JPH01179721A - Manufacturing method for high-temperature superconducting ceramic raw material powder - Google Patents
Manufacturing method for high-temperature superconducting ceramic raw material powderInfo
- Publication number
- JPH01179721A JPH01179721A JP63003099A JP309988A JPH01179721A JP H01179721 A JPH01179721 A JP H01179721A JP 63003099 A JP63003099 A JP 63003099A JP 309988 A JP309988 A JP 309988A JP H01179721 A JPH01179721 A JP H01179721A
- Authority
- JP
- Japan
- Prior art keywords
- coprecipitate
- earth element
- raw material
- material powder
- compd
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000843 powder Substances 0.000 title claims abstract description 34
- 239000000919 ceramic Substances 0.000 title claims abstract description 28
- 239000002994 raw material Substances 0.000 title claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 22
- 238000005245 sintering Methods 0.000 claims abstract description 12
- 150000002910 rare earth metals Chemical class 0.000 claims abstract description 9
- 239000002244 precipitate Substances 0.000 claims description 17
- 150000001875 compounds Chemical class 0.000 claims description 15
- 239000005751 Copper oxide Substances 0.000 claims description 10
- 229910000431 copper oxide Inorganic materials 0.000 claims description 10
- 239000003795 chemical substances by application Substances 0.000 claims description 8
- 239000005749 Copper compound Substances 0.000 claims description 6
- 150000001880 copper compounds Chemical class 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 2
- 238000000975 co-precipitation Methods 0.000 claims 1
- 239000010949 copper Substances 0.000 abstract description 10
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 abstract description 3
- 239000003513 alkali Substances 0.000 abstract description 2
- 229910052788 barium Inorganic materials 0.000 abstract description 2
- 229910052791 calcium Inorganic materials 0.000 abstract description 2
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 abstract description 2
- 229910052706 scandium Inorganic materials 0.000 abstract description 2
- 229910052712 strontium Inorganic materials 0.000 abstract description 2
- 229910052727 yttrium Inorganic materials 0.000 abstract description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 abstract 1
- 150000001342 alkaline earth metals Chemical class 0.000 abstract 1
- 229910021529 ammonia Inorganic materials 0.000 abstract 1
- 238000000748 compression moulding Methods 0.000 abstract 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 abstract 1
- 229910052747 lanthanoid Inorganic materials 0.000 abstract 1
- 150000002602 lanthanoids Chemical class 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 34
- 238000000034 method Methods 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- HHFAWKCIHAUFRX-UHFFFAOYSA-N ethoxide Chemical compound CC[O-] HHFAWKCIHAUFRX-UHFFFAOYSA-N 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 4
- IWOUKMZUPDVPGQ-UHFFFAOYSA-N barium nitrate Chemical compound [Ba+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O IWOUKMZUPDVPGQ-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- NGDQQLAVJWUYSF-UHFFFAOYSA-N 4-methyl-2-phenyl-1,3-thiazole-5-sulfonyl chloride Chemical compound S1C(S(Cl)(=O)=O)=C(C)N=C1C1=CC=CC=C1 NGDQQLAVJWUYSF-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 229910020012 Nb—Ti Inorganic materials 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000007580 dry-mixing Methods 0.000 description 2
- 150000002118 epoxides Chemical class 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 150000002603 lanthanum Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229910001281 superconducting alloy Inorganic materials 0.000 description 2
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- -1 organic acid salts Chemical class 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、稀土類元素−アルカリ土類元素−銅酸化物系
高温超電導セラミックス原料粉末の製法に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing rare earth element-alkaline earth element-copper oxide based high temperature superconducting ceramic raw material powder.
(従来技術及びその問題点)
稀土類元素−アルカリ土類元素−銅酸化物系セラミック
スのうち、酸素欠陥型層状ペロブスカイト構造を有する
ものは、90に以上の高い臨界温度を持つ超電導物質で
あることが知られるようになり、多方面への応用が期待
されている。(Prior art and its problems) Among rare earth element-alkaline earth element-copper oxide ceramics, those having an oxygen-deficient layered perovskite structure are superconducting materials with a high critical temperature of 90 or higher. has become well known and is expected to be applied in many fields.
