JPH01288315A - Permselective gas permeable membrane - Google Patents
Permselective gas permeable membraneInfo
- Publication number
- JPH01288315A JPH01288315A JP63116054A JP11605488A JPH01288315A JP H01288315 A JPH01288315 A JP H01288315A JP 63116054 A JP63116054 A JP 63116054A JP 11605488 A JP11605488 A JP 11605488A JP H01288315 A JPH01288315 A JP H01288315A
- Authority
- JP
- Japan
- Prior art keywords
- gas permeable
- porous
- permeable membrane
- permselective
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 42
- 229920000642 polymer Polymers 0.000 claims abstract description 42
- 230000035699 permeability Effects 0.000 claims abstract description 14
- 239000007789 gas Substances 0.000 abstract description 49
- 239000002994 raw material Substances 0.000 abstract description 16
- 238000000926 separation method Methods 0.000 abstract description 16
- 239000000758 substrate Substances 0.000 abstract description 15
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 abstract description 4
- 229920001577 copolymer Polymers 0.000 abstract description 4
- 229910001882 dioxygen Inorganic materials 0.000 abstract description 4
- 239000004721 Polyphenylene oxide Substances 0.000 abstract description 3
- 229920001296 polysiloxane Polymers 0.000 abstract description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 2
- 229920002301 cellulose acetate Polymers 0.000 abstract description 2
- 229920000098 polyolefin Polymers 0.000 abstract description 2
- 229920006380 polyphenylene oxide Polymers 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 26
- 238000000034 method Methods 0.000 description 24
- 238000010438 heat treatment Methods 0.000 description 16
- 238000004132 cross linking Methods 0.000 description 7
- 238000001035 drying Methods 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 6
- 239000010408 film Substances 0.000 description 6
- -1 polyethylene Polymers 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 238000005470 impregnation Methods 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- 230000004584 weight gain Effects 0.000 description 5
- 235000019786 weight gain Nutrition 0.000 description 5
- 239000007788 liquid Substances 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 125000005375 organosiloxane group Chemical group 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000003504 photosensitizing agent Substances 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 150000004053 quinones Chemical class 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/1216—Three or more layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
- B01D69/107—Organic support material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
- B01D69/108—Inorganic support material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/70—Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
- B01D71/701—Polydimethylsiloxane
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、選択性気体透過膜およびその製造方法に関し
、さらに詳しくは、医療用、水処理および燃焼設備用な
らびにバイオテクノロジー関連の各種気体分離分野に好
適に用いることができる選択性気体透過膜に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a selective gas permeable membrane and a method for manufacturing the same, and more particularly, to various gas separation membranes for medical use, water treatment and combustion equipment, and biotechnology. The present invention relates to a selective gas permeable membrane that can be suitably used in various fields.
[従来の技術およびその課題]
気体の分離法として、古くから冷却凝縮蒸留法、吸着分
離法、溶媒もしくは抽出分離法などの様々な手法が用い
られてきている。[Prior Art and its Problems] Various methods have been used as gas separation methods for a long time, such as cooling condensation distillation, adsorption separation, and solvent or extraction separation.
ところが、一般に採用されているこれらの手法は、多大
のエネルギーと複雑な設備とを必要とする。そこで、近
年、高分子素材からなる膜を用いてこの気体分離を行な
うことにより、エネルギー消費を低減させる試みなどが
盛んになされている。However, these commonly adopted methods require a large amount of energy and complicated equipment. Therefore, in recent years, many attempts have been made to reduce energy consumption by performing this gas separation using membranes made of polymeric materials.
このような要請に応じて、分離膜を用いた気体分離法に
関するいくつかの報告がある。In response to such demands, there have been several reports on gas separation methods using separation membranes.
