 description 21
- 239000000463 material Substances 0.000 description 20
- 238000012360 testing method Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 238000009864 tensile test Methods 0.000 description 6
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 238000007872 degassing Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000001000 micrograph Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000001739 density measurement Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000009689 gas atomisation Methods 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/14—Both compacting and sintering simultaneously
- B22F3/15—Hot isostatic pressing
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Powder Metallurgy (AREA)
Description
本発明は不活性ガス利用の熱間静水圧プレス処
理方法(以下、HIP処理方法と略記する。)に比
し、大巾にサイクルタイムが短縮され、かつ、設
備の比較的簡単な液圧利用、特に耐熱グリースを
圧力媒体とするHIP処理方法に関するものであ
る。
HIP処理方法は金属粉末の緻密化、大型又は各
種異型の無欠陥焼結体の製造、鋳造品の欠陥除去
等にすぐれた効果を発揮する手段として近時、頓
に注目されている方法である。
この方法は従来、アルゴンガス等の不活性ガス
を圧力媒体として被処理物体に高温と同時に三次
元的な静水圧を加え処理する方法で、従来技術で
は殆んど不可能とされていた諸問題を達成し、既
存する工業技術の中でも最も強力な焼結あるいは
接合技術として航空機産業を中心とする先進技術
分野において急速に工業化が展開されている。
しかしながら、このHIP処理方法は高圧HIP装
置を用い、かつ圧力媒体としてアルゴンガス又は
N2ガスを用いるため、被処理体の高圧装置への
出し入れ、高圧装置内での昇温、高温高圧雰囲気
の確保などの加熱装置、断熱構造、シール構造な
どに技術的困難性を有しているばかりでなく、高
圧装置内での昇温昇圧に相当な時間を要し、処理
のサイクルタイムが3〜7時間と非常に長く、生
産性が低いという面で問題を有していた。
本発明者等はかねて、かかる実情に鑑み、サイ
クルタイムの短縮を図るべく種々の研究を重ねて
いるものの、圧力媒体として前記の如きガス圧を
使用する限りはサイクルタイムに限度があり、大
巾な短縮化は事実上、不可能に近いことが判明す
るに至つた。
そこで、圧力媒体の選定を含め、更に引続き検
討を行なつたところ、液圧を用いたHIP処理方法
がある程度、その装置の簡単さと共にサイクルタ
イムの短縮可能性を有していることを知見した。
勿論、かかる液圧HIP処理は既に公知であり(イ)
特開昭55−120499号公報、(ロ)特開昭54−19405号
公報、(ハ)特開昭55−75970号公報、(ニ)特開昭55−
7596号公報を始め、(ホ)アイホン・アンド・スチー
ル・インターナヨナル(Iron and Steel
International)1981年2月号などにその関連技術
が紹介されているが、(イ)公報記載のスタンププロ
セスは圧力媒体としてタルク、パイロフエライト
を用いるものであり、又、(ハ),(ニ)各公報記載のも
のは前者はBN粉末を、後者は酸化ジルコニウ
ム、酸化マグネシウムを用いるもので、これらは
何れも粉末状態のもので使用され、従つて、充填
時、30〜40%の空隙が残り、加圧時の加圧ストロ
ークを大きくする必要が生じ、圧力容器がそれだ
け大きくなり処理時間も長くならざるを得ないと
共に、離型性が悪く、しかも複雑形状物品を処理
するときは、処理物の凹部に該圧力媒体粉末を完
全に充填できない難があり、圧力伝達の等方性を
阻害する欠陥がある。又、(ロ)公報に記載するもの
は溶融塩を圧力媒体としており、圧力伝達の等方
性の面ではすぐれているが、塩の予熱が必要であ
り、しかも高温の溶融塩を圧力容器内に注入し、
また容器内から排出するには危険が伴なう外、有
害ガスの発生、コンテナー温度の昇温、高圧シー
ルの困難さ、圧力容器の腐食などの点で問題があ
る。
そのため、本発明者等は、かかる従来技術をふ
まえ、これら各技術の欠陥を解決すべく更に広範
囲にわたり考察を続けた結果、充填性に優れ、し
かも充填が容易で離型性、等方圧縮性共に良好な
圧力媒体として耐熱グリースが極めて好適である
ことを見出し、本発明に到達した。
即ち、本発明はかかる耐熱グリースを圧力媒体
として使用し、圧力容器内に収蔵された金属粉末
充填カプセル構造体又は金属成形構造体を20000
気圧以下、好ましくは1000〜10000気圧の圧力条
件下でHIP処理することを特徴とするものであ
る。
以下、更に上記本発明方法の具体的な態様を順
次詳述する。
先ず、本発明方法における被処理物構造体とし
ては、金属粉末を充填したカプセル構造体又は予
め所要の形状に成形された金属成形構造体である
が、就中、このうち前者の金属粉末充填カプセル
構造体が最も一般的である。セラミツクス粉末の
場合も必ずしも不能ではないが、2000℃を越える
処理温度を要するので困難さが残る。従つて本発
明においては金属に限られる。
前記金属粉末は粉末冶金に利用される各種金属
が使用され、一般の焼結構成部品を作るのに用い
られる粉末の外、超硬合金粉、フエライト粉など
が含まれるが、かかる粉末は通常、ガスアトマイ
ズ法などによつて作られる。
そしてこの粉末は第1図に図示する開口部2を
有する蓋1と、容器本体3とからなる金属製カプ
セルに、その容器本体3内に充填され蓋1を溶接
することにより金属粉末充填カプセルとして形成
される。
カプセルは鋼、銅、アルミニウム等で成形され
るが、就中、軟鋼又はステンレス鋼が最も一般に
使用され、このカプセルの中に通常、60〜70%程
度の充填率をもつて粉末が充填される。
カプセル内に被処理金属粉末が充填されると、
次にこのカプセルはHIP前処理を行ない、本発明
による液圧HIP用プレフオームとしてカプセル構
造体に成形される。
この成形は従来のHIP処理において行なわれる
脱気密封と殆んど同様、真空装置に連結して開口
部2を通じてカプセル内部に残存する空気ガスを
加熱排気後、開口部2を密封することにより行な
うが、被処理金属粉末Aを容器本体3に充填した
後、該容器をその内部に空気が残存する状態で脱
気することなくそのまま蓋1を溶接して密封する
こともある。そして、これら何れの場合もカプセ
ル内に充填した粉末の緻密化を促進するため、第
2図イに図示するようにTi,Zrなどのゲツター
粉末A′を予め同封しておくことはカプセル内の
