[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH01242420A - Production of raw powder for high-temperature superconducting ceramic - Google Patents

Production of raw powder for high-temperature superconducting ceramic

Info

Publication number
JPH01242420A
JPH01242420A JP63069581A JP6958188A JPH01242420A JP H01242420 A JPH01242420 A JP H01242420A JP 63069581 A JP63069581 A JP 63069581A JP 6958188 A JP6958188 A JP 6958188A JP H01242420 A JPH01242420 A JP H01242420A
Authority
JP
Japan
Prior art keywords
salt
precipitate
raw powder
earth element
alkaline earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63069581A
Other languages
Japanese (ja)
Inventor
Kyoji Odan
恭二 大段
Hiroshi Miura
洋 三浦
Yasuo Bando
坂東 康夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP63069581A priority Critical patent/JPH01242420A/en
Publication of JPH01242420A publication Critical patent/JPH01242420A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain the title easy-to-sinter raw powder for a superconducting ceramic by forming a precipitate from a mixed soln. of a Bi salt, an alkaline earth element salt, and a copper salt and a specified mixed soln., and sintering the precipitate. CONSTITUTION:A mixed soln. of a bismuth salt, an alkaline-earth element salt, and a copper salt is brought into contact with a mixed soln. of an ammonium salt and an amine to form a precipitate, and the precipitate is water- washed or not, separated by filtration, dried, and then calcined to obtain the desired raw powder. The raw powder is shown by the formula (A is Mg, Ca, Ba, and Sr). In the formula, two kinds of the alkaline-earth elements mentioned above are preferably combined and used as A, or more preferably Ca and Sr are combined. In addition, 1<x<4, 0.8<y<2.5, and 4<z<7 are preferably fulfilled. When two kinds of alkaline-earth elements are combined and used as A, the ratio of the two kinds is preferably controlled to 0.5w-1.5 or more preferably to about 1.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、易焼結性Biミーアルカリ土兄元素Cu酸化
物系高温超電導セラミックスの原料粉末の製法に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing raw material powder for easily sinterable Bi, alkaline earth, and Cu oxide-based high-temperature superconducting ceramics.

(従来技術及びその問題点) Bi−アルカリ土類元素−Cu#化物系セラミックスは
、100に以上の裔い臨界温度を持つ超電導物質である
ことが知られるようになり、稀土類元素−アルカリ土類
元素−Cu酸化物系超電導セラミックスのような高価な
稀土類元素を使用しないので、経済的で多方面への応用
が期待されている。
(Prior art and its problems) It has become known that Bi-alkaline earth element-Cu# compound ceramics is a superconducting material with a critical temperature of over 100 degrees. Since it does not use expensive rare earth elements such as Cu oxide-based superconducting ceramics, it is expected to be economical and to be applied in many fields.

これらのBi−アルカリ土類元素−Cu酸酸化基系高温
超電導セラミックス、液体窒素のような安価な冷媒で冷
却することによっても超電導状態になるため、液体ヘリ
ウム中でしか超電導状態を示さないNb−Ti系超電導
合金などの代わりに、超電導マグネットなどに使えれば
、経済的に大きなメリットがある。
These Bi-alkaline earth element-Cu acid oxidation group-based high-temperature superconducting ceramics become superconducting even when cooled with an inexpensive refrigerant such as liquid nitrogen, so Nb-, which only exhibits a superconducting state in liquid helium, If it can be used in superconducting magnets instead of Ti-based superconducting alloys, there will be great economic benefits.

しかし、これまで作られてきた超電導セラミックスは臨
界電流密度が低(、常電導〜垣電導の転移の温度幅が広
く急峻さに欠けているという点も問題であった。
However, the superconducting ceramics that have been produced so far have had problems in that their critical current density is low (and the temperature range of the transition from normal conduction to barrier conduction is wide and lacks steepness).

これらの問題点の原因として、超電導セラミックスが多
孔質で密度が低いことが指摘されている。
It has been pointed out that the reason for these problems is that superconducting ceramics are porous and have a low density.

これまでBi−アルカリ土類元素−Cu酸酸化基系高温
超電導セラミックス乾式あるいは湿式で混合することに
よって調製した原料粉末を、加圧・焼結して作られてき
た。
Hitherto, Bi-alkaline earth element-Cu acid oxidation group-based high-temperature superconducting ceramics have been produced by pressurizing and sintering raw material powders prepared by dry or wet mixing.