これらの稀土類元素−アルカリ土頻元素−銅酸化物系高
温超電導セラミックスは、液体窒素のような安価な冷媒
で冷却することによっても超電導状態になるため、液体
ヘリウム中でしか超電導状態を示さないNb−Ti系超
電導合金などの代わりに、超電導マグネットなどに使え
れば、経済的に大きなメリットがある。These rare earth element-alkaline earth element-copper oxide-based high-temperature superconducting ceramics become superconducting even when cooled with an inexpensive coolant such as liquid nitrogen, so they only show superconducting state in liquid helium. If it can be used in superconducting magnets instead of Nb-Ti superconducting alloys, there will be great economic advantages.
しかし、これまで作られてきた超電導セラミックスは臨
界電流密度が数+A/cfflと低く、従来−船釣に使
われてきたNb−Ti系超電導合金の1/200〜1/
400に過ぎないという欠点があった。However, the superconducting ceramics that have been made so far have a low critical current density of several + A/cffl, which is 1/200 to 1/200 of that of the Nb-Ti superconducting alloys conventionally used for boat fishing.
The drawback was that it was only 400.
また、常電導〜超電導の転移の温度幅が広く急峻さに欠
けているという点も問題であった。Another problem was that the temperature range of the transition from normal conductivity to superconductivity was wide and lacked steepness.
これらの問題点の一つの原因として、超電導セラミック
スが多孔質で密度が低いことが指摘されている。It has been pointed out that one of the causes of these problems is that superconducting ceramics are porous and have a low density.
これまで稀土類元素−アルカリ土類元素−銅酸化物系高
温超電導セラミックスは乾式あるいは湿式で混合するこ
とによって調製した原料粉末を、加圧・焼結して作られ
てきた。Hitherto, rare earth element-alkaline earth element-copper oxide-based high-temperature superconducting ceramics have been made by pressurizing and sintering raw material powders prepared by dry or wet mixing.
乾式混合法は、超電導セラミックスの構成成分の酸化物
あるいは炭酸塩の粉末、例えばY2O3、BaC0=、
CuOの粉末を出発原料として、ボールミル、播潰機あ
るいは乳棒・乳鉢などで粉砕、混合した後に焼結して、
超電導セラミックスの原料粉末を調製する方法である。In the dry mixing method, powders of oxides or carbonates of the constituent components of superconducting ceramics, such as Y2O3, BaC0=,
Using CuO powder as a starting material, it is ground and mixed using a ball mill, crusher, pestle, mortar, etc., and then sintered.
This is a method for preparing raw material powder for superconducting ceramics.
一方、湿式混合法は、乾式混合法と同様の出発原料に、
出発原料と反応せずかつこれを実質的に溶解しない溶媒
を加えて、機械的に混合する方法である。On the other hand, the wet mixing method uses the same starting materials as the dry mixing method.
This is a method in which a solvent that does not react with the starting materials and does not substantially dissolve them is added and mixed mechanically.
上記両温合法は技術的に容易で安全性の高い方法である
が、得られた原料粉末は、粒径が1〜5μm以上と大き
く、粒径分布も均一ではなく、さらに成分のばらつきも
大きい。Both of the above heating methods are technically easy and highly safe methods, but the obtained raw material powder has a large particle size of 1 to 5 μm or more, the particle size distribution is not uniform, and there is also a large variation in components. .
従って、この原料粉末を焼結して作られた高温超電導セ
ラミックスは密度が低く臨界電流密度も低いという問題
がある。Therefore, high-temperature superconducting ceramics made by sintering this raw material powder have a problem of low density and low critical current density.
(問題点解決のための技術的手段)
本発明は、従来の混合法の欠点を解決した、易焼結性の
超電導セラミックス原料粉末の製法である。(Technical Means for Solving Problems) The present invention is a method for producing easily sinterable superconducting ceramic raw material powder, which solves the drawbacks of conventional mixing methods.