たとえば、特開昭48−84199.特開昭58−18
3403゜特開昭58−14928等によると、オルガ
ノシロキサン系重合体等からなる選択性気体透過膜を用
い、エネルギー消費を低減させることが試みられている
。For example, JP-A-48-84199. Japanese Unexamined Patent Publication No. 58-18
According to JP-A-58-14928, etc., an attempt has been made to reduce energy consumption by using a selective gas permeable membrane made of an organosiloxane polymer or the like.
ところが、これらの選択性気体透過膜においては、気体
透過係数が、まだ十分なレベルには到達しておらず、こ
の気体透過係数を高めるために膜厚を薄くすると気体の
分離係数の低下のみならず1機械的強度の低下やピンホ
ールの発生等の不都合を生じる。However, in these selective gas permeable membranes, the gas permeability coefficient has not yet reached a sufficient level, and reducing the membrane thickness to increase the gas permeation coefficient only reduces the gas separation coefficient. (1) Problems such as a decrease in mechanical strength and the formation of pinholes occur.
そこで、前述の不都合等を解決すべく特開昭58−14
928、特公昭59−24843等ではポリマー溶液の
水面展開膜やプラズマ重合膜を用い、多孔賀基材によっ
て強度をもたせるとともに選択性気体透過膜の薄膜化が
試みられてはいるが、複合膜の形成工程が著しく複雑で
あるばかりでなく機械的強度も満足できるものではない
。Therefore, in order to solve the above-mentioned inconveniences, we
928, Japanese Patent Publication No. 59-24843, etc., attempts have been made to use a water surface spread membrane of a polymer solution or a plasma polymerized membrane to provide strength with a porous base material and to make the selective gas permeable membrane thinner, but the process for forming a composite membrane is difficult. Not only is it extremely complex, but its mechanical strength is also unsatisfactory.
また気体の透過係数と分離係数のバランスコントロール
も困難なものとなっている。Furthermore, it is difficult to control the balance between the gas permeability coefficient and the separation coefficient.
本発明は、このような従来の選択性気体透過膜が有する
不都合を克服し、気体の透過係数と分離係数のバランス
に優れ、しかも機械的強度を合わせ持つ、取扱いの容易
な選択性気体透過膜を提供することを目的としてなされ
たものである。The present invention overcomes the disadvantages of conventional selective gas permeable membranes, and provides an easy-to-handle selective gas permeable membrane that has excellent balance between gas permeability coefficient and separation coefficient, and also has mechanical strength. It was made with the purpose of providing.
[前記課題を解決するための手段]
前記課題を解決するための本発明の構成は、多孔質基材
層の間に気体の選択透過性を有する重合体層を設けてな
ることを特徴とする選択性気体透過膜である。[Means for Solving the Problems] The structure of the present invention for solving the problems described above is characterized in that a polymer layer having gas selective permeability is provided between the porous base layers. It is a selective gas permeable membrane.
以下に、本発明の選択性気体透過膜について詳細に説明
する。The selective gas permeable membrane of the present invention will be explained in detail below.
前記多孔質基材としては、有機系、無機系の基材を用い
ることができ、たとえば、有機系の多孔質基材としては
、ポリエチレンやポリプロピレンのようなポリオレフィ
ン、ポリテトラフルオロエチレンのようなフッ素樹脂、
酢酸セルロース、ニトロセルロース、塩化ビニル、ポリ
スルホン、ポリエーテルスルホン、アクリレートポリマ
ー等が挙げられる。As the porous base material, organic or inorganic base materials can be used. For example, organic porous base materials include polyolefins such as polyethylene and polypropylene, and fluorine base materials such as polytetrafluoroethylene. resin,
Examples include cellulose acetate, nitrocellulose, vinyl chloride, polysulfone, polyethersulfone, and acrylate polymers.
一方、無機系の多孔質基材としては、多孔質シリカ、多
孔質アルミナ、グラスファイバーメンブレン等が挙がら
れる。On the other hand, examples of the inorganic porous base material include porous silica, porous alumina, and glass fiber membrane.
