[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0262294B2 - - Google Patents

Info

Publication number
JPH0262294B2
JPH0262294B2 JP59272104A JP27210484A JPH0262294B2 JP H0262294 B2 JPH0262294 B2 JP H0262294B2 JP 59272104 A JP59272104 A JP 59272104A JP 27210484 A JP27210484 A JP 27210484A JP H0262294 B2 JPH0262294 B2 JP H0262294B2
Authority
JP
Japan
Prior art keywords
organosilicon compound
compound containing
plasma
gas
silane coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59272104A
Other languages
Japanese (ja)
Other versions
JPS61149226A (en
Inventor
Shigeru Asako
Koichi Okita
Shinichi Toyooka
Katsuya Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59272104A priority Critical patent/JPS61149226A/en
Publication of JPS61149226A publication Critical patent/JPS61149226A/en
Publication of JPH0262294B2 publication Critical patent/JPH0262294B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Polymerisation Methods In General (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、ガス選択透過性複合膜およびその製
造方法に関し、更に詳しくは、四弗化エチレン樹
脂多孔質膜を支持体として、これにプラズマ重合
膜とオルガノポリシロキサンからなる薄膜が積層
されてなるガス選択透過性複合膜およびその製造
方法に関する。
Detailed Description of the Invention "Industrial Application Field" The present invention relates to a gas selectively permeable composite membrane and a method for producing the same, and more specifically to a method for applying plasma to a porous tetrafluoroethylene resin membrane as a support. The present invention relates to a gas selectively permeable composite membrane formed by laminating a polymeric membrane and a thin film made of organopolysiloxane, and a method for manufacturing the same.

「従来の技術と問題点」 近年省エネルギーの見地からガス分離・精製プ
ロセスをガス選択透過性膜で行うことが積極的に
検討されている。即ち空気より酸素を選択的に透
過させて酸素富化空気を得、医療あるいは燃焼シ
ステムに利用する試み、あるいは石炭、天然ガ
ス、オイルサンド等を原料に、水蒸気改質や熱分
解等の処理を施すことにより得られる合成ガス、
又は製鉄所等におけるコークス炉の廃ガスから水
素を選択的に透過させ、一酸化炭素、メタン等の
ガスと分離・精製し、これらガスを出発原料とし
てメタノール、エタノール等の基礎化学品を製造
する試み、更には、天然ガスからの選択透過によ
るヘリウム回収の試み等がある。
"Conventional Technology and Problems" In recent years, from the standpoint of energy conservation, the use of gas selectively permeable membranes for gas separation and purification processes has been actively studied. In other words, attempts are being made to selectively permeate oxygen from air to obtain oxygen-enriched air and use it for medical treatment or combustion systems, or to use coal, natural gas, oil sands, etc. as raw materials for processing such as steam reforming or thermal decomposition. Synthesis gas obtained by applying
Alternatively, hydrogen is selectively permeated from waste gas from coke ovens in steel plants, etc., separated and purified from gases such as carbon monoxide and methane, and basic chemicals such as methanol and ethanol are manufactured using these gases as starting materials. There have also been attempts to recover helium from natural gas by selective permeation.

これら用途に期待されるガス選択透過性膜に必
要な特性は、ガス選択性とガス透過性がいずれも
大きく、かつ耐熱性、耐薬品性、機械的強度に優
れていることである。これら諸特性を同一素材に
よる単一膜で満たすことは難しく、機能を分担し
た複合膜が有効になる。四弗化エチレン樹脂は、
優れた耐熱性、耐薬品性、機械的強度を有するこ
とから、その多孔質膜をベースとしたガス選択透
過性複合膜の開発が進められている。特願昭57−
64506(特開昭58−180205号公報参照)では、少な
くとも1個以上の二重結合又は三重結合を含むシ
ラン化合物のプラズマ重合膜を四弗化エチレン樹
脂多孔質膜上又は、四弗化エチレン樹脂多孔質膜
に高分子薄膜を積層した複合膜上に堆積させたガ
ス選択透過性複合膜の例を開示している。また、
特願昭58−132859(特開昭62−60933号公報参照)
では、プラズマ重合膜を堆積させた複合膜上に機
械的保護機能を果たすガス透過性の大きい高分子
薄膜が積層された三層または四層構造のガス選択
透過性複合膜の例を開示している。しかしなが
ら、これら複合膜のうち、四弗化エチレン樹脂多
孔質膜上に直接プラズマ重合膜を堆積させた場合
は、いずれもガス透過性は優れるがガス選択性は
低い複合膜になつている欠点がある。これは、プ
ラズマ重合膜のガス選択機能に起因するのではな
く、複合膜における各層間の界面の問題と考えら
れる。即ち四弗化エチレン樹脂は、既述した如く
優れた特性を有する一方、その化学的不活性から
他の素材との接着性に乏しく、複合膜化の過程並
びに実際の使用操作時において接着性不足からプ
ラズマ重合膜部分の損傷、変形を誘発し、これが
ガス選択性の低下につながつてといると考えられ
る。
The characteristics required for gas selectively permeable membranes expected for these applications are high gas selectivity and gas permeability, and excellent heat resistance, chemical resistance, and mechanical strength. It is difficult to satisfy these characteristics with a single membrane made of the same material, so a composite membrane with shared functions becomes effective. Tetrafluoroethylene resin is
Because it has excellent heat resistance, chemical resistance, and mechanical strength, gas selective permeability composite membranes based on porous membranes are being developed. Special request 1987-
64506 (see Japanese Unexamined Patent Publication No. 180205/1983), a plasma polymerized membrane of a silane compound containing at least one double bond or triple bond is deposited on a porous tetrafluoroethylene resin membrane or on a tetrafluoroethylene resin porous membrane. An example of a gas selectively permeable composite membrane is disclosed, which is deposited on a composite membrane in which a thin polymer film is laminated onto a porous membrane. Also,
Patent application No. 1982-132859 (see Japanese Patent Application Publication No. 62-60933)
This article discloses examples of gas-selective permselective membranes with a three- or four-layer structure in which a thin polymer film with high gas permeability that performs a mechanical protection function is laminated on a composite membrane on which a plasma polymerized membrane is deposited. There is. However, among these composite membranes, when a plasma polymerized membrane is directly deposited on a porous tetrafluoride resin membrane, the composite membrane has excellent gas permeability but low gas selectivity. be. This is not due to the gas selection function of the plasma polymerized membrane, but is considered to be a problem at the interface between each layer in the composite membrane. In other words, although tetrafluoroethylene resin has excellent properties as mentioned above, it has poor adhesion with other materials due to its chemical inertness, and it has poor adhesion during the process of forming a composite film and during actual use. It is thought that this induces damage and deformation of the plasma polymerized membrane portion, which leads to a decrease in gas selectivity.