残留ガスを完全に吸収する上で、あるいは前記脱
気工程を省く際に頗る有効である。殊に本発明の
液圧HIP処理にあつては残留ガスは緻密化にとつ
て大きな障害となるので特に有益である。
上記真空加熱、脱気、密封が終り、液圧HIP用
プレフオームとして構造体を成形すると、次にこ
れをHIP処理に先立ち所要時間加熱処理し、該構
造体をHIP処理に適当な温度に均熱する。これは
通常、N2ガス中にて各構造体のHIP処理好適温度
に合わせ、例えば1050℃程度で行なう。このと
き、若しカプセル容器内にガスが残存しておれば
このガスを吸収消失させる。
一般には、この加熱温度は通常、被処理金属材
の固相線温度以下とすることが望ましいが、処理
材によつては一部液相が発生しても良い場合があ
るので、カプセル容器材の固相線温度以下とする
のが好適であり、400〜1250℃の温度範囲が用い
られる。
かくして熱処理された前記液圧HIPプレフオー
ムは、引続き、これを圧力容器内に収蔵し、本発
明の重要な工程である液圧HIP工程に付す。
このHIP工程は、例えば第3図に図示する如き
プレス機によつて行なわれる。勿論、かかるプレ
ス機に限らず、同様な作用をもつ他の各種プレス
機を使用することも可能であるが、ガス圧利用の
HIP装置の如き加熱装置、断熱層構造は特に必要
ではない。
第3図図示の装置において圧力容器4内に耐熱
グリースを収容し、上記金属粉末材料をカプセル
に充填成形した液圧HIP用プレフオーム構造体5
を収蔵すると、一方は盲蓋6により閉鎖されてい
るので、他方よりステム7を適宜、図示なき往復
動機構により圧力容器4内壁に沿つて移動させ圧
縮すると、密封された空間には耐熱グリースが充
満し、構造体の周囲より三次元的に等方圧縮を該
構造体5に矢示の如く及ぼす。
このとき、耐熱グリースは極めて流動性が良好
であり、構造体に対し、適確な等方圧縮を加え
る。
勿論、この場合の圧力媒体としては、流動性が
良好な液体であれば良く、油なども使用は可能で
あるが、油は発火温度が低いため、操業上、問題
があるので前記耐熱グリースは最も実用に適して
いる。
又、前記液圧HIP時における圧力としては、ガ
ス圧縮に比し、圧力増に対応する容積減の割合が
遥かに少なくて済むところから、20000気圧まで
は装置上、充分対応可能であるが、圧力容気の寿
命を考慮すれば10000気圧以下とすることが工業
上好ましく、通常、1000〜10000気圧の範囲内に
おいて実施することが有利である。
次に、この液圧HIP時における保持時間は、昇
圧後、適当な時間であればよいが、一般的にはこ
の等方圧縮による処理時間は僅か数分、多くは1
分程度で充分であり、これによつて所期の緻密化
効果が達成でき、所要の製品外形に成形される。
なお、このときプレフオーム構造体の温度又は
カプセルの温度は、処理時における緻密化効果に
影響を有するため第2図ロ,ハに図示する如く圧
力容器4の内壁又は金属粉末充填カプセル構造体
5の外周部に断熱層8,8′を設けることも好ま
しい設計である。このようにすればカプセルの温
度降下を防ぐと共に圧力容器内壁の昇温を防止す
ることができ、圧力容器内における前記構造体の
保持時間を長くし、より緻密化効果が期待でき
る。
又、カプセルと圧力容器内壁とが直接接触する
のを防止するため圧力容器内側にスリーブを設け
ることも一手段である。
なお、以上は金属粉末を被処理材とする場合に
ついて説明し、従つてカプセルを使用する場合で
あるが、鋳造欠陥の除去などのように内在空孔を
除去する場合にはカプセルを使用しない場合もあ
る。このときは、所要形状に成形された金属成形
構造体を前述したところに従つて加熱処理し、液
圧HIP処理に適切な温度に予熱した後、プレス機
の圧力容器内に収蔵し、所要の圧力条件でHIP処
理すれば緻密化の目的は達成され、鋳造欠陥を除
去することができる。
もとより、この場合においても耐熱グリースが
圧力媒体として使用される関係上、温度、圧力の
各条件はさきに述べたことが適用される。
以上のようにして耐熱性グリースを圧力媒体と
してHIP処理が行なわれ、その後、適宜、熱処理
を経て従来のHIP処理同様緻密化が達成される
が、次に本発明方法の効果をより明らかにするた
め、実施例を掲げる。
(実施例)
圧力媒体としてグリースを用い、下記第1表の
ロール用ガスアトマイズ鋼粉末について以下の如
き手法で成形を行なつた。
The present invention significantly shortens the cycle time compared to the hot isostatic press treatment method (hereinafter abbreviated as HIP treatment method) that uses inert gas, and allows the use of relatively simple hydraulic pressure equipment. In particular, it relates to a HIP treatment method using heat-resistant grease as a pressure medium. The HIP treatment method has recently been attracting a lot of attention as a method that exhibits excellent effects on densifying metal powder, producing defect-free sintered bodies of large size or various shapes, and removing defects from cast products. . Conventionally, this method uses an inert gas such as argon gas as a pressure medium to apply high temperature and three-dimensional hydrostatic pressure to the object to be treated, and it solves various problems that were considered almost impossible with conventional technology. As the most powerful sintering or bonding technology among existing industrial technologies, it is rapidly being industrialized in advanced technology fields centered on the aircraft industry. However, this HIP treatment method uses a high-pressure HIP device and uses argon gas or