乾式混合法は、超電導セラミックスの構成成分の酸化物
あるいは炭酸塩の粉末、例えばBi201、CaC0,
,5rCO,、CuOの粉末を出発原料として、ボール
ミル、播;貴機あるいは乳捧・乳鉢などで粉砕、混合し
た後に焼結して、超電導セラミックスの原料粉末をmW
する方法である。
In the dry mixing method, powders of oxides or carbonates of constituent components of superconducting ceramics, such as Bi201, CaC0,
, 5rCO, , CuO powder is used as a starting material, and it is crushed and mixed in a ball mill, mill, mortar, etc., and then sintered to produce raw material powder for superconducting ceramics.
This is the way to do it.

一方、湿式混合法は、乾式混合法と同様の出発原料に、
出発原料と反応せずかつこれを実質的に溶解しない溶媒
を加えて、機械的に混合する方法である。
On the other hand, the wet mixing method uses the same starting materials as the dry mixing method.
This is a method in which a solvent that does not react with the starting materials and does not substantially dissolve them is added and mixed mechanically.

上記両温合法は技術的に容易で安全性の高い方法である
が、得られた原料粉末は、粒径が1〜5μm以上と大き
く、粒径分布も均一ではなく、さらに成分のばらつきも
大きい。
Both of the above heating methods are technically easy and highly safe methods, but the obtained raw material powder has a large particle size of 1 to 5 μm or more, the particle size distribution is not uniform, and there is also a large variation in components. .

従って、この原料粉末を焼結して作られた高温超電導セ
ラミックスは密度が小さく、臨界電流密度も低いという
問題がある。
Therefore, high-temperature superconducting ceramics made by sintering this raw material powder have a problem of low density and low critical current density.

また多段湿式法においては、超電導セラミックスの各構
成成分の溶液から多段で成分を沈澱させるが、繁雑な工
程を要する等の欠点がある。
Furthermore, in the multi-stage wet method, components are precipitated from a solution of each component of superconducting ceramics in multiple stages, but there are drawbacks such as requiring complicated steps.

(問題点解決のための技術的手段) 本発明は、従来の混合法及び湿式法の欠点を解決した、
易焼結性の超電導セラミックス原料粉末の製法である。
(Technical means for solving the problems) The present invention solves the drawbacks of the conventional mixing method and wet method.
This is a method for producing easily sinterable superconducting ceramic raw material powder.

本発明は、ビスマス塩、アルカリ土類元素塩及び銅塩の
混合溶液と、アンモニウム塩及びアミンの混合溶液を接
触させて形成した沈澱物を、水洗または水洗せずに濾過
分離、乾燥し、次いで仮焼成することを特徴とするBi
−アルカリ土類元素−Cu酸化物系超電導セラミックス
の原料粉末の製法である。
In the present invention, a precipitate formed by contacting a mixed solution of a bismuth salt, an alkaline earth element salt, and a copper salt with a mixed solution of an ammonium salt and an amine is filtered and separated with or without water washing, dried, and then Bi characterized by being calcined
- A method for producing raw material powder for alkaline earth element-Cu oxide superconducting ceramics.

本発明におけるBi−アルカリ土類元素−Cu酸化物系
超電導セラミックスは、次の一般式、B i+AxCu
yozで表され、式中AはMg、Ca、Ba及びSrか
ら選択される少なくとも一種類のアルカリ土類元素を示
している。Aとしては上記アルカリ土類元素の二種を組
み合わせて使用することが好ましく、特に好ましいのは
、CaとSrの組み合わせである。
The Bi-alkaline earth element-Cu oxide based superconducting ceramic in the present invention has the following general formula, Bi+AxCu
yoz, where A represents at least one alkaline earth element selected from Mg, Ca, Ba, and Sr. As A, it is preferable to use a combination of the above two types of alkaline earth elements, and particularly preferable is a combination of Ca and Sr.