これらの多孔質基材の平均細孔径としては、通常0.0
1〜10p、mであり、好ましくは0.1〜5g、mの
範囲にある細孔を有するものを好適に使用することがで
きる。The average pore diameter of these porous substrates is usually 0.0
Those having pores in the range of 1 to 10 p, m, preferably 0.1 to 5 g, m can be suitably used.
この平均細孔径が、 0.01uL+n未満のものでは
。If this average pore diameter is less than 0.01 uL+n.
たとえば酸素ガスなどの気体の透過率(透過係数)が不
十分となる場合があり、一方、IOILmを越えると気
体、酸素分子の透過選択性が低下することがある。For example, the permeability (permeability coefficient) of gases such as oxygen gas may be insufficient, and on the other hand, when IOILm is exceeded, the permeability selectivity for gases and oxygen molecules may decrease.
前記多孔質基材の形態としてld通常、平板状または平
膜状のものが用いられるが、選択性気体透過膜の設計上
、たとえば曲面等を有する立体構造をとる板状または膜
状のものも適宜に選択することができる。The shape of the porous base material is usually a flat plate or a flat membrane, but due to the design of the selective gas permeable membrane, a plate or membrane with a three-dimensional structure having a curved surface etc. is also used. It can be selected as appropriate.
気体の選択透過性を有する前記重合体層を形成するため
の重合体としては、公知の気体透過膜に使用される重合
体を採用することができ、たとえばポリオルガノシロキ
サンなどのシリコーンゴム、ポリオルガノシロキサン−
ポリカーボネート共重合体、ジメチルシロキサン−α−
メチルスチレン共重合体、α、ω−ポリシロキサンーフ
ェノール樹脂共重合体、α、ω−ジアミノエチルポリジ
メチルシロキサン−ポリヒドロキシスチレン共重合体、
シロキサン−ポリウレタン共重合体。As the polymer for forming the polymer layer having gas selective permeability, it is possible to employ polymers used in known gas permeable membranes, such as silicone rubber such as polyorganosiloxane, polyorganosiloxane, etc. Siloxane
Polycarbonate copolymer, dimethylsiloxane-α-
Methylstyrene copolymer, α,ω-polysiloxane-phenol resin copolymer, α,ω-diaminoethylpolydimethylsiloxane-polyhydroxystyrene copolymer,
Siloxane-polyurethane copolymer.
シロキサン−ポリエーテル共重合体、トリシリルプロピ
ン、ポリフェニレンオキシド等のが挙げられる。Examples include siloxane-polyether copolymer, trisilylpropyne, and polyphenylene oxide.
なお、この重合体層は、異なる重合体の薄膜を複数a層
していても良いし、また一種単独の重合体の層であって
も良い。Note that this polymer layer may be composed of a plurality of thin films of different polymers, or may be a layer of a single type of polymer.
前記選択性気体透過膜は、前記多孔質基材層の間に、気
体の選択透過性を有する前記重合体層を備えていればど
のような層構成を有していても良い、前記層構成の一例
を挙げると、たとえば、−対の多孔質基材層の間に一層
の前記重合体層を介装させてなる層構成、一対の多孔質
基材層の間に複数の前記重合体層を介装させてなる層構
成、嵩ね合わされた三層以上の多孔質基材層における各
多孔質基材層間に一層または複数層の重合体層を介装さ
せてなる層構成等を挙げることができる。The selective gas permeable membrane may have any layer configuration as long as it includes the polymer layer having gas selective permeability between the porous base layers. To give an example, for example, a layer structure in which one layer of the polymer layer is interposed between a pair of porous base material layers, and a layer structure in which a plurality of the polymer layers are interposed between a pair of porous base material layers. A layer structure in which one or more polymer layers are interposed between each porous base material layer in three or more porous base material layers stacked together, etc. I can do it.