Because N2 gas is used, there are technical difficulties in loading and unloading the object to be processed into the high-pressure equipment, raising the temperature within the high-pressure equipment, ensuring a high-temperature, high-pressure atmosphere, heating equipment, insulation structure, sealing structure, etc. In addition, it takes a considerable amount of time to raise the temperature and pressure within the high-pressure device, and the cycle time of the treatment is extremely long, 3 to 7 hours, resulting in low productivity. In view of this situation, the inventors of the present invention have been conducting various studies to shorten the cycle time, but as long as the above-mentioned gas pressure is used as the pressure medium, there is a limit to the cycle time. In fact, it has come to be known that such shortening is nearly impossible. After further investigation, including the selection of the pressure medium, we discovered that the HIP treatment method using hydraulic pressure has the potential to shorten the cycle time to some extent, as well as the simplicity of the equipment. . Of course, such hydraulic HIP processing is already known (a).
JP-A-55-120499, (b) JP-A-54-19405, (c) JP-A-55-75970, (d) JP-A-55-
Including Publication No. 7596, (E) Iron and Steel International (Iron and Steel
Related technologies are introduced in the February 1981 issue of International), but (a) the stamp process described in the publication uses talc and pyroferite as pressure media, and (c) and (d) The ones described in each publication use BN powder for the former, and zirconium oxide and magnesium oxide for the latter, and both are used in powder form, so 30 to 40% of voids remain during filling. , it becomes necessary to increase the pressure stroke during pressurization, which increases the size of the pressure vessel and increases the processing time.In addition, when processing products with poor mold release properties and complex shapes, There is a problem that the concave portion cannot be completely filled with the pressure medium powder, and there is a defect that inhibits isotropy of pressure transmission. In addition, the method described in the (b) publication uses molten salt as the pressure medium, and is excellent in terms of isotropic pressure transmission, but requires preheating of the salt, and moreover, the high-temperature molten salt is not heated inside the pressure vessel. inject into
In addition, it is not only dangerous to discharge from the container, but there are also problems such as generation of harmful gas, increase in container temperature, difficulty in high-pressure sealing, and corrosion of the pressure container. Therefore, based on such prior art, the present inventors continued to conduct further extensive studies in order to resolve the deficiencies of each of these technologies, and as a result, the present inventors found that the present invention has excellent filling properties, easy filling, mold releasability, and isotropic compressibility. We have discovered that heat-resistant grease is extremely suitable as a good pressure medium, and have arrived at the present invention. That is, the present invention uses such a heat-resistant grease as a pressure medium to heat a metal powder-filled capsule structure or a metal molded structure housed in a pressure vessel.
