[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0963290A - Semiconductor memory - Google Patents

Semiconductor memory

Info

Publication number
JPH0963290A
JPH0963290A JP21870495A JP21870495A JPH0963290A JP H0963290 A JPH0963290 A JP H0963290A JP 21870495 A JP21870495 A JP 21870495A JP 21870495 A JP21870495 A JP 21870495A JP H0963290 A JPH0963290 A JP H0963290A
Authority
JP
Japan
Prior art keywords
memory cell
power supply
region
potential
virtual ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21870495A
Other languages
Japanese (ja)
Inventor
Sadaichirou Nishisaka
禎一郎 西坂
Kazutaka Kotsuki
一貴 小槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP21870495A priority Critical patent/JPH0963290A/en
Publication of JPH0963290A publication Critical patent/JPH0963290A/en
Pending legal-status Critical Current

Links

Landscapes

  • Read Only Memory (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable read-out which is stable for a noise by increasing substantially a memory cell current by combining a memory cell of a NAND type mask ROM with a bipolar transistor. SOLUTION: This device is composed of a memory cell column consisting of plural memory cells (C1 , C2 , C3 , C4 ) and selecting transistors (S1 , S2 ) selecting a memory cell, one end of the selecting transistor S1 is connected to the base of a pnp bipolar transistor also an emitter is connected to a bit line BL1 . The other end of the memory cell is connected to a virtual ground line BG1 , and the virtual ground line is connected to a bias circuit B1 . A potential of the virtual ground line is controlled so that a potential of the virtual ground line connected to the selected memory cell column is lower than a potential of the bit line, also, potentials of the other virtual ground lines are same as the potential of the bit line.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体記憶装置に関
し、特に、NAND型マスクROMのようにメモリセル
が直列接続された構成をもつ半導体記憶装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor memory device, and more particularly to a semiconductor memory device having a structure in which memory cells are connected in series such as a NAND type mask ROM.

【0002】[0002]

【従来の技術】読み出し専用メモリではNAND型構造
をもつものがNOR型等の他の方式に比較して高集積化
の面で優れていることから、広く採用されている。一般
にNAND型のマスクROMでは、メモリセルトランジ
スタが複数個直列に接続されたメモリアレイ構造をと
る。その上高密度集積化の要請に応えるためにセルサイ
ズが微細化されてきているため、メモリセル列に流れる
電流は非常に小さく、現状では10〜20μA程度とな
っている。このため微弱なメモリセル電流を検出できる
ように極めて感度の高い検出回路が用いられている。と
ころが高感度の検出回路を用いると雑音による誤動作を
生じやすい。この問題に対し、メモリセル電流を多くす
るためにメモリセルトランジスタのチャネル幅を広げる
方法が考えられるが集積度を損なうため採用することが
できない。また、メモリセルトランジスタのゲート長を
小さくする方法も考えられるが微細加工精度の問題や短
チャネルトランジスタの信頼性確保の面から実施化には
問題が多い。
2. Description of the Related Art As a read-only memory, a memory having a NAND type structure is widely used because it is superior to other systems such as NOR type in terms of high integration. Generally, a NAND type mask ROM has a memory array structure in which a plurality of memory cell transistors are connected in series. In addition, since the cell size has been miniaturized to meet the demand for high-density integration, the current flowing through the memory cell column is very small, and is currently about 10 to 20 μA. For this reason, an extremely sensitive detection circuit is used so that a weak memory cell current can be detected. However, if a highly sensitive detection circuit is used, malfunction due to noise is likely to occur. To solve this problem, a method of increasing the channel width of the memory cell transistor to increase the memory cell current is considered, but cannot be adopted because the degree of integration is impaired. Also, a method of reducing the gate length of the memory cell transistor can be considered, but there are many problems in implementation in terms of the problem of fine processing precision and the reliability of the short channel transistor.

【0003】このような背景から、最近、メモリセル列
にバイポーラトランジスタを付加してメモリセル電流を
増幅する方法が提案されている。図2にこの従来例を示
す。これによれば、2本のNAND型メモリセル列(例
えばL10とL11)の節点Nとビット線BLとの間にバイ
ポーラトランジスタをそれぞれ具備したもので、メモリ
セル電流にバイポーラトランジスタの電流増幅率に相当
する電流をビット線上に得ることができる。メモリセル
電流が増大したことにより、検出回路の感度を低下させ
てノイズによる誤動作を防止することが可能になり、ま
た高速読出しも可能になった。
Against this background, recently, a method of amplifying the memory cell current by adding a bipolar transistor to the memory cell column has been proposed. FIG. 2 shows this conventional example. According to this, a bipolar transistor is provided between the node N and the bit line BL of two NAND type memory cell strings (for example, L 10 and L 11 ), and the current amplification of the bipolar transistor is added to the memory cell current. A current corresponding to the rate can be obtained on the bit line. Due to the increase in the memory cell current, it is possible to reduce the sensitivity of the detection circuit, prevent malfunctions due to noise, and also enable high-speed reading.