いずれの層構成を採用する可きかは、気体の透過係数と
分離係数とのバランスや選択性気体透過膜の用途等に応
じて適宜に決定すれば良い。Which layer structure should be adopted may be appropriately determined depending on the balance between the gas permeability coefficient and the separation coefficient, the use of the selective gas permeable membrane, and the like.
なお1本発明の目的を損なわない範囲であるならば、前
記選択性気体透過膜を構成している前記多孔質基材層の
外面に前記重合体層を設けてもよい。Note that the polymer layer may be provided on the outer surface of the porous base material layer constituting the selective gas permeable membrane, as long as the object of the present invention is not impaired.
前記多孔質基材層の厚みおよび前記重合体層の厚みにつ
いても、この選。択性気体透過膜の用途に応じて種々に
変化するので一概に決定することができないのであるが
、多くの場合、前記多孔質基材の厚みはlθ〜300p
mであり、前記重合体層の厚みは0,01〜3終mであ
る。The thickness of the porous base material layer and the thickness of the polymer layer are also selected in this manner. Although it cannot be determined unconditionally because it varies depending on the use of the selective gas permeable membrane, in many cases, the thickness of the porous base material is lθ to 300p.
m, and the thickness of the polymer layer is 0.01 to 3 m.
このような選択性気体透過膜は次のようにして製造する
ことができる。Such a selective gas permeable membrane can be manufactured as follows.
たとえば、■多孔質基材を複数枚重ね合せ、各基材間に
わずかの間隙を設けた状態すなわち単に複数枚の多孔質
基材を重畳した状態で重合体層原料を含浸し、乾燥ある
いは固化を行なう方法、■多孔質基材の表面に重合体層
原料を塗布し、塗布面を重ね合せて圧若し、乾燥あるい
は固化を行なう方法等を挙げることができる。For example, ■ multiple layers of porous base materials are stacked together with a slight gap between each base material, i.e., multiple layers of porous base materials are simply stacked one on top of the other, and the raw material for the polymer layer is impregnated, and then dried or solidified. (2) Applying a polymer layer raw material to the surface of a porous substrate, overlapping the coated surfaces, and applying pressure, drying, or solidification.
前記■および■のいずれの製造方法においてもその重合
体MjX料としては、前記重合体の溶液。In both of the production methods (1) and (2) above, the polymer MjX material is a solution of the polymer.
架橋反応等により前記重合体を与える液状オリゴマーあ
るいは反応性液状七ツマー等を挙げることができる。な
お、重合体層を形成する際、加熱による架橋あるいは重
合を利用するのであれば、前記重合体原料中に、本発明
の目的に支障のない範囲で所望により、架橋剤2重合促
進剤、分子量調節剤、老化防止剤等の添加物や他のポリ
マーを配合していてもよい。Examples include liquid oligomers or reactive liquid hetamines which yield the above-mentioned polymers through a crosslinking reaction or the like. In addition, when forming a polymer layer, if crosslinking or polymerization by heating is used, the polymer raw material may optionally contain a crosslinking agent, a polymerization accelerator, a molecular weight Additives such as regulators and anti-aging agents and other polymers may also be blended.
前記■の含浸方法を採用する場合、その含浸方法は、重
ね合わせた前記多孔質基材の各間隙に重合体原料を均一
に浸透させることができるのであればその手法に特に制
限がなく、重ね合わせた多孔質基材全体を重合体原料等
に浸漬する方法あるいは部分的に浸漬し1重合体原料等
を多孔質基材の各間隙に浸透せしめる方法等を採用する
ことができる。When adopting the impregnation method (ii) above, there is no particular restriction on the impregnation method as long as the polymer raw material can be uniformly permeated into each gap of the layered porous substrates, and the impregnation method is not particularly limited. A method may be adopted in which the entire combined porous base material is immersed in the polymer raw material or the like, or a method in which it is partially immersed and one polymer raw material or the like permeates into each gap of the porous base material.