It is characterized by HIP treatment under pressure conditions below atmospheric pressure, preferably 1,000 to 10,000 atmospheres. Hereinafter, specific embodiments of the method of the present invention will be described in detail. First, the object structure to be processed in the method of the present invention is a capsule structure filled with metal powder or a metal molded structure pre-formed into a desired shape, and the former metal powder-filled capsule is especially preferred. Structures are the most common. Although this is not necessarily impossible in the case of ceramic powder, it remains difficult because the processing temperature exceeds 2000°C. Therefore, the present invention is limited to metals. The metal powder used is various metals used in powder metallurgy, and includes powder used to make general sintered components, cemented carbide powder, ferrite powder, etc.; It is made by gas atomization method etc. This powder is then filled into a metal capsule consisting of a lid 1 having an opening 2 shown in FIG. 1 and a container body 3, and the lid 1 is welded to form a metal powder-filled capsule. It is formed. The capsule is made of steel, copper, aluminum, etc., but mild steel or stainless steel is most commonly used, and the capsule is usually filled with powder at a filling rate of about 60 to 70%. . When the metal powder to be treated is filled into the capsule,
This capsule is then subjected to HIP pretreatment and molded into a capsule structure as a preform for hydraulic HIP according to the present invention. This molding is almost the same as the degassing and sealing performed in conventional HIP processing, by connecting to a vacuum device, heating and exhausting the air gas remaining inside the capsule through the opening 2, and then sealing the opening 2. However, after filling the container body 3 with the metal powder A to be treated, the lid 1 may be welded to seal the container as it is without evacuating the container with air remaining inside. In any of these cases, in order to promote the densification of the powder filled in the capsule, it is recommended to enclose getter powder A' such as Ti or Zr in advance as shown in Figure 2A. This is extremely effective in completely absorbing residual gas or in omitting the degassing step. Particularly in the hydraulic HIP process of the present invention, residual gas is particularly useful since it is a major obstacle to densification. After the above vacuum heating, degassing, and sealing are completed and the structure is formed as a preform for hydraulic HIP, it is then heat treated for the required time prior to HIP treatment, and the structure is soaked to a temperature suitable for HIP treatment. do. This is usually carried out in N 2 gas at a temperature suitable for HIP treatment of each structure, for example, about 1050°C. At this time, if any gas remains in the capsule container, this gas is absorbed and eliminated. In general, it is desirable that this heating temperature be below the solidus temperature of the metal material to be treated, but depending on the material to be treated, it may be acceptable for some liquid phase to occur, so It is preferable that the temperature is below the solidus temperature of , and a temperature range of 400 to 1250°C is used. The thus heat-treated hydraulic HIP preform is then stored in a pressure vessel and subjected to a hydraulic HIP process, which is an important step of the present invention. This HIP process is performed, for example, using a press machine as shown in FIG. Of course, it is possible to use not only this press machine but also various other press machines with similar functions, but
A heating device such as a HIP device and a heat insulating layer structure are not particularly required. In the apparatus shown in FIG. 3, a preform structure 5 for hydraulic HIP is obtained by accommodating heat-resistant grease in a pressure vessel 4 and filling and molding the metal powder material into a capsule.
When stored, one side is closed by the blind lid 6, so when the stem 7 is appropriately moved from the other side along the inner wall of the pressure vessel 4 by a reciprocating mechanism (not shown) and compressed, heat-resistant grease is filled in the sealed space. The structure 5 is filled with three-dimensional isotropic compression from the periphery of the structure as shown by the arrow. At this time, the heat-resistant grease has extremely good fluidity and applies appropriate isotropic compression to the structure. Of course, the pressure medium in this case may be any liquid with good fluidity, and oil can also be used, but since oil has a low ignition temperature, it poses a problem in terms of operation, so the heat-resistant grease is not suitable. Most suitable for practical use. In addition, as for the pressure during the hydraulic HIP, compared to gas compression, the volume reduction rate corresponding to the pressure increase is much smaller, so the equipment can fully handle up to 20,000 atmospheres. Considering the lifetime of the pressure and capacity, it is industrially preferable to set the pressure to 10,000 atmospheres or less, and it is usually advantageous to carry out the process within the range of 1,000 to 10,000 atmospheres. Next, the holding time during this hydraulic pressure HIP may be any suitable time after the pressure is increased, but generally the processing time for this isotropic compression is only a few minutes, and in most cases it is only a few minutes.