【0004】[0004]

【発明が解決しようとする課題】しかし、一方で各2本
のメモリセル列の節点(ビット線コンタクト部)にバイ
ポーラトランジスタを付加する従来方法は、ビット線コ
ンタクトの数だけバイポーラトランジスタが必要で、使
用するバイポーラトランジスタの個数が多く、電流増幅
率の揺らぎが製品性能に重大な影響を与えていた。近年
のマスクROMは16メガビット級の記憶容量の製品が
主流であり、この場合、必要とされるバイポーラトラン
ジスタは256キロ個にもなる。バイポーラトランジス
タの電流増幅率は概ね10倍で十分であるが、バイポー
ラトランジスタの個数が増加すると電流増幅率が100
倍程度のものから2〜3倍程度のものまで出現する。
However, on the other hand, the conventional method of adding bipolar transistors to the nodes (bit line contact portions) of each two memory cell columns requires as many bipolar transistors as the number of bit line contacts. Due to the large number of bipolar transistors used, fluctuations in the current amplification factor seriously affected product performance. Most of the recent mask ROMs have a storage capacity of 16 megabits, and in this case, the number of bipolar transistors required is 256 kilo. A current amplification factor of about 10 times is sufficient for a bipolar transistor, but if the number of bipolar transistors increases, the current amplification factor will increase to 100.
It appears from about double to about 2-3 times.

【0005】回路設計上、バイポーラトランジスタの電
流増幅率は、揺らいでもせいぜい5〜20倍程度に抑制
されることが望しく、そのためには、使用するバイポー
ラトランジスタの個数を減すことが必要である。
From the viewpoint of circuit design, it is desirable that the current amplification factor of the bipolar transistor is suppressed to at most 5 to 20 times even if it fluctuates, and for that purpose, it is necessary to reduce the number of bipolar transistors used. .

【0006】[0006]

【課題を解決するための手段】本発明の半導体記憶装置
は、半導体基板に一方向に延在して区画された複数本の
拡散層領域及び前記拡散層領域と交差する複数本のゲー
ト電極を有し、前記ゲート電極下の前記拡散層領域をチ
ャネル領域とし、かつ前記ゲート電極の両側の前記半導
体基板の表面領域に形成された第2導電型の第1の拡散
層をソース・ドレインとする複数個のメモリセルトラン
ジスタを直列接続してなるメモリセル列と、前記メモリ
セルトランジスタと同じく第2導電型の第1の拡散層を
ソース・ドレインとし前記メモリセル列と直列接続され
た選択トランジスタと、前記選択トランジスタの他端と
電気的に接続された第2導電型の第2の拡散層をベース
領域とし、前記ベース領域の表面領域内に形成された第
1導電型の第3の拡散層をエミッタ領域とし、かつ、前
記第1導電型半導体基板をコレクタ領域とするバイポー
ラトランジスタと、前記バイポーラトランジスタの前記
エミッタ領域と電気的に接続されたビット線と、前記メ
モリセル列の他端と電気的に接続された仮想接地線とを
備え、所定の前記メモリセル列に接続される前記仮想接
地線の電位を前記ビット線の電位より低くし、その他の
前記仮想接地線の電位を前記ビット線の電位と同電位と
する選択手段を有する。
A semiconductor memory device of the present invention includes a plurality of diffusion layer regions extending in one direction on a semiconductor substrate and partitioned, and a plurality of gate electrodes intersecting the diffusion layer regions. The diffusion layer region under the gate electrode is used as a channel region, and the first diffusion layer of the second conductivity type formed in the surface region of the semiconductor substrate on both sides of the gate electrode is used as a source / drain. A memory cell string formed by connecting a plurality of memory cell transistors in series, and a selection transistor connected in series with the memory cell string using the first diffusion layer of the second conductivity type as the source / drain like the memory cell transistor. A second conductive type second diffusion layer electrically connected to the other end of the select transistor as a base region, and a first conductive type third diffusion layer formed in a surface region of the base region. A bipolar transistor having the diffusion layer as an emitter region and the first conductivity type semiconductor substrate as a collector region, a bit line electrically connected to the emitter region of the bipolar transistor, and the other end of the memory cell column. And a virtual ground line electrically connected to the memory cell column, the potential of the virtual ground line connected to the predetermined memory cell column is lower than the potential of the bit line, and the potentials of the other virtual ground lines are It has a selection means for setting the same potential as the potential of the bit line.

