JPH0677673B2 - Selective gas permeable flat membrane - Google Patents
Selective gas permeable flat membraneInfo
- Publication number
- JPH0677673B2 JPH0677673B2 JP63116054A JP11605488A JPH0677673B2 JP H0677673 B2 JPH0677673 B2 JP H0677673B2 JP 63116054 A JP63116054 A JP 63116054A JP 11605488 A JP11605488 A JP 11605488A JP H0677673 B2 JPH0677673 B2 JP H0677673B2
- Authority
- JP
- Japan
- Prior art keywords
- gas permeable
- polymer
- selective gas
- flat membrane
- porous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012528 membrane Substances 0.000 title claims description 31
- 229920000642 polymer Polymers 0.000 claims description 42
- 239000000758 substrate Substances 0.000 claims description 26
- 230000035699 permeability Effects 0.000 claims description 12
- 239000007789 gas Substances 0.000 description 44
- 238000000034 method Methods 0.000 description 29
- 239000002994 raw material Substances 0.000 description 19
- 238000010438 heat treatment Methods 0.000 description 14
- 239000000463 material Substances 0.000 description 14
- 238000000926 separation method Methods 0.000 description 14
- 239000010408 film Substances 0.000 description 10
- 239000002904 solvent Substances 0.000 description 8
- 239000011148 porous material Substances 0.000 description 6
- 230000004584 weight gain Effects 0.000 description 6
- 235000019786 weight gain Nutrition 0.000 description 6
- 238000004132 cross linking Methods 0.000 description 5
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- -1 polyethylene Polymers 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- 238000005470 impregnation Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 229920002379 silicone rubber Polymers 0.000 description 3
- 239000004945 silicone rubber Substances 0.000 description 3
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 239000003504 photosensitizing agent Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000011899 heat drying method Methods 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 125000005375 organosiloxane group Chemical group 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 150000004053 quinones Chemical class 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/1216—Three or more layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
- B01D69/107—Organic support material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
- B01D69/108—Inorganic support material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/70—Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
- B01D71/701—Polydimethylsiloxane
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、選択性気体透過平膜およびその製造方法に関
し、さらに詳しくは、医療用、水処理および燃焼設備用
ならびにバイオテクノロジー関連の各種気体分離分野に
好適に用いることができる選択性気体透過平膜に関する
ものである。TECHNICAL FIELD The present invention relates to a selective gas permeable flat membrane and a method for producing the same, and more specifically, various gases for medical treatment, water treatment and combustion equipment, and biotechnology-related gases. The present invention relates to a selective gas permeable flat membrane that can be suitably used in the separation field.
[従来の技術およびその課題] 気体の分離法としして、古くから冷却凝縮蒸留法、吸着
分離法、溶媒もしくは抽出分離法などの様々な手法が用
いられてきている。[Prior Art and Its Problems] As a gas separation method, various methods such as a cooling condensation distillation method, an adsorption separation method, a solvent or an extraction separation method have been used for a long time.
ところが、一般に採用されているこれらの手法は、多大
なエネルギーと複雑な設備とを必要とする。そこで、近
年、高分子素材からなる膜を用いてこの気体分離を行な
うことにより、エネルギー消費を低減させる試みなどが
盛んになされている。However, these commonly adopted methods require a large amount of energy and complicated equipment. Therefore, in recent years, attempts have been made to reduce energy consumption by performing this gas separation using a membrane made of a polymer material.
このような要請に応じて、分離膜を用いた気体分離法に
関するいくつかの報告がある。In response to such demands, there are some reports on a gas separation method using a separation membrane.
たとえば、特開昭48−64199,特開昭58−163403,特開昭5
8−14926等によると、オルガノシロキサン系重合体等か
らなる選択性気体透過膜を用い、エネルギー消費を低減
させることが試みられている。For example, JP-A-48-64199, JP-A-58-163403, JP-A-5-163403
According to 8-14926 and the like, it has been attempted to reduce energy consumption by using a selective gas permeable membrane made of an organosiloxane polymer or the like.