上記式において、1<x<4.0.8〈y〈2.5.4
<z<7の範囲が好ましい。Aとしてアルカリ土類元素
の二種を組み合わせて使用する場合、その二種の元素の
組成比は、0.5より大きく、1.5より小さいことが
好ましいが、1付近が特に好ましい。
In the above formula, 1<x<4.0.8<y<2.5.4
The range <z<7 is preferable. When two types of alkaline earth elements are used in combination as A, the composition ratio of the two types of elements is preferably larger than 0.5 and smaller than 1.5, and particularly preferably around 1.

本発明のビスマス塩、アルカリ土類元素塩及び銅塩とし
ては、塩酸塩、硝酸塩等を用いることができる。
As the bismuth salt, alkaline earth element salt, and copper salt of the present invention, hydrochloride, nitrate, etc. can be used.

アンモニウム塩としては、炭酸塩、重炭酸塩等を用いる
ことができる。その使用量は、上記アルカリ土類元素塩
と当モル以上であれば良い。
As the ammonium salt, carbonate, bicarbonate, etc. can be used. The amount used may be at least the equivalent molar amount of the alkaline earth element salt.

アミン類としては、第1、第2あるいは第3級アミン化
合物を用いることができるが、特に第2級アミン化合物
(R,NH; Rは炭素数1〜4のアルキル基)が好ま
しい。その使用量は、上記銅塩に対して1.5モル倍以
上であれば良い。
As the amines, primary, secondary or tertiary amine compounds can be used, but secondary amine compounds (R, NH; R is an alkyl group having 1 to 4 carbon atoms) are particularly preferred. The amount used should be at least 1.5 times the amount of the above copper salt by mole.

上記冬場の溶媒としては、それらを溶かすものであれば
特に制限はないが、例えば水、水−アルコール、アルコ
ール等を使用できる。
The winter solvent is not particularly limited as long as it dissolves them, and for example, water, water-alcohol, alcohol, etc. can be used.

本発明において沈澱物は、例えばビスマス塩、アルカリ
土類元素塩及び銅塩の混合溶液を攪拌しながら、それに
アンモニウム塩及びアミンの混合溶液を添加することに
よって形成できる。上記の条件下で沈澱物を形成後、さ
らにアミン類をビスマス塩、アルカリ土類元素塩及び銅
塩の全モル数に対して当モル以上加えると銅化合物の沈
澱物の形成率が向上する。
In the present invention, the precipitate can be formed, for example, by adding a mixed solution of an ammonium salt and an amine to a mixed solution of a bismuth salt, an alkaline earth element salt, and a copper salt while stirring the mixed solution. After forming a precipitate under the above conditions, if amines are further added in an amount equivalent to or more than the total number of moles of bismuth salt, alkaline earth element salt, and copper salt, the rate of formation of a copper compound precipitate is improved.

形成した沈澱物をそのまま濾過分離、乾燥できるが、沈
澱物を水洗した後に濾過分離、乾燥しても良い。
The formed precipitate can be directly separated by filtration and dried, but the precipitate may be washed with water, then separated by filtration and dried.

乾燥後に粉末を仮焼結する。仮焼結の温度は500〜9
50°Cが好ましい。仮焼結温度が500°Cよりも低
い時は、混合粉末の脱水及び熱分解が充分に進行しない
ため好ましくない。又、仮焼結温度が950°Cよりも
高い時は、混合粉末の粒子が粗大化するため好ましくな
い。
After drying, the powder is pre-sintered. Temperature of pre-sintering is 500~9
50°C is preferred. When the pre-sintering temperature is lower than 500°C, it is not preferable because dehydration and thermal decomposition of the mixed powder do not proceed sufficiently. Further, when the preliminary sintering temperature is higher than 950°C, the particles of the mixed powder become coarse, which is not preferable.

本発明の方法で得られた超電導セラミックスの原料粉末
を高圧で成形し700〜950°Cで焼結することによ
り、超電導セラミックスとすることができる。
Superconducting ceramics can be obtained by molding the raw material powder of superconducting ceramics obtained by the method of the present invention under high pressure and sintering at 700 to 950°C.