前記■の塗布圧着法を採用する場合、多孔質基材表面に
重合体原料を塗布する方法は、一般に用いられている手
法、たとえばスプレー法等によって行なうことができる
が、基材表面上に重合体原料等を均一に塗布できる方法
であれば特に制限するものではなく、さらに圧着する方
法に関しても、各基材の間隙に気泡を残さないような圧
着法であれば特に制限するものではない。When applying the coating and pressure bonding method described in (2) above, the polymer raw material can be applied to the surface of the porous substrate by a commonly used method such as a spray method. There are no particular restrictions on the method as long as it can uniformly apply the combined raw materials, and there are no particular restrictions on the method of pressure bonding as long as it does not leave air bubbles in the gaps between the base materials.
次に、多孔質基材層間の重合体原料を重合体層にする処
理は、重合体原料の種類に応じる0例えば、■重合体原
料が重合体の溶液であれば、溶媒を蒸発させるための乾
燥処理、■重合体原料が重合体と架橋剤とを含有するの
であれば所定温度に加熱することにより架橋反応を起こ
させる架橋処理、■重合体原料が千ツマ−と重合開始剤
あるいは光増感剤とを含有するのであれば、加熱、光照
射、電子線照射等による重合反応を起こさせる重合処理
あるいは架橋処理等を挙げることができる。Next, the process of converting the polymer raw material between the porous base material layers into a polymer layer depends on the type of polymer raw material. Drying treatment, ■ If the polymer raw material contains a polymer and a crosslinking agent, crosslinking treatment in which a crosslinking reaction is caused by heating to a predetermined temperature; If it contains a sensitizer, examples include polymerization treatment or crosslinking treatment in which a polymerization reaction is caused by heating, light irradiation, electron beam irradiation, etc.
前記■の乾燥処理としては、公知の乾燥方法を採用する
ことができ、たとえば加熱乾燥法、熱風乾燥法、減圧乾
燥法等が挙げられる。As the drying treatment in (2) above, a known drying method can be employed, such as a heating drying method, a hot air drying method, a reduced pressure drying method, and the like.
前記加熱処理法の加熱条件としては、通常、50〜15
0℃で、10〜30分間の加熱が好適である。The heating conditions for the heat treatment method are usually 50 to 15
Heating at 0°C for 10 to 30 minutes is suitable.
なお、前記含浸処理に溶媒を用いる場合には、その溶媒
を蒸発等により除去した後に加熱処理を行ってもよく、
溶媒の存在下に加熱処理を行ってもよい。In addition, when a solvent is used for the impregnation treatment, the heat treatment may be performed after removing the solvent by evaporation or the like.
The heat treatment may be performed in the presence of a solvent.
前記■または@の前記重合処理または前記架橋処理方法
としては、従来、慣用されている方法。The polymerization treatment or the crosslinking treatment method in (1) or (@) is a conventionally used method.
たとえば加熱処理法、紫外線照射法、電子線照射法等を
用いることができる。For example, a heat treatment method, an ultraviolet irradiation method, an electron beam irradiation method, etc. can be used.
前記加熱処理法の加熱条件としては、通常、50〜15
0℃で、5〜120分間の加熱が好適である。The heating conditions for the heat treatment method are usually 50 to 15
Heating at 0°C for 5 to 120 minutes is suitable.
また、紫外線照射法による場合には、キノン類等の光増
感剤で処理し、20〜100℃で、2〜120分間、高
圧水銀灯等により紫外線照射をするのが好適である。In addition, in the case of ultraviolet irradiation, it is preferable to treat with a photosensitizer such as quinones and irradiate with ultraviolet rays at 20 to 100° C. for 2 to 120 minutes using a high-pressure mercury lamp or the like.
なお、前記含浸処理に溶媒を用いる場合には、その溶媒
を蒸発等により除去した後に加熱処理を行ってもよく、
溶媒の存在下に加熱処理を行ってもよい。In addition, when a solvent is used for the impregnation treatment, the heat treatment may be performed after removing the solvent by evaporation or the like.