About a minute is sufficient, thereby achieving the desired densification effect and molding the product into the desired external shape. At this time, the temperature of the preform structure or the temperature of the capsule has an influence on the densification effect during processing, so as shown in FIGS. It is also a preferred design to provide a heat insulating layer 8, 8' on the outer periphery. In this way, it is possible to prevent the temperature of the capsule from falling and also to prevent the temperature of the inner wall of the pressure vessel from rising, and the retention time of the structure in the pressure vessel can be extended, and a further densification effect can be expected. Another method is to provide a sleeve inside the pressure vessel to prevent direct contact between the capsule and the inner wall of the pressure vessel. Note that the above describes the case where metal powder is used as the material to be treated, and therefore the case where a capsule is used. However, when removing inherent pores such as removing casting defects, a capsule is not used. There is also. At this time, the metal molded structure formed into the required shape is heat treated as described above, preheated to a temperature appropriate for hydraulic HIP treatment, and then stored in the pressure vessel of the press machine to form the required shape. HIPing under pressure conditions can achieve the purpose of densification and eliminate casting defects. Of course, in this case as well, since heat-resistant grease is used as the pressure medium, the conditions of temperature and pressure described above apply. As described above, HIP treatment is performed using heat-resistant grease as a pressure medium, and then, through appropriate heat treatment, densification is achieved as in conventional HIP treatment.Next, we will clarify the effects of the method of the present invention in more detail. Therefore, examples are listed below. (Example) Using grease as a pressure medium, the gas atomized steel powder for rolls shown in Table 1 below was molded in the following manner.
【表】
先ず、上記供試粉末を第1図に図示する如き構
造をもつ65φ×100のカプセルを使用し充填率
65%で15Kgの金属粉末を充填した。
次いで、このカプセルを1050℃×3Hr真空加熱
脱気後、密封し、液圧HIP用プレフオーム構造体
を試作し、これを更にN2ガス中にて1050℃×2Hr
の予備加熱を行ない均熱に処理した。
得られたこの1050℃均熱フオーム構造体を次に
第3図に示す構造の400トンプレス機を用い第2
表に示す各設定条件により夫々液圧HIP処理を施
しHIP処理材を得た。[Table] First, the filling rate was determined by using the above sample powder in a 65φ x 100 capsule with the structure shown in Figure 1.
Filled with 15Kg metal powder at 65%. Next, this capsule was vacuum heated and degassed at 1050°C for 3 hours, sealed, and a preform structure for hydraulic HIP was prototyped, which was further heated at 1050°C for 2 hours in N 2 gas.
It was preheated and soaked. The resulting 1050℃ soaked foam structure was then pressed into a second press using a 400-ton press with the structure shown in Figure 3.
Hydraulic HIP treatment was performed under each setting condition shown in the table to obtain HIP treated materials.
【表】
かくして得られたHIPビレツトについて外観形
状観察と寸法測定を行なつた。続いて上記HIPピ
レツトを2等分し、これに以下の各熱処理を施し
各試験片素材を作成し、ミニサイズ引張り試験片
(全長40mm)及び密度測定用試験片を採取した。
(1) 700℃×3HrFC……試験片 455L,456L
(2) 1000℃×3HrFC→700℃×3HrFC……試験片
455H,456H
そして、上記の各試験片にもとづき密度測定、
ミクロ組織、引張り試験(n=3)及び同試験材
の破面観察の各項目にわたり検査を行なつたが、
その結果は以下の通りであつた。
(A) 液圧HIPビレツトの外観形状及び寸法測定
上記HIPビレツトについて外観形状を観察し
たところ従来のガス圧によるHIPビレツト形状
と大差なく、液圧HIP材においても当初のプレ
フオーム構造体は等方的に加圧されていること
が認められた。
又、液圧ビレツトの外観寸法を測定した結
果、液圧HIPにより当初の構造体は径方向に約
12%軸方向に約20%収縮していることが判明し
た。
(B) 密度側定
次に引続き前記試験片にもとづき密度を測定
したが、その結果は第3表に示す通りであつ
た。
なお、同表には比較のため従来のArガスに
よるHIP処理材の密度も併せて示した。[Table] The appearance and shape of the thus obtained HIP billet were observed and the dimensions were measured. Subsequently, the above HIP pillar was divided into two equal parts and subjected to the following heat treatments to prepare each test piece material, and a mini-size tensile test piece (total length 40 mm) and a test piece for density measurement were taken. (1) 700℃×3HrFC……test piece 455L, 456L (2) 1000℃×3HrFC→700℃×3HrFC……test piece
455H, 456H And density measurement based on each test piece above,
Inspections were conducted on the microstructure, tensile test (n = 3), and observation of the fracture surface of the test material.