本発明は、(1)稀土類元素化合物、アルカリ土類元素
化合物及び銅化合物の溶液を、超音波振動を付与させな
がら沈澱形成剤と接触させて共沈澱物を形成させ、つい
で共沈澱物を仮焼結することを特徴とする稀土類元素−
アルカリ土類元素−銅酸化物系高温超電導セラミックス
原料粉末の製法、及び(2)稀土類元素化合物、アルカ
リ土類元素化合物及び銅化合物の溶液を、沈澱形成剤と
接触させて共沈澱物を形成させ、この共沈澱物溶液に超
音波振動を付与し、ついで共沈澱物を仮焼結することを
特徴とする稀土類元素−アルカリ土類元素−銅酸化物系
高温超電導セラミックス原料粉末の製法である。The present invention includes (1) bringing a solution of a rare earth element compound, an alkaline earth element compound, and a copper compound into contact with a precipitant while applying ultrasonic vibration to form a coprecipitate; Rare earth elements characterized by temporary sintering
Method for producing alkaline earth element-copper oxide-based high-temperature superconducting ceramic raw material powder, and (2) forming a coprecipitate by contacting a solution of a rare earth element compound, an alkaline earth element compound, and a copper compound with a precipitate forming agent A method for producing rare earth element-alkaline earth element-copper oxide-based high-temperature superconducting ceramic raw material powder, characterized by applying ultrasonic vibration to the coprecipitate solution and then pre-sintering the coprecipitate. be.
本発明において稀土類元素とは、Sc、Y及び周期律表
のランタン系列元素から選択される少なくとも一種類の
稀土類元素で、ランタン系列元素の具体例としてはLa
、Nd、Sm、Eu、Gd及びErが挙げられる。本発
明においてアルカリ土類元素とは、周期律表のmA族か
ら選択される、少なくとも一種類のアルカリ土類元素で
、その具体例としてはCa、Ba及びSrが挙げられる
。In the present invention, the rare earth element refers to at least one kind of rare earth element selected from Sc, Y, and the lanthanum series elements of the periodic table, and a specific example of the lanthanum series element is La.
, Nd, Sm, Eu, Gd and Er. In the present invention, the alkaline earth element refers to at least one kind of alkaline earth element selected from the mA group of the periodic table, and specific examples thereof include Ca, Ba, and Sr.
また、本発明における高温超電導セラミックスは、銅の
一部を最大50モル%まで他の金属、例えばV、 Zr
、、Nb、 Mo、、Hf、 Ta、 W、 、Pbあ
るいはBiで置換されたものも含んでいる。In addition, the high temperature superconducting ceramic in the present invention contains a portion of copper up to 50 mol% of other metals, such as V, Zr.
, , Nb, Mo, , Hf, Ta, W, , Pb or Bi are also included.
本発明で用いられる稀土類元素化合物、アルカリ土類元
素化合物、及び銅化合物としては、水酸化物、塩酸塩、
硝酸塩、有機酸塩、アルコキシドなどが挙げられる。The rare earth element compound, alkaline earth element compound, and copper compound used in the present invention include hydroxide, hydrochloride,
Examples include nitrates, organic acid salts, and alkoxides.
上記の化合物の溶媒としては、水、アルコール類、エー
テル類、ケトン類、エステル類、ハロゲン化炭化水素類
、N−メチル−2−ピロリドン、ジメチルフォルムアミ
ド、ジメチルアセトアミド、ジメチルスルフオキシドな
どが好ましく用いられる。Preferred solvents for the above compounds include water, alcohols, ethers, ketones, esters, halogenated hydrocarbons, N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, and dimethylsulfoxide. used.
本発明において沈澱形成剤としては、苛性アルカリ水溶
液、アンモニア水、炭酸アンモニウム、アミン類、シュ
ウ酸、水などを用いることができる。これらの沈澱形成
剤は、単独で用いてもよいし、2種以上を組み合わせて
もよい。In the present invention, as the precipitant, an aqueous caustic alkali solution, aqueous ammonia, ammonium carbonate, amines, oxalic acid, water, etc. can be used. These precipitants may be used alone or in combination of two or more.
稀土類元素化合物の溶液(以下溶液Aという)、アルカ
リ土類元素化合物の溶液(以下溶液Bという)、銅化合
物の溶液(以下溶液Cという)に超音波振動を付与させ
ながら沈澱形成剤を混合して、共沈澱物を形成させる、
あるいは上記化合物の溶液に沈澱形成剤を混合して共沈
澱物を形成させ、この共沈澱物溶液に超音波振動を付与
させる方法については特に制限はなく、例えば以下に示
すような各種の方法を採用することができる。A precipitation forming agent is mixed with a solution of a rare earth element compound (hereinafter referred to as solution A), a solution of an alkaline earth element compound (hereinafter referred to as solution B), and a solution of a copper compound (hereinafter referred to as solution C) while applying ultrasonic vibration. to form a coprecipitate,
Alternatively, there is no particular restriction on the method of mixing a precipitant into a solution of the above compound to form a coprecipitate and applying ultrasonic vibration to the coprecipitate solution. For example, various methods such as those shown below may be used. Can be adopted.