The heat treatment may be performed in the presence of a solvent.
[実施例]
(実施例り
多孔質ポリプロピレン(孔径0.04pm、厚み30g
m)を2枚重ね合わせ、これに重合体原料としてのシリ
コーンゴム(東レシリコーン社製;S1(−410)の
n−へキサン溶液(シリコーン濃度; 6 g/100
mu)を含浸し、乾燥して選択性気体透過膜を得た0
重量増加は基材の約40%であった。[Example] (Porous polypropylene (pore diameter 0.04 pm, thickness 30 g)
Two sheets of m) were stacked together, and an n-hexane solution (silicone concentration; 6 g/100
mu) and dried to obtain a selective gas permeable membrane.
The weight gain was approximately 40% of the substrate.
得られた選択性気体透過膜を用いて、圧力法(差圧0.
5kg/cm2 )により、酸素ガスと窒素ガスの透過
性および分離係数等の膜特性を求めた。Using the obtained selective gas permeable membrane, the pressure method (differential pressure 0.
5 kg/cm2), the membrane properties such as oxygen gas and nitrogen gas permeability and separation coefficient were determined.
結果を第1表に示す。The results are shown in Table 1.
なお、分離係数αは式 で算出した。In addition, the separation coefficient α is calculated using the formula Calculated by.
(実施例2)
実施例1で用いたものと同様の多孔質基材を2枚重ね合
わせ、これに重合体原料としてのシリコーンゴム(東し
シリコーン社製; 5H−410)のトルエン溶液(シ
リコーンWi ; 12g/100m!L)を含浸し、
乾燥して選択性気体透過膜を得た。(Example 2) Two porous substrates similar to those used in Example 1 were stacked together, and a toluene solution (silicone Wi ; 12g/100m!L) impregnated,
A selective gas permeable membrane was obtained by drying.
rf1畳増加は基材の約60%であった。実施例1と同
様にして膜特性を求め、その結果を第1表に示す。The rf1 tatami increase was about 60% of the base material. The film properties were determined in the same manner as in Example 1, and the results are shown in Table 1.
(実施例3)
多孔質テフロン(孔径0.85JL m 、厚み50p
m)を2枚重ね合わせ2これに液状シロキサンオリゴマ
ーの混合物(官能基−9iHを含むシロキサンおよび−
CH=CH2を含むシロキサンを官能基比1:lとなる
ように混合)を含浸し、70℃で2時間、加熱架橋処理
を行ない選択性気体透過膜を得た。(Example 3) Porous Teflon (pore diameter 0.85 JL m, thickness 50p
Two sheets of siloxane m) are stacked on top of each other and a mixture of liquid siloxane oligomers (siloxane containing a functional group -9iH and -
A selective gas permeable membrane was obtained by impregnating the membrane with siloxane containing CH=CH2 (mixed at a functional group ratio of 1:1) and crosslinking by heating at 70° C. for 2 hours.
重量増加は基材の約BO%であった。実施例1と同様に
して膜特性を求め、その結果を第1表に示す。The weight gain was approximately BO% of the substrate. The film properties were determined in the same manner as in Example 1, and the results are shown in Table 1.
(実施例4)
多孔質テフロン(孔径0.85pm、厚み50gm)を
3枚重ね合わせ、これに実施例3と同様の液状シロキサ
ンオリゴマーの混合物を含浸し、70℃で2時間、加熱
架橋処理を行ない選択性気体透過膜を得た。(Example 4) Three sheets of porous Teflon (pore diameter: 0.85 pm, thickness: 50 gm) were stacked together, impregnated with the same liquid siloxane oligomer mixture as in Example 3, and heated and crosslinked at 70°C for 2 hours. A selective gas permeable membrane was obtained.