「問題点を解決するための手段」 本発明者は上記発明の改善を鋭意検討した結
果、0.1μ以下の平均孔径を有する四弗化エチレン
樹脂多孔質膜表面に、窒素原子を含むオルガノシ
リコン化合物を主成分としたプラズマ重合膜が堆
積し、ついでシランカツプリング剤又はシリコン
プライマーの成分を含んでなるオルガノポリシロ
キサンの薄膜を積層した実質的に三層構造よりな
る複合膜が極めて優れたガス選択透過性を発現
し、耐熱性、耐薬品性、機械的強度にも優れたガ
ス選択透過性複合膜に成ることを見い出し本発明
を完成させた。
"Means for Solving the Problems" As a result of intensive study on improvements to the above invention, the inventors of the present invention have developed an organosilicon compound containing nitrogen atoms on the surface of a polytetrafluoroethylene resin porous membrane having an average pore size of 0.1μ or less. A composite membrane consisting of essentially a three-layer structure, in which a plasma polymerized film mainly composed of is deposited, and then a thin film of organopolysiloxane containing a silane coupling agent or a silicone primer is laminated, is an extremely excellent gas selection material. The present invention was completed by discovering that a gas-selective permeable composite membrane that exhibits permeability and has excellent heat resistance, chemical resistance, and mechanical strength can be obtained.

「作用」 本発明によるガス選択透過性複合膜は、四弗化
エチレン樹脂多孔質膜が支持体の役割を担う。四
弗化エチレン樹脂多孔質膜の製法は、例えば不織
布法、抽出法、延伸法等があり、特に制限されな
いが、孔径の制御と強度特性から延伸法が有利で
ある。即ち本発明の多孔質支持体に要求される最
も重要な特性は孔径である。それは、その上に堆
積されるプラズマ重合膜のガス選択機能が十分発
現される大きさでなければならない。これはプラ
ズマ重合膜が多孔質支持体表面をほほぼ閉塞すべ
きことを意味する。多孔質支持体の孔径が大きい
と、これを閉塞すべきプラズマ重合膜は厚くな
り、ガス透過性の減少のみならず、可撓性に乏し
いプラズマ重合膜の割れや剥離の発生を招き、ガ
ス選択性もなくなる。即ちプラズマ重合膜が多孔
質支持体の孔をほぼ閉塞し、プラズマ重合膜の上
に積層されるオルガノポリシロキサン層と相まつ
て高度のガス選択機能を発現するには、多孔質支
持体の平均孔径は、0.1μ以下であることが必要で
ある。その他の多孔質特性では、気孔率は、高い
程ガス透過性に有利であるが、反面機械的強度は
低下するので、使用操作条件を考案して決めるこ
とになるが、一般に10〜90%の範囲となる。また
多孔質膜の断面構造は、表面積がより微細な孔で
内部はそれより大きい、いわゆる非対称構造がよ
り好ましいが、これに限定されることはない。
"Function" In the gas selectively permeable composite membrane according to the present invention, the tetrafluoroethylene resin porous membrane plays the role of a support. Methods for producing the porous tetrafluoroethylene resin membrane include, for example, a nonwoven fabric method, an extraction method, a stretching method, etc., and are not particularly limited, but the stretching method is advantageous from the viewpoint of controlling the pore size and strength characteristics. That is, the most important characteristic required of the porous support of the present invention is the pore diameter. It must be large enough to exhibit the gas selection function of the plasma polymerized film deposited thereon. This means that the plasma polymerized membrane should substantially occlude the surface of the porous support. If the pore diameter of the porous support is large, the plasma polymerized membrane that should be used to block it will become thicker, which will not only reduce gas permeability but also cause cracking and peeling of the plasma polymerized membrane, which has poor flexibility, and will cause problems in gas selection. Sex also disappears. In other words, in order for the plasma polymerized membrane to substantially close the pores of the porous support and to exhibit a high degree of gas selection function in conjunction with the organopolysiloxane layer laminated on the plasma polymerized membrane, the average pore diameter of the porous support must be must be 0.1μ or less. As for other porous properties, the higher the porosity, the better the gas permeability, but on the other hand, the mechanical strength decreases. range. Further, the cross-sectional structure of the porous membrane is more preferably a so-called asymmetric structure in which the surface area of the pores is finer and the inside is larger, but the structure is not limited thereto.