ところが、これらの選択性気体透過膜においては、気体
透過係数が、まだ十分なレベルには到達しておらず、こ
の気体透過係数を高めるために膜厚を薄くすると気体の
分離係数の低下のみならず、機械的強度の低下やピンホ
ールの発生等の不都合を生じる。However, in these selective gas permeable membranes, the gas permeation coefficient has not yet reached a sufficient level, and if the film thickness is made thin to increase the gas permeation coefficient, the gas separation coefficient only decreases. Therefore, there arises inconvenience such as deterioration of mechanical strength and generation of pinholes.
そこで、前述の不都合等を解決すべく特開昭58−1492
8、特開昭59−24843等ではポリマー溶液の水面展開膜や
プラズマ重合膜を用い、多孔質基材によって強度をもた
せるとともに選択性気体透過膜の薄膜化が試みられれて
はいるが、複合膜の形成工程が著しく複雑であるばかり
でなく機械的強度も満足できるものではない。Then, in order to solve the above-mentioned inconvenience, etc.
8. In JP-A-59-24843 and the like, it has been attempted to use a water-spreading film of a polymer solution or a plasma-polymerized film to increase the strength of a porous substrate and thin the selective gas permeable film. Not only is the forming process of the method extremely complicated, but also the mechanical strength is not satisfactory.
また気体の透過係数と分離係数のバランスコントロール
も困難なものとなっている。Also, it is difficult to control the balance between the gas permeability coefficient and the separation coefficient.
本発明は、このような従来の選択性気体透過膜が有する
不都合を克服し、気体の透過係数と分離係数のバランス
に優れ、しかも機械的強度を合せ持つ、取扱いの容易な
選択性気体透過平膜を提供することを目的としてなされ
たものである。The present invention overcomes the disadvantages of such a conventional selective gas permeable membrane, has an excellent balance between the gas permeability coefficient and the separation coefficient, and also has mechanical strength and is easy to handle. It was made for the purpose of providing a membrane.
[前記課題を解決するための手段] 前記課題を解決するための本発明の構成は、多孔質基材
層の間に気体の選択透過性を有する重合体層を設けてな
ることを特徴とする選択性気体透過平膜である。[Means for Solving the Problems] The structure of the present invention for solving the problems is characterized in that a polymer layer having selective gas permeability is provided between porous substrate layers. It is a selective gas permeable flat membrane.
以下に、本発明の選択性気体透過平膜について詳説に説
明する。The selective gas permeable flat membrane of the present invention will be described in detail below.
前記多孔質基材層としては、有機系、無機系の基材を用
いることができ、たとえば、有機系の多孔質基材として
は、ポリエチレンやポリプロピレンのようなポリオレフ
ィン、ポリテトラフルオロエチレンのようなフッ素樹
脂、酢酸セルロース、ニトロセルロース、塩化ビニル、
ポリスルホン、ポリエーテルスルホン、アクリレートポ
リマー等が挙げられる。As the porous base material layer, an organic or inorganic base material can be used. For example, as the organic porous base material, a polyolefin such as polyethylene or polypropylene, or a polytetrafluoroethylene base can be used. Fluorine resin, cellulose acetate, nitrocellulose, vinyl chloride,
Examples thereof include polysulfone, polyether sulfone and acrylate polymers.
一方、無機系の多孔質基材としては、多孔質シリカ、多
孔質アルミナ、グラスファイバーメンブレン等が挙げら
れる。On the other hand, examples of the inorganic porous substrate include porous silica, porous alumina, and glass fiber membrane.
これらの多孔質基材の平均細孔径としては、通常0.01〜
10μmであり、好ましくは0.1〜5μmの範囲にある細
孔を有するものを好適に使用することができる。The average pore size of these porous substrates is usually 0.01 to
Those having a pore size of 10 μm, preferably in the range of 0.1 to 5 μm can be suitably used.
この平均細孔径が、0.01μm未満のものでは、たとえば
酸素ガスなどの気体の透過率(透過係数)が不十分とな
る場合があり、一方、10μmを越えると気体、酸素分子
の透過選択性を低下することがある。If the average pore diameter is less than 0.01 μm, the permeability (permeability coefficient) of gas such as oxygen gas may be insufficient, while if it exceeds 10 μm, the permeation selectivity of gas and oxygen molecules may be reduced. It may decrease.