重量増加は基材の約65%であった。実施例1と同様に
して膜特性を求め、その結果を第1表に示す。The weight gain was about 65% of the substrate. The film properties were determined in the same manner as in Example 1, and the results are shown in Table 1.
(比較例1)
実施例1で用いたものと同様の多孔質基材1枚に、実施
例1で用いたものと同様の重合体原料を含浸し、乾燥し
て選択性気体透過膜を得た。(Comparative Example 1) One porous substrate similar to that used in Example 1 was impregnated with the same polymer raw material as used in Example 1, and dried to obtain a selective gas permeable membrane. Ta.
重量増加は基材の約40%であった。実施例1と同様に
して膜特性を求め、その結果を第1表に示す。The weight gain was approximately 40% of the substrate. The film properties were determined in the same manner as in Example 1, and the results are shown in Table 1.
(比較例2)
実施例1で用いたものと同様の多孔質基材1枚に、実施
例2で用いたものと同様の重合体原料を含浸し、乾燥し
て選択性気体透過膜を得た。(Comparative Example 2) A porous substrate similar to that used in Example 1 was impregnated with the same polymer raw material as used in Example 2, and dried to obtain a selective gas permeable membrane. Ta.
重量増加は基材の約70%であった。実施例1と同様に
して膜特性を求め、その結果を第1表に示す。The weight gain was approximately 70% of the substrate. The film properties were determined in the same manner as in Example 1, and the results are shown in Table 1.
(比較例3)
実施例3で用いたものと同様の多孔質基材1枚に、実施
例3で用いたものと同様の重合体原料を含浸し、乾燥し
て選択性気体透過膜を得た0重量増加は基材の約85%
であった。実施例1と同様にして膜特性を求め、その結
果を第1表に示す。(Comparative Example 3) A porous substrate similar to that used in Example 3 was impregnated with the same polymer raw material as used in Example 3, and dried to obtain a selective gas permeable membrane. The weight increase is approximately 85% of the base material.
Met. The film properties were determined in the same manner as in Example 1, and the results are shown in Table 1.
第1表
[発明の効果]
本発明に係る選択性気体透過膜は、気体の透過係数と分
離係数のバランスとに優れることから、たとえば酸素ガ
ス等の気体を効率よく選択透過させることができ、しか
も支持体としての多孔質基材層の居間に気体の選択透過
性を有する重合体層を設けるので機械的強度を大きくす
ることができる。また極めて簡単な工程で選択性気体透
過膜を製造することができる。Table 1 [Effects of the Invention] The selective gas permeation membrane according to the present invention has an excellent balance between the gas permeation coefficient and the separation coefficient, and therefore can efficiently selectively permeate gases such as oxygen gas. Moreover, since a polymer layer having gas selective permeability is provided in the space of the porous base material layer serving as a support, mechanical strength can be increased. Furthermore, the selective gas permeable membrane can be manufactured through extremely simple steps.