次にプラズマ重合について説明する。プラズマ
重合は、モノマーを蒸気の状態で減圧下に導入
し、電場を作用させ、高速電子の非弾性衝突によ
りモノマーをラジカルあるいはイオン等に活性化
し、逐次結合させて高分子量化させる重合方法で
ある。その特徴は均質でピンホールのない極薄膜
が得られること、分岐構造や架橋構造に富む分子
構造を有すること、非晶性であることなどであ
る。この様な分子構造は、分子ふるいとなつて高
度のガス選択性を発現し、非晶性は透過性に有利
に作用し、また耐熱性、耐薬品性に優れた薄膜と
なる。また、高速電子、イオンは基体表面にも作
用することから、プラズマ重合膜と基体との接着
性は一般には優れているが、本発明で利用される
四弗化エチレン樹脂は、非接着性が高いため、四
弗化エチレン樹脂多孔質膜基体に十分な接着をも
つて堆積する有機化合物は限定されることがわか
つた。更に優れた接着性に加え、優れたガス選択
透過性を有するプラズマ重合膜を作る有機化合物
を鋭意検討した所、窒素原子を含むオルガノシリ
コン化合物がこれに適することがわかり本発明を
完成させた。
Next, plasma polymerization will be explained. Plasma polymerization is a polymerization method in which monomers are introduced in the form of vapor under reduced pressure, an electric field is applied, and the monomers are activated into radicals or ions by inelastic collisions of high-speed electrons, which are sequentially bonded to increase the molecular weight. . Its characteristics include the ability to obtain a homogeneous, ultra-thin film without pinholes, the molecular structure rich in branched and crosslinked structures, and the fact that it is amorphous. Such a molecular structure acts as a molecular sieve and exhibits a high degree of gas selectivity, and the amorphous nature has an advantageous effect on permeability, and results in a thin film with excellent heat resistance and chemical resistance. Furthermore, since high-speed electrons and ions also act on the substrate surface, the adhesion between the plasma polymerized film and the substrate is generally excellent, but the tetrafluoroethylene resin used in the present invention has non-adhesive properties. It has been found that the organic compounds that can be deposited with sufficient adhesion on the polytetrafluoroethylene resin porous membrane substrate are limited because of the high adhesion. After conducting extensive research on organic compounds that can be used to create plasma-polymerized membranes that have superior gas selective permeability in addition to superior adhesive properties, it was discovered that organosilicon compounds containing nitrogen atoms were suitable for this purpose, and the present invention was completed.

一般にオルガノシリコン化合物は重合性に富
み、幅広い操作条件で良質な重合体薄膜を形成す
る傾向にある。一方窒素原子はプラズマ中、比較
的容易に重合体中にとり込まれ、極性を与える。
この為窒素原子を含むオルガノシリコン化合物の
プラズマ重合膜は、基体の四弗化エチレン樹脂多
孔質膜によく密着し、ガス選択透過性に優れた膜
面を形成する。
Generally, organosilicon compounds are highly polymerizable and tend to form high-quality polymer thin films under a wide range of operating conditions. On the other hand, nitrogen atoms are relatively easily incorporated into the polymer in plasma and provide polarity.
For this reason, the plasma-polymerized membrane of an organosilicon compound containing nitrogen atoms adheres well to the porous tetrafluoroethylene resin membrane of the substrate, forming a membrane surface with excellent gas selective permeability.

窒素原子を含むオルガノシリコン化合物の具体
例として、ビス(ジメチルアミノ)ジメチルシラ
ン、ビス(ジメチルアミノ)メチルシラン、ビス
(ジメチルアミノ)メチルビニルシラン、メチル
トリス(ジメチルアミノ)シラン、ビス(エチル
アミノ)ジメチルシラン、トリメチルシリルジメ
チルアミン、1−トリメチルシリルイミダゾー
ル、ヘキサメチルジシラザン、1,1,3,3−
テトラメチルジシラザン、1,1,3,3,5,
5−ヘキサメチルシクロトリシラザン、トリメチ
ルシリルイソシアネート、ジメチルシリルジイソ
シアネート、ビニルメチルシリルジイソシアネー
ト、テトライソシアネート等を挙げることができ
る。本発明の実施は、これら化合物のプラズマ重
合膜単体でもよいが、更に他の化合物を含めるこ
ともできる。それには多くの有機化合物を挙げる
ことができるが、とりわけ好適な化合物は、少な
くとも1個以上の二重結合を含むオルガノシリコ
ン化合物である。二重結合、三重結合はプラズマ
中で容易に活性化し、それを含む化合物から得ら
れるプラズマ重合膜は高度に進んだ架橋・分岐構
造をとり、優れたガス選択透過機能を発現する。
これら化合物の具体例として、トリメチルビニル
シラン、ジメチルジビニルシラン、メチルトリビ
ニルシラン、テトラビニルシラン、ジメチルビニ
ルクロロシラン、アリルトリメチルシラン、エチ
ニールトリメチルシラン、ジビニルテトラメチル
ジシロキサン、ジメチルフエニルビニルシランな
どを挙げることができる。
Specific examples of organosilicon compounds containing a nitrogen atom include bis(dimethylamino)dimethylsilane, bis(dimethylamino)methylsilane, bis(dimethylamino)methylvinylsilane, methyltris(dimethylamino)silane, bis(ethylamino)dimethylsilane, Trimethylsilyldimethylamine, 1-trimethylsilylimidazole, hexamethyldisilazane, 1,1,3,3-
Tetramethyldisilazane, 1,1,3,3,5,
Examples include 5-hexamethylcyclotrisilazane, trimethylsilyl isocyanate, dimethylsilyl diisocyanate, vinylmethylsilyl diisocyanate, and tetraisocyanate. The present invention may be carried out using a single plasma polymerized film of these compounds, but other compounds may also be included. Although many organic compounds may be mentioned, particularly suitable compounds are organosilicon compounds containing at least one double bond. Double and triple bonds are easily activated in plasma, and plasma-polymerized membranes obtained from compounds containing them have highly crosslinked and branched structures, and exhibit excellent gas selective permeability.
Specific examples of these compounds include trimethylvinylsilane, dimethyldivinylsilane, methyltrivinylsilane, tetravinylsilane, dimethylvinylchlorosilane, allyltrimethylsilane, ethynyltrimethylsilane, divinyltetramethyldisiloxane, and dimethylphenylvinylsilane. .