The results were as follows. (A) External shape and dimensional measurement of hydraulic HIP billet When we observed the external shape of the above HIP billet, we found that it was not much different from the shape of conventional gas pressure HIP billet, and even in hydraulic HIP material, the initial preform structure was isotropic. It was recognized that the pressure was on. In addition, as a result of measuring the external dimensions of the hydraulic billet, it was found that due to the hydraulic HIP, the original structure was approximately
It was found that the shrinkage was approximately 20% in the 12% axial direction. (B) Density Determination Next, the density was measured based on the test piece, and the results were as shown in Table 3. The table also shows the density of conventional HIP treated materials using Ar gas for comparison.
【表】
上表より明らかなように液圧HIPの場合、
1000Kg/cm2の圧力で加圧しても0.5%程までの
空孔率で若干、空孔が残り、これはHIP後の熱
処理によつても減少しなかつたが、圧力を高め
5000Kg/cm2の圧力で加圧した場合には100%の
密度比が得られ、必要な圧力は高くなるが、充
分、従来のHIP処理法に比べて同等の真密度化
が達成されることが首肯される。
(C) ミクロ組織
第4図イ,ロに本発明による前記液圧HIP材
(1050℃×5000Kg/cm2×1分)のミクロ組織と
従来のArガス使用によるHIP材(1050℃×1000
Kg/cm2×1Hr)のミクロ組織とを対比して示
す。
同顕微鏡写真より明らかなように両者のミク
ロ組織の間には格別な違いは認められない。
(D) 引張り試験
引張り試験結果を第4表に示す。なお併せて
従来のArガス使用のHIP材(1050℃×1000Kg/
cm2×1Hr)の引張り特性をも示す。[Table] As is clear from the table above, in the case of hydraulic HIP,
Even when pressurized at a pressure of 1000 Kg/ cm2 , some pores remained with a porosity of about 0.5%, and these did not decrease even with heat treatment after HIP, but when the pressure was increased
When pressurized at a pressure of 5000Kg/ cm2 , a density ratio of 100% is obtained, and although the required pressure is higher, it is sufficient to achieve the same true density as the conventional HIP treatment method. is approved. (C) Microstructure Figure 4 A and B show the microstructure of the hydraulic HIP material according to the present invention (1050℃ x 5000Kg/cm 2 x 1 minute) and the conventional HIP material using Ar gas (1050℃ x 1000
Kg/cm 2 ×1Hr). As is clear from the same micrograph, no particular difference is observed between the microstructures of the two. (D) Tensile test The results of the tensile test are shown in Table 4. In addition, conventional HIP materials using Ar gas (1050℃×1000Kg/
cm 2 ×1Hr).
【表】
上表より本発明による液圧HIP材は従来の
HIP材に対し何ら遜色がなく、略同等の特性を
有していることが知見される。
なお、上記引張り試験片の破壊起点近傍の
SEM破面写真を第5図イ,ロに示す。
イは原料粉末のSEM写真でありロの引張り
試験片SEM破面写真と対比して観察すれば試
験片破面写真ではもとの粉末粒界に沿つた破壊
は認められず、粉末粒子間の接合は完全になさ
れていることが看取される。
以上の実施例より明らかな如く本発明方法は前
記の如き耐熱グリースを圧力媒体に用い、液圧
HIP処理を行なうことにより1サイクル5分程度
で真密度HIP材が得られること、そして得られた
HIP材の引張り特性は従来のガス圧HIP材と何ら
遜色はなく同等の特性を有することが確認され、
HIPサイクル時間を大巾に短縮し、生産性の向上
に著しく寄与することが認識された。
即ち、本発明液圧HIP処理法によれば上述の如
く従来のHIP処理サイクルタイムを飛躍的に短縮
し、工業的利用に大きな役割を期待できる顕著な
効果を有するものであるが、更に圧力媒体が液体
であることにより、(1)溶接不良による小穴な
どカプセル欠陥に起因したHIP失敗率を大幅に低
減できる。(2)仮に圧力容器の破損事故が発生
しても、爆発による被害が従来のHIP処理に比べ
て小さい。(3)ガスと異なり装置は高圧ガス取
締法の規制を受けないため設置保守に関する取扱
いが簡便であり、従来のHIP装置の如く複雑な機
構を要せず簡単な圧縮装置が使用可能である等の
種々の利点があり、今後におけるHIP処理技術の
普及による各種粉末冶金製品の品質向上に大なる
効果を発揮するものである。[Table] From the table above, the hydraulic HIP material according to the present invention is
It is found that there is no inferiority to HIP material and that it has almost the same characteristics. In addition, the area near the fracture origin of the above tensile test piece
SEM fracture surface photographs are shown in Figure 5 A and B. (a) is a SEM photograph of the raw material powder. When observed in comparison with the SEM fracture surface photograph of the tensile test piece (b), no fracture along the original powder grain boundaries is observed in the fracture surface photograph of the test piece, and no fracture is observed between the powder particles. It can be seen that the bonding is complete. As is clear from the above examples, the method of the present invention uses the heat-resistant grease as described above as a pressure medium, and
By performing HIP treatment, true density HIP material can be obtained in about 5 minutes per cycle, and
It has been confirmed that the tensile properties of HIP material are comparable to those of conventional gas pressure HIP material.