Claims (1)
合体層を設けてなることを特徴とする選択性気体透過膜
。(1) A selective gas permeable membrane comprising a polymer layer having gas selective permeability between porous base layers.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63116054A JPH0677673B2 (en) | 1988-05-12 | 1988-05-12 | Selective gas permeable flat membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63116054A JPH0677673B2 (en) | 1988-05-12 | 1988-05-12 | Selective gas permeable flat membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01288315A true JPH01288315A (en) | 1989-11-20 |
JPH0677673B2 JPH0677673B2 (en) | 1994-10-05 |
Family
ID=14677561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63116054A Expired - Lifetime JPH0677673B2 (en) | 1988-05-12 | 1988-05-12 | Selective gas permeable flat membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0677673B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2731072A1 (en) * | 1995-02-27 | 1996-08-30 | Frings & Co Heinrich | DEVICE FOR MEASURING ONE OF AT LEAST TWO VOLATILE COMPONENTS OF A LIQUID, IN PARTICULAR A FERMENTATION LIQUID |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5962305A (en) * | 1982-09-30 | 1984-04-09 | Teijin Ltd | Composite membrane for gas separation and its production |
JPS60161703A (en) * | 1984-01-30 | 1985-08-23 | Teijin Ltd | Gas permselective composite membrane |
JPS621404A (en) * | 1985-06-27 | 1987-01-07 | Mitsubishi Rayon Co Ltd | Poly-composite hollow fiber membrane and its manufacturing process |
JPS63274433A (en) * | 1987-05-06 | 1988-11-11 | Mitsubishi Rayon Co Ltd | Preparation of oxygen enriching multilayer composite hollow yarn membrane |
JPS63296823A (en) * | 1987-05-29 | 1988-12-02 | Mitsubishi Rayon Co Ltd | Oxygen-enriching membrane and production thereof |
-
1988
- 1988-05-12 JP JP63116054A patent/JPH0677673B2/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5962305A (en) * | 1982-09-30 | 1984-04-09 | Teijin Ltd | Composite membrane for gas separation and its production |
JPS60161703A (en) * | 1984-01-30 | 1985-08-23 | Teijin Ltd | Gas permselective composite membrane |
JPS621404A (en) * | 1985-06-27 | 1987-01-07 | Mitsubishi Rayon Co Ltd | Poly-composite hollow fiber membrane and its manufacturing process |
JPS63274433A (en) * | 1987-05-06 | 1988-11-11 | Mitsubishi Rayon Co Ltd | Preparation of oxygen enriching multilayer composite hollow yarn membrane |
JPS63296823A (en) * | 1987-05-29 | 1988-12-02 | Mitsubishi Rayon Co Ltd | Oxygen-enriching membrane and production thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2731072A1 (en) * | 1995-02-27 | 1996-08-30 | Frings & Co Heinrich | DEVICE FOR MEASURING ONE OF AT LEAST TWO VOLATILE COMPONENTS OF A LIQUID, IN PARTICULAR A FERMENTATION LIQUID |
Also Published As
Publication number | Publication date |
---|---|
JPH0677673B2 (en) | 1994-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0317533B2 (en) | ||
JPH0457372B2 (en) | ||
JP2004123533A (en) | Method of manufacturing silica composite membrane having excellent thermal stability by soaking-rolling method | |
JPS588517A (en) | Preparation of composite film with selective permeability for gas | |
JPH035207B2 (en) | ||
EP0333284B1 (en) | Process for preparing non-porous membrane layers | |
JPH01288315A (en) | Permselective gas permeable membrane | |
JPS586207A (en) | Production of gas permselective composite membrane | |
KR20160064725A (en) | Method of Preparing Gas Separation Membrane Using iCVD Process | |
JPS62294420A (en) | Method of forming fluid separating film | |
JPH0262294B2 (en) | ||
JPS5924844B2 (en) | Method for manufacturing gas selective permeability composite membrane | |
JPS6075320A (en) | Permeselective composite membrane for gas and its preparation | |
Suzuki et al. | Grafting of siloxane on poly (styrene-co-maleic acid) and application of this grafting technique to a porous membrane for gas separation | |
JPS61107923A (en) | Manufacture of gas selective permeable composite membrane | |
JPS62149308A (en) | Production of composite membrane | |
JPS61153105A (en) | Manufacture of gas permselective composite membrane | |
JPS59115738A (en) | Selective gas-permeable membrane and its manufacture | |
JPH05220362A (en) | Gas separation membrane | |
JPS61149210A (en) | Preparation of gas permselective composite membrane | |
JPS6121718A (en) | Hydrogen permselective composite membrane and preparation thereof | |
JPS63185428A (en) | Gas permselective composite membrane | |
JPS6025507A (en) | Gas permselective composite membrane and preparation thereof | |
JPS5969105A (en) | Composite molding for gas separation | |
JPS62129105A (en) | Selective separation process of alcohol |