■溶液A、B及びCをあらかじめ混合し、これに超音波
振動を付与させながら沈澱形成剤を混合する方法。■溶
液A、B及びCをあらかじめ混合し、これに沈澱形成剤
を混合して共沈澱物を形成させ、この共沈澱物溶液に超
音波振動を付与する方法。(2) A method in which solutions A, B, and C are mixed in advance, and a precipitate forming agent is mixed therein while applying ultrasonic vibration. (2) A method in which solutions A, B, and C are mixed in advance, a precipitate is mixed therein to form a coprecipitate, and ultrasonic vibrations are applied to the coprecipitate solution.
■溶液A、B及びCのそれぞれに超音波振動を付与させ
ながら沈澱形成剤を混合し、ついでそれぞれの共沈澱物
溶液を混合する方法。■溶液A、 B及びCのそれぞれ
に沈澱形成剤を混合し、ついでそれぞれの共沈澱物溶液
の混合溶液に超音波振動を付与する方法。■溶液A及び
已に超音波振動を付与させながら沈澱形成剤を混合して
共沈澱物を形成させ、この共沈澱物に超音波振動を付与
させながら、溶液C及び沈澱形成剤を加える方法。■溶
液A及びBに沈澱形成剤を混合して共沈澱物を形成させ
、この共沈澱物に溶液C及び沈澱形成剤を加え、ついで
共沈澱物溶液に超音波振動を付与する方法。(2) A method in which a precipitant is mixed with each of solutions A, B, and C while applying ultrasonic vibration, and then each coprecipitate solution is mixed. (2) A method in which a precipitant is mixed in each of solutions A, B, and C, and then ultrasonic vibration is applied to the mixed solution of each coprecipitate solution. (2) A method of mixing solution A and a precipitate forming agent while applying ultrasonic vibrations to form a coprecipitate, and adding solution C and a precipitate forming agent while applying ultrasonic vibrations to the coprecipitate. (2) A method of mixing solutions A and B with a precipitate to form a coprecipitate, adding solution C and a precipitate to the coprecipitate, and then applying ultrasonic vibration to the coprecipitate solution.
上記の工程で得られた共沈澱物の稀土類元素、アルカリ
土類元素、及び銅の原子比は、稀土類元素:アルカリ土
類元素:銅−1:0.5〜4:1〜5の範囲であること
が好ましく、特に稀土類元素:アルカリ土類元素:銅=
1:1〜3:1〜4の範囲であることが好適である。The atomic ratio of rare earth elements, alkaline earth elements, and copper in the coprecipitate obtained in the above step is rare earth element: alkaline earth element: copper - 1:0.5 to 4:1 to 5. It is preferable that the range is particularly rare earth element:alkaline earth element:copper=
A preferred range is 1:1 to 3:1 to 4.
次に前記の各工程で付与された超音波振動は、各種の市
販された超音波発生装置を使用して行うことができる。Next, the ultrasonic vibrations applied in each of the above steps can be performed using various commercially available ultrasonic generators.
溶液A、B及びC2あるいは共沈澱物を含有する溶液を
超音波発生装置に装着し、好ましくは出力LOW〜IK
W、1〜100分間発振器を作動させ、形成された沈澱
凝集物を超音波振動で破砕、分散する。The solutions A, B, and C2 or the solution containing the coprecipitate are attached to an ultrasonic generator, and preferably the output is LOW to IK.
W, operate the oscillator for 1 to 100 minutes to crush and disperse the precipitated aggregates formed by ultrasonic vibration.
前記の超音波振動を付与された共沈澱物を含有する溶液
を濾別し、共沈澱物は洗浄、乾燥の後、仮焼結する。The solution containing the coprecipitate subjected to the ultrasonic vibration is filtered, and the coprecipitate is washed, dried, and then pre-sintered.
仮焼結温度は500〜950 ’Cであることが好まし
い。仮焼結温度が500°Cより低いと、共沈澱物の酸
素欠損型層状ペロブスカイト構造への転換が十分に起こ
らず、良好な高温超電導セラミックスの原料粉末が得ら
れない。また仮焼結温度が950°Cよりも高い場合は
、共沈澱物が仮焼結中に融解したり粒子の粗大化が起こ
ったりするため好ましくない。Preferably, the pre-sintering temperature is 500 to 950'C. If the pre-sintering temperature is lower than 500°C, the coprecipitate will not be sufficiently converted into an oxygen-deficient layered perovskite structure, and a good raw material powder for high-temperature superconducting ceramics will not be obtained. Further, if the pre-sintering temperature is higher than 950°C, it is not preferable because the coprecipitate may melt during the pre-sintering or the particles may become coarse.