It was recognized that the HIP cycle time was significantly shortened and significantly contributed to improving productivity. In other words, the hydraulic HIP treatment method of the present invention has the remarkable effect of dramatically shortening the conventional HIP treatment cycle time as described above and can be expected to play a major role in industrial applications. By being a liquid, (1) the HIP failure rate due to capsule defects such as small holes due to poor welding can be significantly reduced; (2) Even if a pressure vessel breakage accident were to occur, the damage caused by the explosion would be smaller than with conventional HIP treatment. (3) Unlike gas, the device is not subject to the regulations of the High Pressure Gas Control Act, so it is easy to install and maintain, and a simple compression device can be used without requiring complicated mechanisms like conventional HIP devices. It has various advantages and will have a great effect on improving the quality of various powder metallurgy products due to the spread of HIP processing technology in the future.
第1図は本発明方法に使用するカプセルの分解
説明図、第2図イ,ロ,ハは本発明方法の実施態
様の各例で、イはケツター粉末をカプセル内に同
封する状態、ロ,ハは圧力容器及びカプセルの各
断熱構造例を示す。第3図は本発明液圧HIP処理
装置の略示概要図、第4図イ,ロはHIP処理材の
各ミクロ組織を示す顕微鏡写真(×400倍)で、
イは従来HIP材、ロは本発明液圧HIP材である。
又、第5図イ,ロはSEM破面顕微鏡写真(×330
倍)でイは原料粉末、ロは本発明液状HIP材試験
片の場合である。
1……カプセル容器蓋、2……開口部、3……
カプセル容器本体、4……圧力容器、5……金属
粉末充填カプセル構造体。
Fig. 1 is an exploded explanatory view of a capsule used in the method of the present invention, and Fig. 2 A, B, and C are examples of embodiments of the method of the present invention. C shows examples of insulation structures for pressure vessels and capsules. Figure 3 is a schematic diagram of the hydraulic HIP treatment apparatus of the present invention, and Figures 4A and 4B are micrographs (400x magnification) showing each microstructure of the HIP treated material.
A is a conventional HIP material, and B is a hydraulic HIP material of the present invention.
In addition, Figure 5 A and B are SEM fracture surface micrographs (×330
A is the case of the raw material powder, and B is the case of the liquid HIP material test piece of the present invention. 1... Capsule container lid, 2... Opening, 3...
Capsule container body, 4... pressure vessel, 5... metal powder filled capsule structure.
Claims (1)
内に充填し、脱気し又は脱気することなく該カプ
セルを密封してなる金属粉末充填カプセル構造体
又は予め所要の形状に成形してなる金属成形構造
体を圧力容器内に収蔵し、圧力媒体を利用して熱
間静水圧プレス処理する方法において、前記圧力
媒体として流動性を有する耐熱グリースを使用
し、かつ前記構造体を所要の処理温度に加熱し、
20000気圧以下の圧力条件下で前記圧力媒体に圧
縮力を作用させることにより前記金属粉末又は金
属成形構造体を緻密化することを特徴とする液圧
利用熱間静水圧プレス処理方法。 2 カプセル容器が軟鋼性容器である特許請求の
範囲第1項記載の液圧利用熱間静水圧プレス処理
方法。 3 カプセル容器内に充填した金属粉末の緻密化
を促進するためカプセル容器内に前記金属粉末と
共にゲツター粉末を同封する特許請求の範囲第1
項又は第2項記載の液圧利用熱間静水圧プレス処
理方法。 4 構造体を収蔵する圧力容器内壁に断熱層を配
設して処理する特許請求の範囲第1項、第2項又
は第3項記載の液圧利用熱間静水圧プレス処理方
法。 5 金属粉末充填カプセル容器の外周部に断熱層
を配設して処理する特許請求の範囲第1項、第2
項又は第3項記載の液圧利用熱間静水圧プレス処
理方法。 6 構造体の加熱温度がカプセル容器材の固相線
温度以下、好ましくは700〜1250℃である特許請
求の範囲第1〜5項の何れかに記載の液圧利用熱
間静水圧プレス処理方法。[Scope of Claims] 1. A metal powder-filled capsule structure formed by filling a metal powder into a metal capsule container having an opening, and then evacuating or sealing the capsule without evacuating, or a metal powder-filled capsule structure formed in advance into a desired shape. A method of storing a molded metal structure in a pressure vessel and subjecting it to hot isostatic pressing using a pressure medium, in which a heat-resistant grease having fluidity is used as the pressure medium, and the structure heated to the required processing temperature,
A method for hot isostatic pressing using hydraulic pressure, characterized in that the metal powder or the metal molded structure is densified by applying a compressive force to the pressure medium under a pressure condition of 20,000 atmospheres or less. 2. The hot isostatic pressing method using hydraulic pressure according to claim 1, wherein the capsule container is a mild steel container. 3. Claim 1, in which getter powder is enclosed together with the metal powder in the capsule container in order to promote densification of the metal powder filled in the capsule container.