(本発明の効果) 本発明の方法により得られた、Bi−アルカリ土類元素
−Cu酸化物系超電導セラミックスの原料粉末は、各構
成元素化合物が共沈澱するため組成が均一で、かつ粒子
径がサブミクロン級の微粒子であり、良好な焼結性を持
っている。この粉末を焼結して得られた超電導セラミッ
クスは、密度5.3g/cff1以上の緻密なセラミッ
クスであり、電流密度も従来のものに比べて大きくなっ
ている。
(Effects of the present invention) The raw material powder of Bi-alkaline earth element-Cu oxide superconducting ceramics obtained by the method of the present invention has a uniform composition and particle size because the constituent element compounds co-precipitate. are submicron-sized particles and have good sinterability. The superconducting ceramic obtained by sintering this powder is a dense ceramic with a density of 5.3 g/cff1 or more, and the current density is also higher than that of conventional ceramics.

(実施例) 以下に本発明の実施例を示す。(Example) Examples of the present invention are shown below.

実施例1 炭酸アンモニウム0.04モルの水溶液250滅に、ジ
エチルアミン0.04モルの水溶液300戚を混合し、
炭酸アンモニウム・ジエチルアミン水溶、・夜を8用層
した。
Example 1 250% of an aqueous solution of 0.04 mol of ammonium carbonate was mixed with 300% of an aqueous solution of 0.04 mol of diethylamine,
Aqueous solution of ammonium carbonate and diethylamine was added for 8 layers.

次に上記炭酸アンモニウム・ジエチルアミン水溶液を攪
拌しながら、硝酸ビスマス0.02モル、硝酸カルシウ
ム0.02モル、硝酸ストロンチウム0.02モル、硝
酸銅0.o4モルを均一に溶解した水溶液450雁を添
加し、共沈澱物を得た。
Next, while stirring the ammonium carbonate/diethylamine aqueous solution, 0.02 mol of bismuth nitrate, 0.02 mol of calcium nitrate, 0.02 mol of strontium nitrate, and 0.0 mol of copper nitrate. A coprecipitate was obtained by adding 450 g of an aqueous solution in which 4 mol of O was uniformly dissolved.

さらに共沈澱物の水溶液を攪拌しながら、ジエチルアミ
ン0.34モルの水溶液300dを添加し、約1時間攪
拌後、−晩装置し沈澱反応を完結させた。
Further, while stirring the aqueous solution of the coprecipitate, 300 d of an aqueous solution of 0.34 mol of diethylamine was added, and after stirring for about 1 hour, the mixture was left in the apparatus overnight to complete the precipitation reaction.

共沈澱物を濾過分離、乾燥後、粉砕し750°Cで2時
間仮焼結し、it/cfflブレス成形後、900°C
で5時間焼結し、超電導セラミックス焼結体を得た。
The coprecipitate was separated by filtration, dried, pulverized, pre-sintered at 750°C for 2 hours, and then molded into an IT/CFFL press at 900°C.
The mixture was sintered for 5 hours to obtain a superconducting ceramic sintered body.

この超電導セラミックスの密度は5.53 g/dであ
り、臨界温度(T c )は105 K、臨界電流密度
は418A/cutであった。
This superconducting ceramic had a density of 5.53 g/d, a critical temperature (T c ) of 105 K, and a critical current density of 418 A/cut.

実施例2 共沈澱物の濾過分離、乾燥において、この共沈澱物を蒸
留水で水洗し、濾過分離、乾燥をした以外は、実施例1
と同様に行った。
Example 2 Example 1 except that in the filtration separation and drying of the coprecipitate, the coprecipitate was washed with distilled water, filtered, separated, and dried.
I did the same thing.

この超電導セラミックスの密度は5.61 g/c4で
あり、臨界温度(Tc)は106に、臨界電流密度は4
23 A/CTI+であった。
The density of this superconducting ceramic is 5.61 g/c4, the critical temperature (Tc) is 106, and the critical current density is 4.
23 A/CTI+.

比較例1 酸化ビスマス0.5モル、炭酸カルシウム0.5モル、
炭酸ストロンチウム0.5モル、酸化[1モルの粉末を
、播潰機を用いて乾式混合した。この粉末を空気中で8
20 ”C12時間焼成した。この粉末をlt/cff
lプレス成形後、900°Cで6時間焼結し、セラミッ
クス焼結体を得た。
Comparative Example 1 Bismuth oxide 0.5 mol, calcium carbonate 0.5 mol,
Powders of 0.5 mol of strontium carbonate and 1 mol of oxide were dry mixed using a crusher. 8 times this powder in the air.
20" C was fired for 12 hours. This powder was lt/cff
After press molding, it was sintered at 900°C for 6 hours to obtain a ceramic sintered body.