本発明の方法により得られた原料粉末を加圧下テ成形し
700〜950°Cで焼結することにより、高温超電導
セラミックスとすることができる。By molding the raw material powder obtained by the method of the present invention under pressure and sintering it at 700 to 950°C, high-temperature superconducting ceramics can be obtained.
(本発明の効果)
本発明の方法により得られた、稀土類元素−アルカリ土
類元素−銅酸化物系高温超電導セラミックス原料粉末は
、粒子径が1μmより小さい、微細で粒子径分布及び成
分元素化合物の組成の均一な粉末である。この原料粉末
を焼結して得られた超電導セラミックスは、密度が5.
1g/c+f1以上と緻密であり、臨界電流密度も、従
来に比べて大きくなる。(Effects of the present invention) The rare earth element-alkaline earth element-copper oxide-based high temperature superconducting ceramic raw material powder obtained by the method of the present invention has a fine particle size distribution of less than 1 μm, and has a fine particle size distribution and component elements. It is a powder with a uniform compound composition. The superconducting ceramic obtained by sintering this raw material powder has a density of 5.
It is dense with a density of 1 g/c+f1 or more, and the critical current density is also larger than that of the conventional method.
(実施例) 以下に本発明の実施例を示す。(Example) Examples of the present invention are shown below.
実施例1
3Nアンモニア水300dに、ジエチルアミン0.4モ
ルを300 mlの水に溶解したものを加え、沈澱形成
剤とした。Example 1 A solution of 0.4 mol of diethylamine dissolved in 300 ml of water was added to 300 d of 3N ammonia water to prepare a precipitate.
硝酸バリウム0.2モルの水溶液500d、硝酸イツト
リウム0.1モルの水溶液500m1.及び塩化a0.
3モルの水溶液500m1の各々に、出力80Wで10
分間超音波振動を付与しながら、上記沈澱剤を滴下して
それぞれ沈澱物を形成させた。500 d of an aqueous solution of 0.2 mol of barium nitrate, 500 ml of an aqueous solution of 0.1 mol of yttrium nitrate. and chloride a0.
10 at a power of 80 W into each of 500 ml of a 3 molar aqueous solution.
While applying ultrasonic vibration for a minute, the above precipitant was added dropwise to form a precipitate.
上記3種類の沈澱溶液を混合攪拌し、その後濾過、沈澱
物の水洗、乾燥を行った。この粉末を750°Cで2時
間仮焼結し、ボールミルで粉砕して、原料粉末を得た。The above three types of precipitation solutions were mixed and stirred, and then filtered, and the precipitates were washed with water and dried. This powder was pre-sintered at 750°C for 2 hours and ground in a ball mill to obtain a raw material powder.
この原料粉末をit/cfflで成形し、900°Cで
2時間焼成したところ、密度5.43g/cffl、臣
n界温度96に、臨界電流密度350A/cmlの超電
導セラミックス焼結体が得られた。When this raw material powder was molded using IT/cffl and fired at 900°C for 2 hours, a superconducting ceramic sintered body with a density of 5.43 g/cffl, a critical temperature of 96, and a critical current density of 350 A/cml was obtained. Ta.
実施例2
実施例1の沈澱形成剤を硝酸バリウム0.2モルの水溶
液500m、硝酸イツトリウム0.1モルの水溶液50
0m1、及び塩化銅0.3モルの水溶液500dの各々
に滴下してそれぞれ沈澱物を形成させた。Example 2 The precipitate forming agent of Example 1 was mixed with 500 m of an aqueous solution of 0.2 mol of barium nitrate and 50 ml of an aqueous solution of 0.1 mol of yttrium nitrate.
and 500 d of an aqueous solution of 0.3 mol of copper chloride to form a precipitate.
上記3種類の沈澱溶液を混合攪拌し、出力80Wで40
分間超音波振動を付与し、その後濾過、沈澱物の水洗、
乾燥を行った。この粉末を750°Cで2時間仮焼結し
、ボールミルで粉砕して、原料粉末を得た。The above three types of precipitation solutions were mixed and stirred, and the
Apply ultrasonic vibration for a minute, then filter, wash the precipitate with water,
It was dried. This powder was pre-sintered at 750°C for 2 hours and ground in a ball mill to obtain a raw material powder.