前記多孔質基材の形態としては通常、平板状または平膜
状ものが用いられるが、選択性気体透過膜の設計上、た
とえば曲面等を有する立体構造をとる板状または膜状の
ものも適宜に選択することができる。As the form of the porous substrate, a flat plate-shaped or flat film-shaped one is usually used, but a plate-shaped or film-shaped one having a three-dimensional structure having, for example, a curved surface is also appropriate in designing the selective gas permeable membrane. Can be selected.
気体の選択透過性を有する前記重合体層を形成するため
の重合体としては、公知の気体透過膜に使用される重合
体を採用することができ、たとえばポリオルガノシロキ
サンなどのシリコーンゴム、ポリオルガノシロキサン−
ポリカーポネート共重合体、ジメチルシロキサン−α−
メチルスチレン共重合体、α,ε−ポリシロキサン−フ
ェノール樹脂共重合体、α,ε−ジアミノエチルポリジ
メチルシロキサン−ポリヒドロキシスチレン共重合体、
シロキサン−ポリウレタン共重合体、シロキサン−ポリ
エーテル共重合体、トリシリルプロピン、ポリフェニレ
ンオキシド等のが挙げられる。As a polymer for forming the polymer layer having a selective gas permeability, a known polymer used for a gas permeable membrane can be adopted. For example, silicone rubber such as polyorganosiloxane, polyorgano Siloxane
Polycarbonate copolymer, dimethylsiloxane-α-
Methylstyrene copolymer, α, ε-polysiloxane-phenol resin copolymer, α, ε-diaminoethylpolydimethylsiloxane-polyhydroxystyrene copolymer,
Examples thereof include siloxane-polyurethane copolymer, siloxane-polyether copolymer, trisilylpropyne, polyphenylene oxide and the like.
なお、この重合体層は、異なる重合体の薄膜を複数積層
していても良いし、また一種単独の重合体の層であって
も良い。The polymer layer may be formed by laminating a plurality of thin films of different polymers, or may be a single polymer layer.
前記選択性気体透過平膜は、前記多孔質基材層の間に、
気体の選択透過性を有する前記重合体層を備えていれば
どのような層構成を有していても良い。前記層構成の一
例を挙げると、たとえば、一対の多孔質基材層の間に一
層の前記重合体層を介装させてなる層構成、一対の多孔
質基材層の間に複数の前記重合体層を介装させてなる層
構成、嵩ね合わされた三層以上の多孔質基材層における
各多孔質基材層間に一層または複数層の重合体層を介装
させてなる層構成等を挙げることができる。The selective gas permeable flat membrane, between the porous substrate layer,
Any layer structure may be used as long as the polymer layer having the selective permeability of gas is provided. As an example of the layer structure, for example, a layer structure in which one polymer layer is interposed between a pair of porous base material layers, a plurality of the weight between a pair of porous base material layers. A layer structure including a united layer, a layer structure including one or a plurality of polymer layers interposed between the respective porous substrate layers in the porous substrate layers of three or more layers that are stacked. Can be mentioned.
いずれの層構成を採用する可きかは、気体の透過係数と
分離係数とのバランスや選択性気体透過平膜の用途等に
応じて適宜に決定すれば良い。Which layer structure is to be adopted may be appropriately determined according to the balance between the gas permeability coefficient and the separation coefficient, the use of the selective gas permeable flat membrane, and the like.
なお、本発明の目的を損なわない範囲であるならば、前
記選択性気体透過平膜を構成している前記多孔質基材層
の外面に前記重合体層を設けてもよい。In addition, the polymer layer may be provided on the outer surface of the porous substrate layer forming the selective gas permeable flat membrane as long as the object of the present invention is not impaired.
前記多孔質基材層の厚みおよび前記重合体層の厚みにつ
いても、この選択性気体透過平膜の用途に応じて種々に
変化するので一概に決定することができないのである
が、多くの場合、前記多孔質基材の厚みは10〜300μm
であり、前記重合体層の厚みは0.01〜3μmである。Regarding the thickness of the porous substrate layer and the thickness of the polymer layer, it cannot be unconditionally determined because it changes variously depending on the application of this selective gas permeable flat membrane, but in many cases, The thickness of the porous substrate is 10 to 300 μm
And the thickness of the polymer layer is 0.01 to 3 μm.
このような選択性気体透過平膜は次のようにして製造す
ることができる。Such a selective gas permeable flat membrane can be manufactured as follows.