本発明は、これらプラズマ重合膜を四弗化エチ
レン樹脂多孔質膜に堆積後、更にその上にシラン
カツプリング剤又はシリコンプライマーの成分を
含んでなるオルガノポリシロキサンの薄膜を積層
する。本薄膜の第1の機能は、高度のガス選択透
過性を有するプラズマ重合膜の保護膜であり、第
2の機能は、プラズマ重合膜欠陥部の補修膜であ
る。多孔質膜上に成長した剛直で脆いプラズマ重
合膜を物理的に保護し、またプラズマ重合膜が完
全に多孔質膜の孔を閉塞していない部分や、微少
クラツクなどを発生した部分に浸透被覆してプラ
ズマ重合膜の高度のガス選択透過性を発現維持す
る。このオルガノポリシロキサンの薄膜積層によ
り、プラズマ重合膜が発揮する高いガス選択透過
性を安定化し、その後の取扱い性を飛躍的に向上
させることになる。
In the present invention, after depositing these plasma polymerized films on a porous tetrafluoroethylene resin film, a thin film of organopolysiloxane containing a silane coupling agent or a silicon primer component is further laminated thereon. The first function of this thin film is as a protective film for the plasma polymerized film having a high degree of gas selective permeability, and the second function is as a repair film for defective parts of the plasma polymerized film. It physically protects the rigid and brittle plasma polymerized membrane grown on the porous membrane, and also provides an infiltration coating for areas where the plasma polymerized membrane does not completely close the pores of the porous membrane or where minute cracks have occurred. The plasma polymerized membrane maintains a high degree of gas selective permeability. By stacking thin films of organopolysiloxane, the high gas selective permeability exhibited by the plasma polymerized film is stabilized, and subsequent handling properties are dramatically improved.

オルガノポリシロキサンは、耐熱性、耐薬品性
に優れ、またガス透過性の大きい材料であるから
その薄膜を積層しても、ガス透過性は、積層前と
較べ、ほとんど低下することがない。オルガノポ
リシロキサンの具体例として、ジメチルポリシロ
キサン、メチルビニルポリシロキサン、メチルフ
エニルポリシロキサン、トリフルオロプロピルメ
チルポリシロキサン、アミノ基やアルキルアリル
基等で変性されたポリシロキサンなどがあり、シ
リコンオイル、シリコンゴム、シリコンワニス、
あるいはシリコンプライマーなどとして市販され
ている。更にシロキサン構造を含む共重合体、例
えばポリジメチルシロキサン−ビスフエノールA
カーボネート共重合体なども利用できる。
Organopolysiloxane has excellent heat resistance and chemical resistance, and is a material with high gas permeability, so even when thin films thereof are laminated, the gas permeability hardly decreases compared to before lamination. Specific examples of organopolysiloxanes include dimethylpolysiloxane, methylvinylpolysiloxane, methylphenylpolysiloxane, trifluoropropylmethylpolysiloxane, and polysiloxanes modified with amino groups, alkylaryl groups, etc. Silicone oil, silicone rubber, silicone varnish,
Alternatively, it is commercially available as a silicone primer. Additionally, copolymers containing siloxane structures, such as polydimethylsiloxane-bisphenol A
Carbonate copolymers and the like can also be used.

このオルガノポリシロキサン薄膜をプラズマ重
合膜上に積層する場合、その界面での接着性向上
の為、シランカツプリング剤あるいはシリコンプ
ライマーを使用する。安定したガス選択透過機能
を維持するためにこの界面の接着性もまた優れて
いることが望ましい。
When this organopolysiloxane thin film is laminated on a plasma polymerized film, a silane coupling agent or a silicone primer is used to improve adhesion at the interface. It is desirable that the adhesion of this interface is also excellent in order to maintain a stable gas selective permeation function.

シランカツプリング剤は、アルコキシ基、クロ
ル基、アセトキシ基、アルキルアミノ基、プロペ
ノキシ基などの加水分解性基とビニル基、エポキ
シ基、メタクリル基、アミノ基、メルカプト基な
どの有機官能基をもつシラン化合物であり、界面
における接着性を改良する。またシリコンプライ
マーは、これらシラン化合物の縮合物などを主成
分とし、同じく接着性に効果がある。このシラン
カツプリング剤あるいはシリコンプライマーがプ
ラズマ重合膜とオルガノポリシロキサン界面の接
着性を改善することを見い出し、更に有機官能基
としてアミノ基を含むシランカツプリング剤なら
びにシリコンプライマーがプラズマ重合膜との接
着性により高い効果をもつことを確かめた。具体
的例として、γ−アミノプロピルトリエトキシシ
ラン、N−(β−アミノエチル)−γ−アミノプロ
ピルトリメトキシシラン、N−(β−アミノエチ
ル)−γ−アミノプロピルメチルジメトキシシラ
ン、あるいはこれらとエポキシシランとの縮合物
などを挙げることができる。
Silane coupling agents are silanes that have hydrolyzable groups such as alkoxy groups, chloro groups, acetoxy groups, alkylamino groups, and propenoxy groups, and organic functional groups such as vinyl groups, epoxy groups, methacrylic groups, amino groups, and mercapto groups. A compound that improves adhesion at interfaces. Silicone primers are mainly composed of condensates of these silane compounds and are also effective in adhesion. It was discovered that this silane coupling agent or silicone primer improves the adhesion between the plasma polymerized film and the organopolysiloxane interface, and furthermore, the silane coupling agent and silicone primer containing amino groups as organic functional groups improve the adhesion between the plasma polymerized film and the organopolysiloxane interface. It was confirmed that it has a higher effect on gender. Specific examples include γ-aminopropyltriethoxysilane, N-(β-aminoethyl)-γ-aminopropyltrimethoxysilane, N-(β-aminoethyl)-γ-aminopropylmethyldimethoxysilane, or combinations thereof. Examples include condensates with epoxysilane.

次に本発明のガス選択透過性複合膜の製造方法
について詳述する。
Next, the method for manufacturing the gas selectively permeable composite membrane of the present invention will be described in detail.