【0007】[0007]

【実施例】図1をもって本発明の説明をする。メモリセ
ルトランジスタC1 ,C2 ,C3,C4 (一般には16
個直列接続されることが多い)及びメモリセル列選択ト
ランジスタS1 ,S2 からなるメモリセル列が規則的に
配列されている。メモリセルトランジスタは、その格納
されているデータに応じて、デプレッション型又はエン
ハンスメント型のいずれかになっている。
The present invention will be described with reference to FIG. Memory cell transistors C 1 , C 2 , C 3 , C 4 (generally 16
In many cases, a plurality of memory cells are connected in series) and a memory cell column including memory cell column selection transistors S 1 and S 2 is regularly arranged. The memory cell transistor is either a depletion type or an enhancement type depending on the data stored therein.

【0008】メモリセル列選択トランジスタS1 の一端
は、pnpバイポーラトランジスタを介してビット線B
1 に接続され、ビット線BL1 は電流検出回路(S.
A.)に接続されている。
One end of the memory cell column selection transistor S 1 is connected to the bit line B via a pnp bipolar transistor.
Is connected to L 1, the bit lines BL 1 current detection circuit (S.
A. )It is connected to the.

【0009】また2本のメモリセル列L10,L11の節点
であるビット線コンタクト部(メモリセルトランジスタ
4 の一端)は、仮想接地線BG1 に接続されている。
仮想接地線BG1 〜BG3 は、それぞれバイアス回路B
1 〜B3 に接続されている。
The bit line contact portion (one end of the memory cell transistor C 4 ) which is a node between the two memory cell columns L 10 and L 11 is connected to the virtual ground line BG 1 .
The virtual ground lines BG 1 to BG 3 are bias circuits B, respectively.
1 to B 3 are connected.

【0010】メモリセルトランジスタC1 を読出す場
合、メモリセル列選択トランジスタS1 のゲート電極に
接続したBS1 を高電位、S2 のゲート電極に接続した
BS2を低電位とし、また、ワード線W1 を低電位、ワ
ード線W2 ,W3 およびW4 を高電位に設定する。
When the memory cell transistor C 1 is read, BS 1 connected to the gate electrode of the memory cell column selection transistor S 1 is set to a high potential, BS 2 connected to the gate electrode of S 2 is set to a low potential, and the word The line W 1 is set to a low potential and the word lines W 2 , W 3 and W 4 are set to a high potential.

【0011】さらに、仮想接地線BG1 の電位を低電位
にするようにバイアス回路B1 を制御する。このときそ
の他の仮想接地線BG2 ,BG3 の電位は電流検出回路
(S.A.)と同電位に制御しておくことが必要であ
る。
Further, the bias circuit B 1 is controlled so that the potential of the virtual ground line BG 1 becomes low. At this time, it is necessary to control the potentials of the other virtual ground lines BG 2 and BG 3 to the same potential as that of the current detection circuit (SA).

【0012】これらワード線,BS1 ,BS2 およびバ
イアス回路の活性、非活性の制御はすべて、入力アドレ
スをデコーダ回路(図示せず)によりデコードした結果
に応じて行なわれる。
Control of activation / deactivation of these word lines, BS 1 and BS 2 and bias circuit is all performed according to the result of decoding the input address by a decoder circuit (not shown).

【0013】本実施例では、メモリセルトランジスタC
1 はデプレション型なので、メモリセル列にセル電流
(IC =5〜10μA)が流れることになる。このセル
電流はビット線BL1 に接続されたpnpバイポーラト
ランジスタにより増幅(電流増幅率〜10倍)されるた
め、ビット線BL1 には、50〜100μAのビット線
電流(IBL)が流れることになる。
In this embodiment, the memory cell transistor C
Since 1 is a depletion type, a cell current (I C = 5 to 10 μA) flows in the memory cell column. Since this cell current is amplified by the pnp bipolar transistor connected to the bit line BL 1 (current amplification factor: 10 times), a bit line current (I BL ) of 50 to 100 μA flows through the bit line BL 1. become.