たとえば、多孔質基材を複数枚重ね合わせ、各基材間
にわずかの間隙を設けた状態すなわち単に複数枚の多孔
質基材を重畳した状態で重合体層原料を含浸し、乾燥あ
るいは固化を行なう方法、多孔質基材の表面に重合体
層原料を塗布し、塗布面を重ね合せて圧着し、乾燥ある
いは固化を行なう方法等が挙げることができる。For example, a plurality of porous base materials are superposed, and a slight gap is provided between the base materials, that is, a state in which a plurality of porous base materials are simply superposed is impregnated with the polymer layer raw material and dried or solidified. Examples of the method include a method of applying the polymer layer raw material on the surface of the porous substrate, superposing the applied surfaces and press-bonding, and drying or solidifying.
前記およびにいずれの製造方法においてもその重合
体層原料としては、前記重合体の溶液、架橋反応等によ
り前記重合体を与える液状オリゴマーあるいは反応性液
状モノマー等を挙げることができる。なお、重合体層を
形成する際、加熱による架橋あるいは重合を利用するの
であれば、前記重合体原料中に、本発明の目的に支障の
ない範囲で所望により、架橋剤、重合促進剤、分子量調
節剤、老化防止剤等の添加物や他のポリマーを配合して
もよい。In any of the above-mentioned and above production methods, the polymer layer raw material may be a solution of the polymer, a liquid oligomer or a reactive liquid monomer that gives the polymer by a crosslinking reaction or the like. When forming a polymer layer, if crosslinking or polymerization by heating is utilized, in the polymer raw material, a crosslinking agent, a polymerization accelerator, and a molecular weight are optionally added in a range that does not hinder the purpose of the present invention. You may mix | blend additives, such as a regulator and an antioxidant, and other polymers.
前記の含浸方法を採用する場合、その含浸方法は、重
ね合わせた前記多孔質基材の各間隙に重合体原料を均一
に浸透させることができるのであればその手法に特に制
限がなく、重ね合わせた多孔質基材全体を重合体原料等
に浸漬する方法あるいは部分的に浸漬し、重合体原料を
多孔質基材の各間隙に浸透せしめる方法等を採用するこ
とができる。When the above impregnation method is adopted, the impregnation method is not particularly limited as long as the polymer raw material can be uniformly permeated into each gap of the superposed porous substrates, and Further, a method of immersing the entire porous base material in the polymer raw material or the like or a method of partially immersing the porous base material so that the polymer raw material permeates into each gap of the porous base material can be adopted.
前記の塗布圧着法を採用する場合、多孔質基材表面に
重合体原料を塗布する方法は、一般に用いられている手
法、たとえばスプレー法等によって行なうことができる
が、基材表面上に重合体原料等を均一に塗布できる方法
であれば特に制限するものではなく、さらに圧着する方
法に関しても、各基材の間隙に気泡を残さないような圧
着法であれば特に制限するものではない。When the above-mentioned coating / compression bonding method is adopted, the method of coating the polymer raw material on the surface of the porous substrate can be carried out by a generally used method such as a spray method. The method is not particularly limited as long as it can uniformly apply the raw materials and the like, and the method for further pressure bonding is not particularly limited as long as it is a pressure bonding method that does not leave bubbles in the gaps between the base materials.
次に、多孔質基材層間の重合体原料を重合体層にする処
理は、重合体原料の種類に応じる。例えば、重合体原
料が重合体の溶液であれば、溶媒を蒸発させるための乾
燥処理、重合体原料が重合体と架橋剤とを含有するの
であれば所定温度に加熱することにより架橋反応を起こ
させる架橋処理、重合体原料がモノマーと重合開始剤
あるいは光増感剤とを含有するのであれば、加熱、光照
射、電子線照射等による重合反応を起こさせる重合処理
あるいは架橋処理等を挙げることができる。Next, the treatment for converting the polymer raw material between the porous substrate layers into the polymer layer depends on the kind of the polymer raw material. For example, if the polymer raw material is a solution of the polymer, a drying treatment for evaporating the solvent is carried out, and if the polymer raw material contains the polymer and the crosslinking agent, the crosslinking reaction is caused by heating to a predetermined temperature. If the polymer raw material contains a monomer and a polymerization initiator or a photosensitizer, a polymerization treatment or a crosslinking treatment for causing a polymerization reaction by heating, light irradiation, electron beam irradiation, etc. You can
前記の乾燥処理としては、公知の乾燥方法を採用する
ことができ、たとえば加熱乾燥法、熱風乾燥法、減圧乾
燥法等が挙げられる。As the drying treatment, a known drying method can be adopted, and examples thereof include a heat drying method, a hot air drying method, and a reduced pressure drying method.