四弗化エチレン樹脂多孔質膜の製法は特に限定
されないが、一般に延伸法が好適に利用できる。
その基本的プロセスは、特公昭42−13560に開示
されているが、四弗化エチレン樹脂微粉末と液体
潤滑剤を混和し、ペースト法でシートあるいはチ
ユーブ状に成形したのち未焼成状態で延伸し、つ
いで焼成することにより多孔質膜を得る方法であ
る。本法はその後いくつかの改良がなされたが、
いずれにせよ多孔質化の最も重要な工程は延伸で
あり、多孔質特性の制御は延伸温度、延伸倍率な
どの因子で行なわれる。また液体潤滑剤の配合比
率、成形時の負荷圧力等も多孔質特性に影響す
る。これらの操作因子を制御して、平均孔径が
0.1μ以下の四弗化エチレン樹脂多孔質膜を製膜す
る。
The method for producing the porous tetrafluoroethylene resin membrane is not particularly limited, but a stretching method can generally be suitably used.
The basic process is disclosed in Japanese Patent Publication No. 42-13560, which involves mixing fine powder of tetrafluoroethylene resin with a liquid lubricant, forming it into a sheet or tube shape using a paste method, and then stretching it in an unfired state. In this method, a porous membrane is obtained by subsequently firing the porous membrane. This method has undergone several improvements since then, but
In any case, the most important step in creating porosity is stretching, and the porous properties are controlled by factors such as stretching temperature and stretching ratio. Furthermore, the blending ratio of liquid lubricant, the load pressure during molding, etc. also affect the porous properties. By controlling these operating factors, the average pore size
A porous polytetrafluoroethylene resin membrane with a thickness of 0.1μ or less is formed.

次にこの多孔質膜上にプラズマ重合膜を堆積す
る。多孔質膜を5torr以下、好ましくは2torr以下
の減圧下にある反応器内に導き、窒素原子を含む
オルガノシリコン化合物またはこれと他のモノマ
ーとの混合物蒸気を反応器に送りながら、グロー
放電を起こし、そのプラズマ重合膜を多孔質膜上
に堆積させる。モノマーと共にHe、Ar等の不活
性ガス、またはH2、N2、O2、CO等の非重合性
ガスをキヤリアガスあるいはモノマーの希釈ガス
として使用してもよい。
A plasma polymerized film is then deposited on this porous film. The porous membrane is introduced into a reactor under reduced pressure of 5 torr or less, preferably 2 torr or less, and a glow discharge is generated while vapor of an organosilicon compound containing nitrogen atoms or a mixture of this and other monomers is sent to the reactor. , depositing the plasma polymerized membrane on the porous membrane. An inert gas such as He or Ar, or a non-polymerizable gas such as H 2 , N 2 , O 2 or CO may be used together with the monomer as a carrier gas or a diluent gas for the monomer.

グロー放電の条件は、使用するモノマー、装
置・電極の形状等により変える必要があるが、一
般に放電出力は5〜500W、放電時間は10秒〜
3600秒の間で行なわれる。他の条件が同じであれ
ばプラズマ重合体の膜厚は、放電時間にほぼ比例
する。放電出力は、低すぎると生成する重合体は
低分子量化し、高すぎると基体ならびに堆積した
プラズマ重合膜がエツチング作用や発熱作用によ
り損傷を受ける。
Glow discharge conditions need to be changed depending on the monomer used, the shape of the device/electrode, etc., but generally the discharge output is 5 to 500 W and the discharge time is 10 seconds or more.
It takes place for 3600 seconds. If other conditions are the same, the film thickness of the plasma polymer is approximately proportional to the discharge time. If the discharge output is too low, the polymer produced will have a low molecular weight, and if it is too high, the substrate and the deposited plasma polymer film will be damaged by etching and heat generation effects.

プラズマ重合膜を堆積後、次にシランカツプリ
ング剤又はシリコンプライマーの成分を含んでな
るオルガノポリシロキサンの薄膜を積層する。溶
媒で希釈したオルガノポリシロキサン溶液に、必
要であれば加硫剤を添加し、浸漬、スプレー、ロ
ール、ナイフコーテイング等によりプラズマ重合
膜を堆積した四弗化エチレン樹脂多孔質膜へ塗布
する。続いて加熱し硬化させ、オルガノポリシロ
キサン薄膜を形成する。薄膜の厚さは、50μ以
下、好ましくは20μ以下になる様、溶液濃度、塗
布厚さを調整する。ここでシランカツプリング剤
またはシリコンプライマーを利用するが、それに
は二つの方法がある。1つはシランカツプリング
剤またはシリコンプライマーを適当な溶剤で希釈
した溶液を塗布し、加熱硬化後、次にオルガノポ
リシロキサンを含む溶液を塗布し、加熱、硬化さ
せ、オルガノポリシロキサン薄膜を積層する方法
である。他の1つはオルガノポリシロキサンを含
む溶液にシランカツプリング剤またはシリコンプ
ライマーをブレンドして均質な溶液とした後、こ
れを塗布し、続いて加熱、硬化させ、オルガノポ
リシロキサン薄膜を形成する方法である。
After depositing the plasma polymerized film, a thin film of organopolysiloxane comprising a silane coupling agent or silicone primer component is then deposited. If necessary, a vulcanizing agent is added to the organopolysiloxane solution diluted with a solvent, and the plasma polymerized film is applied to the deposited tetrafluoroethylene resin porous film by dipping, spraying, rolling, knife coating, etc. Subsequently, it is heated and cured to form an organopolysiloxane thin film. The solution concentration and coating thickness are adjusted so that the thickness of the thin film is 50μ or less, preferably 20μ or less. There are two ways to use a silane coupling agent or a silicone primer. One is to apply a solution of a silane coupling agent or silicone primer diluted with an appropriate solvent, heat and cure it, then apply a solution containing organopolysiloxane, heat and cure it, and laminate an organopolysiloxane thin film. It's a method. The other method is to blend a silane coupling agent or a silicone primer into a solution containing organopolysiloxane to form a homogeneous solution, which is then applied, followed by heating and curing to form an organopolysiloxane thin film. It is.

以下本発明を実施例によつて説明する。 The present invention will be explained below with reference to Examples.