【0014】本実施例によれば、従来ビット線コンタク
ト部毎に必要であったバイポーラトランジスタの数が、
バイアス回路を設け、アドレスに応じたメモリセル列の
み電流経路が存在するようにしたため大幅に減少するこ
とが可能となる。
According to this embodiment, the number of bipolar transistors conventionally required for each bit line contact portion is
Since the bias circuit is provided and the current path exists only in the memory cell column corresponding to the address, it is possible to greatly reduce the current path.

【0015】[0015]

【発明の効果】本発明により、実質的に大きなセル電流
を得ることができるため電流検出回路の感度を低下させ
ることができるためノイズによる誤動作を防止すること
ができる。
According to the present invention, since a substantially large cell current can be obtained, the sensitivity of the current detection circuit can be lowered, so that malfunction due to noise can be prevented.

【0016】さらに、pnpバイポーラトランジスタの
個数を大幅に減少させることができるため、バイポーラ
トランジスタの電流増幅率の揺らぎがほとんど無視でき
るようになる。
Furthermore, since the number of pnp bipolar transistors can be greatly reduced, fluctuations in the current amplification factor of the bipolar transistors can be almost ignored.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の回路図及び半導体装置の断面
FIG. 1 is a circuit diagram of an embodiment of the present invention and a sectional view of a semiconductor device.

【図2】従来例の回路図及び半導体装置の断面図FIG. 2 is a circuit diagram of a conventional example and a sectional view of a semiconductor device.

【符号の説明】[Explanation of symbols]

1 ,C2 ,C3 ,C4 ,C10,C20,C30,C40
メモリセルトランジスタ S1 ,S2 ,S10,S20 メモリセル列選択トランジ
スタ BL1 ,BL2 ,BL10,BL20,BL30 ビット線 BG1 ,BG2 ,BG3 仮想接地線 B1 ,B2 ,B3 バイアス回路
C 1 , C 2 , C 3 , C 4 , C 10 , C 20 , C 30 , C 40
Memory cell transistors S 1 , S 2 , S 10 , S 20 Memory cell column selection transistors BL 1 , BL 2 , BL 10 , BL 20 , BL 30 Bit lines BG 1 , BG 2 , BG 3 Virtual ground lines B 1 , B 2 , B 3 bias circuit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板に一方向に延在して区画され
た複数本の拡散層領域及び前記拡散層領域と交差する複
数本のゲート電極を有し、前記ゲート電極下の前記拡散
層領域をチャネル領域とし、かつ前記ゲート電極の両側
の前記半導体基板の表面領域に形成された拡散層をソー
ス・ドレインとする複数個のメモリセルトランジスタを
直列接続してなるメモリセル列と、前記メモリセル列と
直列接続された選択トランジスタと、 前記選択トランジスタの他端と電気的に接続された拡散
層をベース領域とし前記ベース領域の表面領域内に形成
された拡散層をエミッタ領域とし、かつ、前記半導体基
板をコレクタ領域とするバイポーラトランジスタと、 前記バイポーラトランジスタの前記エミッタ領域と電気
的に接続されたビット線と、前記メモリセル列の他端と
電気的に接続された仮想接地線とを備えた半導体記憶装
置。
1. A semiconductor substrate having a plurality of diffusion layer regions extending in one direction and partitioned and a plurality of gate electrodes intersecting the diffusion layer region, wherein the diffusion layer region below the gate electrode. A memory cell column in which a plurality of memory cell transistors each having a channel region as a channel region and having diffusion layers formed on the surface regions of the semiconductor substrate on both sides of the gate electrode as sources and drains are connected in series; A select transistor connected in series with the column, a diffusion layer electrically connected to the other end of the select transistor as a base region, and a diffusion layer formed in a surface region of the base region as an emitter region, and A bipolar transistor having a semiconductor substrate as a collector region; a bit line electrically connected to the emitter region of the bipolar transistor; The semiconductor memory device provided with the other end electrically connected to the virtual ground line of the cell columns.
【請求項2】 選択された前記メモリセル列に接続され
る前記仮想接地線の電位は、前記ビット線の電位より低
く、また、その他の前記仮想接地線の電位は前記ビット
線の電位と同電位であることを特徴とする請求項1記載
の半導体記憶装置。
2. The potential of the virtual ground line connected to the selected memory cell column is lower than the potential of the bit line, and the potentials of the other virtual ground lines are the same as the potential of the bit line. 2. The semiconductor memory device according to claim 1, wherein the semiconductor memory device has a potential.
【請求項3】 複数のメモリトランジスタが直列に接続
された複数のメモリセル列と、前記複数のメモリセル列
のそれぞれの一端に接続した複数の電源線と、前記複数
の電源線にそれぞれ接続し制御信号に応答して前記電源
線を第1又は第2の電源端子に接続する複数のバイアス
回路と、ベースが前記複数のメモリセルの他端に共通に
接続しエミッタが出力線に接続しコレクタが前記第1の
電源端子に接続されたバイポーラトランジスタとを有す
ることを特徴とする半導体記憶装置。
3. A plurality of memory cell columns in which a plurality of memory transistors are connected in series, a plurality of power source lines connected to one end of each of the plurality of memory cell columns, and a plurality of power source lines respectively connected to the plurality of power source lines. A plurality of bias circuits connecting the power supply line to the first or second power supply terminal in response to a control signal; a base commonly connected to the other ends of the plurality of memory cells and an emitter connected to the output line; And a bipolar transistor connected to the first power supply terminal.
【請求項4】 前記複数のバイアス回路のうち入力アド
レスに応じて1つのバイアス回路が対応する電源線を前
記第1の電源端子に接続し、他のバイアス回路に対応す
る電源線は第2の電源端子と接続することを特徴とする
請求項3記載の半導体記憶装置。
4. A power supply line corresponding to one bias circuit according to an input address of the plurality of bias circuits is connected to the first power supply terminal, and a power supply line corresponding to another bias circuit is a second power supply line. The semiconductor memory device according to claim 3, wherein the semiconductor memory device is connected to a power supply terminal.
JP21870495A 1995-08-28 1995-08-28 Semiconductor memory Pending JPH0963290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21870495A JPH0963290A (en) 1995-08-28 1995-08-28 Semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21870495A JPH0963290A (en) 1995-08-28 1995-08-28 Semiconductor memory