前記加熱処理法の加熱条件としては、通常、50〜150℃
で、10〜30分間の加熱が好適である。The heating condition of the heat treatment method is usually 50 to 150 ° C.
Therefore, heating for 10 to 30 minutes is preferable.
なお、前記含浸処理に溶媒を用いる場合には、その溶媒
を蒸発等により除去した後に加熱処理を行ってもよく、
溶媒の存在下に加熱処理を行ってもよい。When a solvent is used for the impregnation treatment, heat treatment may be performed after removing the solvent by evaporation or the like,
The heat treatment may be performed in the presence of a solvent.
前記またはの前記重合処理または前記架橋処理方法
としては、従来、慣用されている方法、たとえば加熱処
理法、紫外線照射法、電子線照射法等を用いることがで
きる。As the above-mentioned or the above-mentioned polymerization treatment or the above-mentioned crosslinking treatment method, a conventionally used method such as a heat treatment method, an ultraviolet ray irradiation method, an electron beam irradiation method or the like can be used.
前記加熱処理法の加熱条件としては、通常、50〜150℃
で、5〜120分間の加熱が好適である。The heating condition of the heat treatment method is usually 50 to 150 ° C.
Therefore, heating for 5 to 120 minutes is preferable.
また、紫外線照射法による場合には、キノン類等の光増
感剤で処理し、20〜100℃で、2〜120分間、高圧水銀灯
等により紫外線照射をするのが好適である。Further, in the case of the ultraviolet irradiation method, it is preferable to treat with a photosensitizer such as quinones and to irradiate the ultraviolet rays with a high pressure mercury lamp or the like at 20 to 100 ° C. for 2 to 120 minutes.
なお、前記含浸処理に溶媒を用いる場合には、その溶媒
を蒸発等により除去した後に加熱処理を行ってもよく、
溶媒の存在下に加熱処理を行ってもよい。When a solvent is used for the impregnation treatment, heat treatment may be performed after removing the solvent by evaporation or the like,
The heat treatment may be performed in the presence of a solvent.
[実施例] (実施例1) 多孔質ポリプロピレン(孔径0.04μm、厚み30μm)を
2枚重ね合わせ、これに重合体原料としてのシリコーン
ゴム(東レシリコーン社製;SH−410)のn−ヘキサン溶
液(シリコーン濃度;6g/100ml)を含浸し、乾燥して選
択性気体透過膜を得た。重量増加は基材の約40%であっ
た。[Example] (Example 1) Two pieces of porous polypropylene (pore diameter 0.04 µm, thickness 30 µm) were superposed on each other, and a silicone rubber (Toray Silicone; SH-410) solution of n-hexane was used as a polymer raw material. (Silicone concentration: 6 g / 100 ml) was impregnated and dried to obtain a selective gas permeable membrane. The weight gain was about 40% of the substrate.
得られた選択性気体透過平膜を用いて、圧力法(差圧0.
5kg/cm2)により、酸素ガスと窒素ガスの透過性および
分離係数等の膜特性を求めた。Using the obtained selective gas permeable flat membrane, the pressure method (differential pressure 0.
The membrane characteristics such as permeability and separation coefficient of oxygen gas and nitrogen gas were determined by 5 kg / cm 2 ).
結果を第1表に示す。The results are shown in Table 1.
なお、分離係数αは式 で算出した。The separation coefficient α is Was calculated.
(実施例2) 実施例1で用いたものと同様の多孔質基材を2枚重ね合
わせ、これに重合体原料としてのシリコーンゴム(東レ
シリコーン社製;SH−410)のトルエン溶液(シリコーン
濃度;12g/100ml)を含浸し、乾燥して選択性気体透過平
膜を得た。(Example 2) Two porous substrates similar to those used in Example 1 were superposed, and a toluene solution of a silicone rubber (Toray Silicone; SH-410) as a polymer raw material (silicon concentration) (12 g / 100 ml) and dried to obtain a selective gas permeable flat membrane.