なお実施例で示すガス透過速度並びにガス選択
性は、ASTM方式(圧力法)に基づき透過成分
をガスクロマトグラフにより分離、検出し定量を
行うことによつて求めた。ガス透過速度の単位は
cm3(STP)/cm2・sec・cmHgであり、ガス選択性
は、各ガスの透過速度の比である。また測定は
100℃の雰囲気中で行なわれた。
The gas permeation rate and gas selectivity shown in the Examples were determined by separating and detecting permeated components using a gas chromatograph and quantifying them based on the ASTM method (pressure method). The unit of gas permeation rate is
cm 3 (STP)/cm 2 ·sec·cmHg, and gas selectivity is the ratio of the permeation rates of each gas. Also, the measurement
The test was carried out in an atmosphere of 100℃.

実施例 1 四弗化エチレン樹脂フアインパウダー(ダイキ
ン工業社製、F104)100重量部に液体潤滑剤(シ
エル化学社製、DOSB)27重量部を混和し、これ
を成形圧力50Kg/cm2で外径φ50mm、内径φ12mmの
円筒状に予備成形し、ついでラム押出機により外
径φ1.3mm、内径φ0.3mmのチユーブに押出した。こ
のチユーブをトリクロルエチレン中に浸漬し、液
体潤滑剤を抽出除去した。続いて400℃の炉内に
より線速5m/minで供給し、80%の延伸をかけ
ながら延伸かつ焼成し、外径φ1.1mm、内径φ0.2
mm、平均孔径0.08μ、気孔率31%の四弗化エチレ
ン樹脂多孔質チユーブを得た。この多孔質チユー
ブを図に示す連続プラズマ処理装置の供給室9の
巻出しドラム10に装填し、その先端を巻取ドラ
ム11に巻付けた。装置内を0.01torrに減圧した
後、原料ガス供給口7より1,1,3,3−テト
ラメチルジシラザン5c.c./min、メチルトリビニ
ルシラン2c.c./min、Arガス4c.c./minの混合ガ
スを導入して操作圧力0.3torrとし、放電電力
40Wを印加してグロー放電を起こし、この円筒状
反応管3の中を多孔質チユーブを5分間滞在する
速度で走行させた。なお出力電極1には13.56M
Hzの高周波電源(図示せず)が整合器(図示せ
ず)を介して接続されている。このプラズマ重合
膜が堆積された四弗化エチレン樹脂多孔質チユー
ブを初め、N−(β−アミノエチル)−γ−アミノ
プロピルトリメトキシシランが10、イソプロピル
アルコールが80、蒸留水が10の重量比で均一に溶
解された溶液に浸漬塗布し、120℃で加熱乾燥さ
せ、続いて二夜混合型液状シリコーンゴム(トー
レ・シリコーン社製、SE6721)のトルエン15%
溶液に浸漬塗布後、170℃で加熱硬化して、該複
合膜上にオルガノポリシロキサン薄膜を形成し
た。得られた三層構造複合膜のガス選択透過性を
評価した所、以下の通りであつた。
Example 1 27 parts by weight of a liquid lubricant (DOSB, manufactured by Ciel Chemical Co., Ltd.) was mixed with 100 parts by weight of tetrafluoroethylene resin fine powder (manufactured by Daikin Industries, Ltd., F104), and the mixture was molded at a molding pressure of 50 kg/ cm2. It was preformed into a cylindrical shape with an outer diameter of 50 mm and an inner diameter of 12 mm, and then extruded into a tube with an outer diameter of 1.3 mm and an inner diameter of 0.3 mm using a ram extruder. The tube was immersed in trichlorethylene to extract and remove the liquid lubricant. Next, it was fed into a furnace at 400°C at a linear speed of 5 m/min, stretched and fired while applying 80% stretching, and the outer diameter was φ1.1 mm and the inner diameter was φ0.2.
A porous tube of tetrafluoroethylene resin having a diameter of 0.08 μm, an average pore diameter of 0.08 μm, and a porosity of 31% was obtained. This porous tube was loaded onto the unwinding drum 10 of the supply chamber 9 of the continuous plasma processing apparatus shown in the figure, and its tip was wound around the winding drum 11. After reducing the pressure inside the device to 0.01 torr, 1,1,3,3-tetramethyldisilazane 5c.c./min, methyltrivinylsilane 2c.c./min, and Ar gas 4c.c are supplied from the raw material gas supply port 7. ./min of mixed gas was introduced, the operating pressure was 0.3 torr, and the discharge power was
A glow discharge was generated by applying 40 W, and the porous tube was moved through the cylindrical reaction tube 3 at a speed for 5 minutes. Note that output electrode 1 has 13.56M.
A Hz high frequency power source (not shown) is connected via a matching box (not shown). Starting with the porous tetrafluoroethylene resin tube on which this plasma polymerized film was deposited, the weight ratio of N-(β-aminoethyl)-γ-aminopropyltrimethoxysilane was 10, isopropyl alcohol was 80, and distilled water was 10. It was coated by dipping into a solution uniformly dissolved in water, heated and dried at 120°C, and then mixed with 15% toluene of a two-night mixing type liquid silicone rubber (manufactured by Torre Silicone, SE6721).
After coating the solution by dipping, it was cured by heating at 170°C to form an organopolysiloxane thin film on the composite film. The gas selective permeability of the resulting three-layer composite membrane was evaluated and found to be as follows.