この原料粉末をIt/aflで成形し、900°Cで2
時間焼成したところ、密度5.20g/afl、臨界温
度92に、臨界電流密度325A/cmの超電導セラミ
ックス焼結体が得られた。This raw material powder was molded at It/afl and heated at 900°C for 2
After firing for an hour, a superconducting ceramic sintered body having a density of 5.20 g/afl, a critical temperature of 92, and a critical current density of 325 A/cm was obtained.
実施例3
Yエトキシド(Y(○C2H3)、:l 0.1モル、
Baエトキシド(B a (OCzHs) z〕0 、
2モル、Cuエトキシド(Cu (○C2H3)2))
0.3モルをエタノール1000 mlに)容解した。Example 3 Y ethoxide (Y(○C2H3), :l 0.1 mol,
Ba ethoxide (B a (OCzHs) z]0,
2 mol, Cu ethoxide (Cu (○C2H3)2))
0.3 mol in 1000 ml of ethanol).
このエタノール溶液に出力100Wで10分間超音波振
動を付与しながら水を徐々に滴下し、共沈澱物を生成さ
せた。Water was gradually added dropwise to this ethanol solution while applying ultrasonic vibration at an output of 100 W for 10 minutes to generate a coprecipitate.
得られた共沈澱物を含有する溶液を、濾過し、沈澱物の
水洗、乾燥を行った。この粉末を750°Cで2時間仮
焼結し、ボールミルで粉砕して、原料粉末を得た。The resulting solution containing the coprecipitate was filtered, and the precipitate was washed with water and dried. This powder was pre-sintered at 750°C for 2 hours and ground in a ball mill to obtain a raw material powder.
この原料粉末を1t、/cfで成形し、900 ′Cで
2時間焼成したところ、密度5.40g/cffl、臨
界温度95に、臨界電流密度365A/c+flの超電
導セラミックス焼結体が得られた。When this raw material powder was molded at 1 t/cf and fired at 900'C for 2 hours, a superconducting ceramic sintered body with a density of 5.40 g/cffl, a critical temperature of 95, and a critical current density of 365 A/c+fl was obtained. .
実施例4
Yエトキシド(Y (OCzHs)3:10.1モル、
Baエトキシド(B a (OCzHs) 2:] 0
、2モル、Cuエトキシド(Cu (OCzHs)
z) ) 0.3モルをエタノール1000 mftに
溶解した。Example 4 Y ethoxide (Y (OCzHs) 3: 10.1 mol,
Ba ethoxide (B a (OCzHs) 2:] 0
, 2 mol, Cu ethoxide (Cu (OCzHs)
z) ) 0.3 mol was dissolved in 1000 mft of ethanol.
このエタノール溶液に水を徐々に滴下し、共沈澱物を生
成させた。Water was gradually added dropwise to this ethanol solution to produce a coprecipitate.
得られた共沈澱物を含有する溶液に出力100Wで30
分間超音波振動を付与し、その後濾過、沈澱物の水洗、
乾燥を行った。この粉末を750°Cで2時間仮焼結し
、ボールミルで粉砕して、原料粉末を得た。The solution containing the obtained coprecipitate was heated for 30 minutes at an output of 100W.
Apply ultrasonic vibration for a minute, then filter, wash the precipitate with water,
It was dried. This powder was pre-sintered at 750°C for 2 hours and ground in a ball mill to obtain a raw material powder.
この原料粉末をl t、 / cr?+で成形し、90
0 ’Cで2時間焼成したところ、密度5.32g/c
ry、臨界温度93に、臨界電流密度330A/cff
lの超電導セラミックス焼結体が得られた。This raw material powder is lt, / cr? Shape with +, 90
When baked at 0'C for 2 hours, the density was 5.32g/c
ry, critical temperature 93, critical current density 330A/cff
1 of superconducting ceramic sintered bodies were obtained.
実施例5
Yエポキシドの代わりに、Laエポキシドを用いた以外
は実施例3と同様に行った。Example 5 The same procedure as Example 3 was carried out except that La epoxide was used instead of Y epoxide.
得られた高温超電導セラミックス焼結体の密度は、5.