重量増加は基材の約60%であった。実施例1と同様にし
て膜特性を求め、その結果を第1表に示す。The weight gain was about 60% of the substrate. The film characteristics were determined in the same manner as in Example 1, and the results are shown in Table 1.
(実施例3) 多孔質テフロン(孔径0.65μm、厚み50μm)を2枚重
ね合わせ、これに液状シロキサンオリゴマーの混合物
(官能基−SiHを含むシロキサンおよび−CH=CH2を含
むシロキサンを官能基比1:1となるように混合)を含浸
し、70℃で2時間、加熱架橋処理を行ない選択性気体透
過平膜を得た。Example 3 Two pieces of porous Teflon (pore size 0.65 μm, thickness 50 μm) were superposed, and a mixture of liquid siloxane oligomers (siloxane containing a functional group —SiH and siloxane containing —CH═CH 2 was used as a functional group ratio). The mixture was impregnated so as to have a ratio of 1: 1 and heat-crosslinked at 70 ° C. for 2 hours to obtain a selective gas permeable flat membrane.
重量増加は基材の約60%であった。実施例1と同様にし
て膜特性を求め、その結果を第1表に示す。The weight gain was about 60% of the substrate. The film characteristics were determined in the same manner as in Example 1, and the results are shown in Table 1.
(実施例4) 多孔質テフロン(孔径0.65μm、厚み50μm)を3枚重
ね合わせ、これに実施例3と同様の液状シロキサンオリ
ゴマーの混合物を含浸し、70℃で2時間、加熱架橋処理
を行ない選択性気体透過平膜を得た。(Example 4) Three pieces of porous Teflon (pore size 0.65 µm, thickness 50 µm) were superposed, impregnated with the same liquid siloxane oligomer mixture as in Example 3 and heat-crosslinked at 70 ° C for 2 hours. A selective gas permeable flat membrane was obtained.
重量増加は基材の約60%であった。実施例1と同様にし
て膜特性を求め、その結果を第1表に示す。The weight gain was about 60% of the substrate. The film characteristics were determined in the same manner as in Example 1, and the results are shown in Table 1.
(比較例1) 実施例1で用いたものと同様の多孔質基材1枚に、実施
例1で用いたものと同様の重合体原料を含浸し、乾燥し
て選択性気体透過平膜を得た。(Comparative Example 1) One porous substrate similar to that used in Example 1 was impregnated with the same polymer raw material as used in Example 1 and dried to form a selective gas permeable flat membrane. Obtained.
重量増加は基材の約40%であった。実施例1と同様にし
て膜特性を求め、その結果を第1表に示す。The weight gain was about 40% of the substrate. The film characteristics were determined in the same manner as in Example 1, and the results are shown in Table 1.
(比較例2) 実施例1で用いたものと同様の多孔質基材1枚に、実施
例2で用いたものと同様の重合体原料を含浸し、乾燥し
て選択性気体透過平膜を得た。(Comparative Example 2) A single porous substrate similar to that used in Example 1 was impregnated with the same polymer raw material as used in Example 2 and dried to form a selective gas permeable flat membrane. Obtained.
重量増加は基材の約70%であった。実施例1と同様にし
て膜特性を求め、その結果を第1表に示す。The weight gain was about 70% of the substrate. The film characteristics were determined in the same manner as in Example 1, and the results are shown in Table 1.
(比較例3) 実施例3で用いたものと同様の多孔質基材1枚に、実施
例3で用いたものと同様の重合体原料を含浸し、乾燥し
て選択性気体透過平膜を得た。重量増加は基材の約65%
であった。実施例1と同様にして膜特性を求め、その結
果を第1表に示す。(Comparative Example 3) One porous substrate similar to that used in Example 3 was impregnated with the same polymer raw material as used in Example 3, and dried to form a selective gas permeable flat membrane. Obtained. 65% increase in weight of base material
Met. The film characteristics were determined in the same manner as in Example 1, and the results are shown in Table 1.