このセラミックスの密度は4.45g/cfflであり
、臨界温度(Tc)は92に、臨界電流密度は195A
/c−iaであった。
The density of this ceramic is 4.45 g/cffl, the critical temperature (Tc) is 92, and the critical current density is 195 A.
/c-ia.

Claims (1)

【特許請求の範囲】[Claims] ビスマス塩、アルカリ土類元素塩及び銅塩の混合溶液と
、アンモニウム塩及びアミンの混合溶液を接触させて形
成した沈澱物を、水洗または水洗せずに濾過分離、乾燥
し、次いで仮焼成することを特徴とするBi−アルカリ
土類元素−Cu酸化物系超電導セラミックスの原料粉末
の製法。
A precipitate formed by contacting a mixed solution of a bismuth salt, an alkaline earth element salt, and a copper salt with a mixed solution of an ammonium salt and an amine is separated by filtration with or without water washing, dried, and then calcined. A method for producing raw material powder for Bi-alkaline earth element-Cu oxide superconducting ceramics, characterized by:
JP63069581A 1988-03-25 1988-03-25 Production of raw powder for high-temperature superconducting ceramic Pending JPH01242420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63069581A JPH01242420A (en) 1988-03-25 1988-03-25 Production of raw powder for high-temperature superconducting ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63069581A JPH01242420A (en) 1988-03-25 1988-03-25 Production of raw powder for high-temperature superconducting ceramic

Publications (1)

Publication Number Publication Date
JPH01242420A true JPH01242420A (en) 1989-09-27

Family

ID=13406920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63069581A Pending JPH01242420A (en) 1988-03-25 1988-03-25 Production of raw powder for high-temperature superconducting ceramic

Country Status (1)

Country Link
JP (1) JPH01242420A (en)

Similar Documents

Publication Publication Date Title
US4804649A (en) Alkaline oxalate precipitation process for forming metal oxide ceramic superconductors
JPH0791055B2 (en) Manufacturing method of complex metal oxide
JPH01242420A (en) Production of raw powder for high-temperature superconducting ceramic
AU617357B2 (en) Process for preparing superconducting materials and materials thereby obtained
JPH0791054B2 (en) Manufacturing method of complex metal oxide
JPH01179721A (en) Manufacturing method for high-temperature superconducting ceramic raw material powder
JPH01188419A (en) Manufacturing method for raw material powder for high-temperature superconducting ceramics
JPH03126664A (en) Perovskite type oxide porcelain and production therefor
US4923849A (en) Process for forming metal oxide superconductors from a precursor material of the general formula YBa2 Cu3 (OH)3 (Ox)2 O3 H2 O (where Ox is an oxalate)
JPH01122906A (en) Superconductive powder, sintered body and production thereof
JPH0818870B2 (en) Method for manufacturing lead zirconate titanate-based piezoelectric ceramic
JPS63307156A (en) Method for synthesizing superconducting ceramics
JPH0556287B2 (en)
JPS62138354A (en) Manufacture of readily sinterable lead-containing oxide powder
JPH0222104A (en) Production of raw material powder for producing high-temperature superconducting form
JPH01224223A (en) Preparation method of raw material powder for easily sinterable high temperature superconducting ceramics
JPH01224227A (en) Preparation of powder for sintering superconducting ceramic of bi-alkaline earth element-cu oxide type
JPH01224225A (en) Manufacturing method for high-temperature superconducting ceramic raw material powder
JPH01224258A (en) Manufacturing method for high-temperature superconducting ceramics
JPH0818867B2 (en) Method for producing perovskite ceramics containing zirconium
JPH02102122A (en) Method for manufacturing rare earth element-based high temperature superconductor powder
JPH01224222A (en) Preparation of raw material powder of high temperature superconducting ceramic
JPH01224228A (en) Method for preparing raw material powder for easily sinterable oxide superconducting ceramics using wet method
JPH01224226A (en) Method for producing raw material powder for Bi-alkaline earth element-Cu oxide superconducting ceramics
JPS63285150A (en) Method for manufacturing dielectric ceramics containing neodymium