The hot isostatic press treatment method using hydraulic pressure according to item 1 or 2. 4. A hot isostatic press treatment method using hydraulic pressure according to claim 1, 2, or 3, which comprises disposing a heat insulating layer on the inner wall of a pressure vessel housing the structure. 5 Claims 1 and 2, which involve disposing a heat insulating layer on the outer periphery of a metal powder-filled capsule container.
The method for hot isostatic pressing using hydraulic pressure according to item 1 or 3. 6. The hot isostatic pressing method using hydraulic pressure according to any one of claims 1 to 5, wherein the heating temperature of the structure is below the solidus temperature of the capsule container material, preferably 700 to 1250°C. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56120857A JPS5822307A (en) | 1981-07-31 | 1981-07-31 | Method of hot hydrostatic pressure press treatment using hydraulic pressure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56120857A JPS5822307A (en) | 1981-07-31 | 1981-07-31 | Method of hot hydrostatic pressure press treatment using hydraulic pressure |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5822307A JPS5822307A (en) | 1983-02-09 |
JPS6152201B2 true JPS6152201B2 (en) | 1986-11-12 |
Family
ID=14796659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56120857A Granted JPS5822307A (en) | 1981-07-31 | 1981-07-31 | Method of hot hydrostatic pressure press treatment using hydraulic pressure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5822307A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61127670A (en) * | 1984-11-22 | 1986-06-14 | 日立金属株式会社 | Manufacture of sintered body |
JPS63147252U (en) * | 1987-03-19 | 1988-09-28 | ||
JPH0241859A (en) * | 1988-08-02 | 1990-02-13 | Sumitomo Metal Ind Ltd | Grinding equipment for both side face of plated steel strip |
JPH063555U (en) * | 1992-06-17 | 1994-01-18 | 中立電機株式会社 | Automatic welding bead finishing device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS524243A (en) * | 1975-06-30 | 1977-01-13 | Canon Inc | Jam detecting system and unit |
-
1981
- 1981-07-31 JP JP56120857A patent/JPS5822307A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS524243A (en) * | 1975-06-30 | 1977-01-13 | Canon Inc | Jam detecting system and unit |
Also Published As
Publication number | Publication date |
---|---|
JPS5822307A (en) | 1983-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4050143A (en) | Method of producing dense metal tubes or the like | |
US4673549A (en) | Method for preparing fully dense, near-net-shaped objects by powder metallurgy | |
US4659546A (en) | Formation of porous bodies | |
US5445787A (en) | Method of extruding refractory metals and alloys and an extruded product made thereby | |
JP2011041983A (en) | Device and method for hot isostatic pressing container | |
JP2001522722A (en) | Static pressure processing method for gas | |
US4150196A (en) | Method of producing tubes or the like and capsule for carrying out the method as well as blanks and tubes according to the method | |
CN110394450B (en) | Method for promoting densification of metal blank by utilizing hydrogen absorption and expansion of metal | |
JPS646241B2 (en) | ||
JPS6152201B2 (en) | ||
Mashl | Powder metallurgy processing by hot isostatic pressing | |
CN107671294A (en) | Make high temperature insostatic pressing (HIP) jacket and the heat and other static pressuring processes of preformed member are produced using the jacket | |
US9199308B2 (en) | Method of producing composite articles and articles made thereby | |
US3633264A (en) | Isostatic forging | |
JP2535408B2 (en) | Hot isostatic pressing apparatus and processing method | |
RU2822495C1 (en) | Method of producing dense material from titanium powder | |
JP4303619B2 (en) | Method for treating metal body having open holes and metal body | |
KR102605561B1 (en) | Canning free hot isostatic pressure powder metallurgy method | |
JPS5929082B2 (en) | Blanks and their manufacturing methods in steel pipe manufacturing | |
CA1050217A (en) | Capsules from which elongate metal objects can be produced by extrusion | |
JPS6131161B2 (en) | ||
JPH02194106A (en) | Hot isostatic pressurizing treating method using hydraulic pressure | |
JPS5884903A (en) | High temperature working method for object to be treated | |
JPS61110704A (en) | Hot hydrostatic pressurizing method using viscoplastic pressure medium | |
JPS6250522B2 (en) |