水素透過速度 QH2;1.5×10-5 一酸化炭素透過速度 QCO;1.7×10-7 H2/CO選択性;88 「本発明の効果」 本発明によるガス選択透過性複合膜とその製造
方法は、0.1μ以下の平均孔径を有する四弗化エチ
レン樹脂多孔質膜を支持体とし、これに窒素原子
を含むオルガノシリコン化合物を主成分としたプ
ラズマ重合膜を堆積し、その上にシランカツプリ
ング剤又はシリコンプライマーの成分を含んでな
るオルガノポリシロキサンからなる薄膜を積層す
ることで、優れた耐熱性、耐薬品性、機械的強度
を備えながら、かつ極めて高いガス選択透過性を
示す複合膜を与えることになる。
Hydrogen permeation rate QH 2 ; 1.5×10 -5 Carbon monoxide permeation rate QCO ; 1.7×10 -7 H 2 /CO selectivity; 88 “Effects of the present invention” Gas selective permeability composite membrane according to the present invention and method for manufacturing the same uses a porous tetrafluoroethylene resin membrane with an average pore size of 0.1μ or less as a support, deposits a plasma polymerized membrane mainly composed of an organosilicon compound containing nitrogen atoms on this, and then applies silane coupling on top of it. By laminating thin films made of organopolysiloxane containing agents or silicone primer components, we can create composite membranes that exhibit excellent heat resistance, chemical resistance, and mechanical strength, as well as extremely high gas selective permeability. will give.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例1で用いた連続プラズマ処
理装置の概要図である。図において1は高周波電
源(図示せず)につながる出力電極、2a,2b
はアース電極、3は円筒状反応器、4は排気孔で
真空ポンプ(図示せず)につながる。5は被処理
物の四弗化エチレン樹脂多孔質チユーブ、6a,
6bはガイドローラ、7は原料ガス供給口、8は
巻取室、9は供給室、10は巻出しドラム、11
は巻取ドラムである。
The figure is a schematic diagram of a continuous plasma processing apparatus used in Example 1 of the present invention. In the figure, 1 is an output electrode connected to a high frequency power source (not shown), 2a, 2b
3 is a ground electrode, 3 is a cylindrical reactor, and 4 is an exhaust hole connected to a vacuum pump (not shown). 5 is a polytetrafluoroethylene resin porous tube of the object to be treated, 6a,
6b is a guide roller, 7 is a raw material gas supply port, 8 is a winding chamber, 9 is a supply chamber, 10 is an unwinding drum, 11
is the winding drum.

Claims (1)

【特許請求の範囲】 1 0.1μ以下の平均孔径を有する四弗化エチレン
樹脂多孔質膜表面に窒素原子を含むオルガノシリ
コン化合物を主成分としたプラズマ重合膜が堆積
され、その上にシランカツプリング剤又はシリコ
ンプライマーの成分を含んでなるオルガノポリシ
ロキサンからなる薄膜が積層されていることを特
徴とするガス選択透過性複合膜。 2 窒素原子を含むオルガノシリコン化合物を主
成分としたプラズマ重合膜が窒素原子を含むオル
ガノシリコン化合物と少なくとも1個以上の二重
結合又は三重結合を含むオルガノシリコン化合物
との混合物からなることを特徴とする特許請求の
範囲第1項記載の複合膜。 3 シランカツプリング剤又はシリコンプライマ
ーがアミノ基を含むことを特徴とする特許請求の
範囲第1項記載の複合膜。 4 0.1μ以下の平均孔径を有する四弗化エチレン
樹脂多孔質膜表面にモノマーを5torr以下の雰囲
気に供給し、グロー放電下にプラズマ重合させ
て、窒素原子を含むオルガノシリコン化合物を主
成分としたプラズマ重合膜を堆積させた後、シラ
ンカツプリング剤又はシリコンプライマーとオル
ガノポリシロキサンの混合溶液を塗布するか、又
は初めにシランカツプリング剤又はシリコンプラ
イマーを含む溶液を塗布し、加熱乾燥した後、そ
の上にオルガノポリシロキサンを含む溶液を塗布
し、加熱乾燥又は加熱加硫して薄膜を積層させる
ことを特徴とするガス選択透過性複合膜の製造方
法。 5 窒素原子を含むオルガノシリコン化合物を主
成分としたプラズマ重合膜を堆積させるに、窒素
原子を含むオルガノシリコン化合物の蒸気と少な
くとも1個以上の二重結合又は三重結合を含むオ
ルガノシリコン化合物の蒸気を共存させてグロー
放電しプラズマ重合させることを特徴とする特許
請求の範囲第4項記載の製造方法。 6 アミノ基を含むシランカツプリング剤又はシ
リコンプライマーを用いることを特徴とする特許
請求の範囲第4項または第5項記載の製造方法。
[Scope of Claims] 1. A plasma polymerized film mainly composed of an organosilicon compound containing nitrogen atoms is deposited on the surface of a porous tetrafluoroethylene resin film having an average pore size of 0.1μ or less, and a silane coupling is applied thereon. 1. A gas selectively permeable composite membrane, characterized in that thin films made of organopolysiloxane containing a component of a silicone primer or a silicone primer are laminated. 2. The plasma polymerized film mainly composed of an organosilicon compound containing a nitrogen atom is characterized in that it consists of a mixture of an organosilicon compound containing a nitrogen atom and an organosilicon compound containing at least one double bond or triple bond. A composite membrane according to claim 1. 3. The composite membrane according to claim 1, wherein the silane coupling agent or silicone primer contains an amino group. 4 Monomer is supplied to the surface of a polytetrafluoroethylene resin porous membrane having an average pore diameter of 0.1 μ or less in an atmosphere of 5 torr or less, and plasma polymerization is performed under glow discharge to form an organosilicon compound containing nitrogen atoms as the main component. After depositing the plasma-polymerized film, a mixed solution of a silane coupling agent or a silicone primer and an organopolysiloxane is applied, or a solution containing a silane coupling agent or a silicone primer is first applied and then heated and dried. A method for producing a gas selectively permeable composite membrane, which comprises applying a solution containing an organopolysiloxane thereon and laminating a thin film by heating and drying or heating and vulcanizing. 5. To deposit a plasma-polymerized film mainly composed of an organosilicon compound containing nitrogen atoms, a vapor of an organosilicon compound containing nitrogen atoms and a vapor of an organosilicon compound containing at least one double bond or triple bond are used. 5. The manufacturing method according to claim 4, wherein the coexistence is caused by glow discharge and plasma polymerization. 6. The manufacturing method according to claim 4 or 5, characterized in that a silane coupling agent or silicone primer containing an amino group is used.
JP59272104A 1984-12-25 1984-12-25 Gas permselective composite membrane and preparation thereof Granted JPS61149226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59272104A JPS61149226A (en) 1984-12-25 1984-12-25 Gas permselective composite membrane and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59272104A JPS61149226A (en) 1984-12-25 1984-12-25 Gas permselective composite membrane and preparation thereof

Publications (2)