35g/cffl、臨界温度は93に、臨界電流密度は
325A/c+flであった。The density of the obtained high-temperature superconducting ceramic sintered body was 5.
35 g/cffl, critical temperature was 93, and critical current density was 325 A/c+fl.
実施例5
Baエトキシドの一部をSrエトキシドで置換した以外
は実施例1と同様に行った。Example 5 The same procedure as in Example 1 was conducted except that Ba ethoxide was partially replaced with Sr ethoxide.
得られた高温超電導セラミックス焼結体の密度は、5.
45g/crM、臨界温度は97に、臨界電流密度は3
85A/cnTであった。The density of the obtained high-temperature superconducting ceramic sintered body was 5.
45g/crM, critical temperature is 97, critical current density is 3
It was 85A/cnT.
比較例
酸化イツトリウム(Y2O,)0.05モル、炭酸バリ
ウム(BaCO2)0.2モル、酸化銅(Cub)0.
3モルを水50j2に加え、ボールミルにて混合した後
、濾過し、更に乾燥器に入れ水分を除去した。Comparative Example Yttrium oxide (Y2O,) 0.05 mol, barium carbonate (BaCO2) 0.2 mol, copper oxide (Cub) 0.
3 mol was added to water 50j2, mixed in a ball mill, filtered, and further placed in a dryer to remove moisture.
この混合粉末を850°C空気中で3時間仮焼結した。This mixed powder was pre-sintered at 850°C in air for 3 hours.
仮焼結された混合粉末をボールミルで粉砕し再び仮焼結
した。この操作を4回繰り返して、原料粉末とした。The pre-sintered mixed powder was ground in a ball mill and pre-sintered again. This operation was repeated four times to obtain a raw material powder.
この原料粉末をit/cfflで成形し、900°Cで
′2時間焼成したところ、密度4 、1 g /c東H
m界温度90に、臨界電流密度35A/cfflの超電
導セラミックスが得られたに過ぎなかった。When this raw material powder was molded at IT/CFFL and fired at 900°C for 2 hours, the density was 4, 1 g/c East H.
Only a superconducting ceramic having an m-field temperature of 90 and a critical current density of 35 A/cffl was obtained.
Claims (2)
銅化合物の溶液を、超音波振動を付与させながら沈澱形
成剤と接触させて共沈澱物を形成させ、ついで共沈澱物
を仮焼結することを特徴とする稀土類元素−アルカリ土
類元素−銅酸化物系高温超電導セラミックス原料粉末の
製法。(1) A solution of a rare earth element compound, an alkaline earth element compound, and a copper compound is brought into contact with a precipitate forming agent while applying ultrasonic vibration to form a coprecipitate, and then the coprecipitate is pre-sintered. A method for producing rare earth element-alkaline earth element-copper oxide based high temperature superconducting ceramic raw material powder, characterized by the following.
銅化合物の溶液を、沈澱形成剤と接触させて共沈澱物を
形成させ、この共沈澱物溶液に超音波振動を付与し、つ
いで共沈澱物を仮焼結することを特徴とする稀土類元素
−アルカリ土類元素−銅酸化物系高温超電導セラミック
ス原料粉末の製法。(2) A solution of a rare earth element compound, an alkaline earth element compound, and a copper compound is brought into contact with a precipitate forming agent to form a coprecipitate, and this coprecipitate solution is subjected to ultrasonic vibration, and then coprecipitation is performed. A method for producing rare earth element-alkaline earth element-copper oxide-based high-temperature superconducting ceramic raw material powder, which is characterized by pre-sintering a material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63003099A JPH01179721A (en) | 1988-01-12 | 1988-01-12 | Manufacturing method for high-temperature superconducting ceramic raw material powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63003099A JPH01179721A (en) | 1988-01-12 | 1988-01-12 | Manufacturing method for high-temperature superconducting ceramic raw material powder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01179721A true JPH01179721A (en) | 1989-07-17 |
Family
ID=11547897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63003099A Pending JPH01179721A (en) | 1988-01-12 | 1988-01-12 | Manufacturing method for high-temperature superconducting ceramic raw material powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01179721A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7648687B1 (en) | 2006-06-15 | 2010-01-19 | Eestor, Inc. | Method of purifying barium nitrate aqueous solution |
US7729811B1 (en) | 2001-04-12 | 2010-06-01 | Eestor, Inc. | Systems and methods for utility grid power averaging, long term uninterruptible power supply, power line isolation from noise and transients and intelligent power transfer on demand |
US7993611B2 (en) * | 2006-08-02 | 2011-08-09 | Eestor, Inc. | Method of preparing ceramic powders using ammonium oxalate |