[発明の効果4] 本発明に係る選択性気体透過平膜は、気体の透過係数と
分離係数のバランスとに優れることから、たとえば酸素
ガス等の気体を効率よく選択透過させることができ、し
かも支持体としての多孔質基材層の層間に気体の選択透
過性を有する重合体層を設けるので機械的強度を大きく
することができる。また極めて簡単な工程で選択性気体
透過平膜を製造することができる。 [Effect of the Invention 4] The selective gas permeable flat membrane according to the present invention is excellent in the balance between the gas permeability coefficient and the separation coefficient, and thus can efficiently selectively permeate a gas such as oxygen gas. Since the polymer layer having selective gas permeability is provided between the layers of the porous base material layer as the support, the mechanical strength can be increased. Further, the selective gas permeable flat membrane can be manufactured by an extremely simple process.
Claims (1)
する重合体層を設けてなることを特徴とする選択性気体
透過平膜。1. A selective gas permeable flat membrane comprising a polymer layer having gas selective permeability between porous substrate layers.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63116054A JPH0677673B2 (en) | 1988-05-12 | 1988-05-12 | Selective gas permeable flat membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63116054A JPH0677673B2 (en) | 1988-05-12 | 1988-05-12 | Selective gas permeable flat membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01288315A JPH01288315A (en) | 1989-11-20 |
JPH0677673B2 true JPH0677673B2 (en) | 1994-10-05 |
Family
ID=14677561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63116054A Expired - Lifetime JPH0677673B2 (en) | 1988-05-12 | 1988-05-12 | Selective gas permeable flat membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0677673B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATA35095A (en) * | 1995-02-27 | 1996-08-15 | Frings & Co Heinrich | MEASURING DEVICE FOR ONE OF AT LEAST TWO VOLATILE COMPONENTS OF A LIQUID, IN PARTICULAR A FERMENTATION LIQUID |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5962305A (en) * | 1982-09-30 | 1984-04-09 | Teijin Ltd | Composite membrane for gas separation and its production |
JPS60161703A (en) * | 1984-01-30 | 1985-08-23 | Teijin Ltd | Gas permselective composite membrane |
JPS621404A (en) * | 1985-06-27 | 1987-01-07 | Mitsubishi Rayon Co Ltd | Poly-composite hollow fiber membrane and its manufacturing process |
JPS63274433A (en) * | 1987-05-06 | 1988-11-11 | Mitsubishi Rayon Co Ltd | Preparation of oxygen enriching multilayer composite hollow yarn membrane |
JPS63296823A (en) * | 1987-05-29 | 1988-12-02 | Mitsubishi Rayon Co Ltd | Oxygen-enriching membrane and production thereof |
-
1988
- 1988-05-12 JP JP63116054A patent/JPH0677673B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01288315A (en) | 1989-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0335971B2 (en) | ||
JPH07304887A (en) | Composite membrane and its preparation | |
JPH0317533B2 (en) | ||
JPS588517A (en) | Preparation of composite film with selective permeability for gas | |
JPS62136212A (en) | Preparation of permselective composite membrane | |
JPH0677673B2 (en) | Selective gas permeable flat membrane | |
KR101683776B1 (en) | Method of Preparing Gas Separation Membrane Using iCVD Process | |
JPS586207A (en) | Production of gas permselective composite membrane | |
JPH0747221A (en) | Composite membrane for gas separation and its preparation | |
JPS5924844B2 (en) | Method for manufacturing gas selective permeability composite membrane | |
JPS61107923A (en) | Manufacture of gas selective permeable composite membrane | |
JPS62149308A (en) | Production of composite membrane | |
Suzuki et al. | Grafting of siloxane on poly (styrene-co-maleic acid) and application of this grafting technique to a porous membrane for gas separation | |
JPH038808B2 (en) | ||
JPS61149226A (en) | Gas permselective composite membrane and preparation thereof | |
JPS63278525A (en) | Production of vapor-liquid separation membrane | |
JPH0525531B2 (en) | ||
JPS6336286B2 (en) | ||
JPS5814908A (en) | Preparation of composite semi-permeable membrane | |
JPH05220362A (en) | Gas separation membrane | |
JPS62129105A (en) | Selective separation process of alcohol | |
JPS59225704A (en) | Gas permselective composite membrane and preparation thereof | |
JPH04317734A (en) | Gas separating composite membrane and its production | |
JPH0310368B2 (en) | ||
JPS62282619A (en) | Composite membrane for separating gas |