Publication Number Publication Date
JPS61149226A JPS61149226A (en) 1986-07-07
JPH0262294B2 true JPH0262294B2 (en) 1990-12-25

Family

ID=17509130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59272104A Granted JPS61149226A (en) 1984-12-25 1984-12-25 Gas permselective composite membrane and preparation thereof

Country Status (1)

Country Link
JP (1) JPS61149226A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014101818A (en) * 2012-11-20 2014-06-05 Toshiba Corp Method and device for osmotic pressure power generation and osmotic pressure generation device used for the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2730888B2 (en) * 1986-04-28 1998-03-25 三菱電機株式会社 Semiconductor device
JP3442160B2 (en) * 1994-09-30 2003-09-02 東燃ゼネラル石油株式会社 Method of forming SiO2 ceramic coating
JP5469905B2 (en) * 2009-04-09 2014-04-16 株式会社ノリタケカンパニーリミテド Gas separation material and method for producing the same
JP2011148968A (en) * 2009-12-21 2011-08-04 Arai Seisakusho Co Ltd Surface modifying method, manufacturing method for elastic composite material, and elastic composite material
JP5935051B2 (en) * 2014-08-05 2016-06-15 株式会社潤工社 Fluoropolymer tube

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5791705A (en) * 1980-11-26 1982-06-08 Canon Inc Method and apparatus for water-washing and separating vapor phase dry cleaning agent
JPS586207A (en) * 1981-07-06 1983-01-13 Sumitomo Electric Ind Ltd Production of gas permselective composite membrane
JPS5949802A (en) * 1982-09-17 1984-03-22 Teijin Ltd Permselective membrane for separation of gas
JPS5959220A (en) * 1982-09-28 1984-04-05 Teijin Ltd Preparation of composite permeable membrane for separating gas
JPS5962303A (en) * 1982-09-30 1984-04-09 Kobunshi Oyo Gijutsu Kenkyu Kumiai Oxygen separating and enriching membrane
JPS5973005A (en) * 1982-09-16 1984-04-25 モンサント・コンパニ− Multi-component membrane for separating gas
JPS59189905A (en) * 1983-04-14 1984-10-27 Nippon Oil Co Ltd Gas separating permselective membrane
JPS6041504A (en) * 1983-06-30 1985-03-05 パーミー,インコーポレーテッド Permeability modified membrane
JPS61111121A (en) * 1984-11-02 1986-05-29 Toray Ind Inc Composite membrane for separating gas
JPS61129008A (en) * 1984-11-28 1986-06-17 Sanyo Chem Ind Ltd Composite membrane for separating gas and its preparation
JPS6260932A (en) * 1985-09-10 1987-03-17 Diesel Kiki Co Ltd Power-up mechanism for governor in starting

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5791705A (en) * 1980-11-26 1982-06-08 Canon Inc Method and apparatus for water-washing and separating vapor phase dry cleaning agent
JPS586207A (en) * 1981-07-06 1983-01-13 Sumitomo Electric Ind Ltd Production of gas permselective composite membrane
JPS5973005A (en) * 1982-09-16 1984-04-25 モンサント・コンパニ− Multi-component membrane for separating gas
JPS5949802A (en) * 1982-09-17 1984-03-22 Teijin Ltd Permselective membrane for separation of gas
JPS5959220A (en) * 1982-09-28 1984-04-05 Teijin Ltd Preparation of composite permeable membrane for separating gas
JPS5962303A (en) * 1982-09-30 1984-04-09 Kobunshi Oyo Gijutsu Kenkyu Kumiai Oxygen separating and enriching membrane
JPS59189905A (en) * 1983-04-14 1984-10-27 Nippon Oil Co Ltd Gas separating permselective membrane
JPS6041504A (en) * 1983-06-30 1985-03-05 パーミー,インコーポレーテッド Permeability modified membrane
JPS61111121A (en) * 1984-11-02 1986-05-29 Toray Ind Inc Composite membrane for separating gas
JPS61129008A (en) * 1984-11-28 1986-06-17 Sanyo Chem Ind Ltd Composite membrane for separating gas and its preparation
JPS6260932A (en) * 1985-09-10 1987-03-17 Diesel Kiki Co Ltd Power-up mechanism for governor in starting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014101818A (en) * 2012-11-20 2014-06-05 Toshiba Corp Method and device for osmotic pressure power generation and osmotic pressure generation device used for the same

Also Published As

Publication number Publication date
JPS61149226A (en) 1986-07-07

Similar Documents

Publication Publication Date Title
US4483901A (en) Selectively gas-permeable composite membrane and process for production thereof
US4533369A (en) Gas-permselective composite membranes and process for the production thereof
Kawakami et al. Modification of gas permeabilities of polymer membranes by plasma coating
JPH07304887A (en) Composite membrane and its preparation
JPH0262294B2 (en)
JPS588517A (en) Preparation of composite film with selective permeability for gas
Matsuyama et al. Plasma polymerized membranes from organosilicon compounds for separation of oxygen over nitrogen
KR101683776B1 (en) Method of Preparing Gas Separation Membrane Using iCVD Process
Lin et al. Improvement of oxygen/nitrogen permselectivity of poly [1-(trimethylsilyl)-1-propyne] membrane by plasma polymerization
JPH038808B2 (en)
JPS586207A (en) Production of gas permselective composite membrane
JPS61153105A (en) Manufacture of gas permselective composite membrane
JPS61149210A (en) Preparation of gas permselective composite membrane
JPH051049B2 (en)
JPH0310368B2 (en)
JPS6025507A (en) Gas permselective composite membrane and preparation thereof
JPS6260933B2 (en)
JPS6334772B2 (en)
JPS6336286B2 (en)
US20240091717A1 (en) Gas separation membrane and method of producing gas separation membrane
GB2121314A (en) Selectively gas-permeable composite membranes and process for the production thereof
JPH0698284B2 (en) Porous hollow fiber composite membrane and method for producing the same
JPS6391123A (en) Porous hollow yarn composite membrane and its production
JPS6254049B2 (en)
JPH0479690B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term