US8145362B2 (en) | 2006-08-04 | 2012-03-27 | Eestor, Inc. | Utility grid power averaging and conditioning |
US8845993B2 (en) | 2010-01-20 | 2014-09-30 | Eestor, Inc. | Purification of barium ion source |
US8853116B2 (en) | 2006-08-02 | 2014-10-07 | Eestor, Inc. | Method of preparing ceramic powders |
-
1988
- 1988-01-12 JP JP63003099A patent/JPH01179721A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7729811B1 (en) | 2001-04-12 | 2010-06-01 | Eestor, Inc. | Systems and methods for utility grid power averaging, long term uninterruptible power supply, power line isolation from noise and transients and intelligent power transfer on demand |
US7648687B1 (en) | 2006-06-15 | 2010-01-19 | Eestor, Inc. | Method of purifying barium nitrate aqueous solution |
US7993611B2 (en) * | 2006-08-02 | 2011-08-09 | Eestor, Inc. | Method of preparing ceramic powders using ammonium oxalate |
US8853116B2 (en) | 2006-08-02 | 2014-10-07 | Eestor, Inc. | Method of preparing ceramic powders |
US10239792B2 (en) | 2006-08-02 | 2019-03-26 | Eestor, Inc. | Method of preparing ceramic powders |
US8145362B2 (en) | 2006-08-04 | 2012-03-27 | Eestor, Inc. | Utility grid power averaging and conditioning |
US8788109B2 (en) | 2006-08-04 | 2014-07-22 | Eestor, Inc. | Utility grid power averaging and conditioning |
US8845993B2 (en) | 2010-01-20 | 2014-09-30 | Eestor, Inc. | Purification of barium ion source |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01179721A (en) | Manufacturing method for high-temperature superconducting ceramic raw material powder | |
JPH01138105A (en) | Superconductive powder, sintered body and production thereof | |
JPH03252313A (en) | Production of a2b2o7-type oxide powder | |
JPH01224225A (en) | Manufacturing method for high-temperature superconducting ceramic raw material powder | |
JPS6340711A (en) | Production of beta-type silicon nitride | |
JPH01133936A (en) | Preparation method of raw material powder for easily sinterable high temperature superconducting ceramics | |
JPH01100019A (en) | Preparation method of powder for sintering high-temperature superconducting ceramics | |
JPH0222124A (en) | Method for preparing raw material powder for easily sinterable high-temperature superconducting ceramics by wet method | |
JPH0818870B2 (en) | Method for manufacturing lead zirconate titanate-based piezoelectric ceramic | |
JPH01188419A (en) | Manufacturing method for raw material powder for high-temperature superconducting ceramics | |
JPH01224223A (en) | Preparation method of raw material powder for easily sinterable high temperature superconducting ceramics | |
JPH01224228A (en) | Method for preparing raw material powder for easily sinterable oxide superconducting ceramics using wet method | |
JPH01224226A (en) | Method for producing raw material powder for Bi-alkaline earth element-Cu oxide superconducting ceramics | |
JPH0222104A (en) | Production of raw material powder for producing high-temperature superconducting form | |
JPH01224227A (en) | Preparation of powder for sintering superconducting ceramic of bi-alkaline earth element-cu oxide type | |
JP2978538B2 (en) | Superconducting material with high density crystal structure | |
JPH01100017A (en) | Manufacturing method for easily sinterable high-temperature superconducting ceramic raw material powder | |
JPH01145364A (en) | Production of high-temperature superconducting ceramics | |
JPH0222128A (en) | Method for producing raw material powder for high-temperature superconductors | |
JPH01224224A (en) | Manufacturing method for easily sinterable oxide-based superconducting ceramic raw material powder | |
JPH01317125A (en) | Preparation of raw material powder of high-temperature superconducting ceramic | |
JPH01141866A (en) | Production of ceramic sintered body superconducting at high temperature | |
JPH0234502A (en) | Flaky oxide-based high-temperature superconducting powder and its manufacturing method | |
JPH01252568A (en) | Manufacturing method for high-temperature superconducting ceramic sintered bodies | |
JPH02160655A (en) | Precursor composition of superconducting ceramics |