Publications (1)

Publication Number Publication Date
JPH0963290A true JPH0963290A (en) 1997-03-07

Family

ID=16724119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21870495A Pending JPH0963290A (en) 1995-08-28 1995-08-28 Semiconductor memory

Country Status (1)

Country Link
JP (1) JPH0963290A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100299989B1 (en) * 1997-09-05 2001-09-06 다니구찌 이찌로오, 기타오카 다카시 Nonvolatile semiconductor memory device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974666A (en) * 1982-10-20 1984-04-27 Ricoh Co Ltd Memory element
JPH0449596A (en) * 1990-06-19 1992-02-18 Nec Corp Memory circuit
JPH07302499A (en) * 1994-05-07 1995-11-14 Samsung Electron Co Ltd Electrically erasable programmable read-only memory
JPH0878540A (en) * 1994-08-17 1996-03-22 Samsung Electron Co Ltd Current amplification type mask rom

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974666A (en) * 1982-10-20 1984-04-27 Ricoh Co Ltd Memory element
JPH0449596A (en) * 1990-06-19 1992-02-18 Nec Corp Memory circuit
JPH07302499A (en) * 1994-05-07 1995-11-14 Samsung Electron Co Ltd Electrically erasable programmable read-only memory
JPH0878540A (en) * 1994-08-17 1996-03-22 Samsung Electron Co Ltd Current amplification type mask rom

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100299989B1 (en) * 1997-09-05 2001-09-06 다니구찌 이찌로오, 기타오카 다카시 Nonvolatile semiconductor memory device

Similar Documents

Publication Publication Date Title
US4847808A (en) Read only semiconductor memory having multiple bit cells
JP2851962B2 (en) Semiconductor read-only memory
JPH077089A (en) Memory cell
EP0916159B1 (en) Static memory cell
EP0337433B1 (en) Cell array pattern layout of semiconductor memory device
KR940022834A (en) Semiconductor memory device
US4653029A (en) MOS amplifier and semiconductor memory using the same
US5966324A (en) Static semiconductor memory device driving bit line potential by bipolar transistor shared by adjacent memory cells
US4398267A (en) Semiconductor memory device
IE54270B1 (en) A semiconductor memory device
JPS62254463A (en) Static memory cell with bipolar and mos devices
US5270971A (en) Semiconductor memory having a plurality of sense amplifier circuits and corresponding bit lines
JPH0774318A (en) Semiconductor integrated circuit
US4954991A (en) Semiconductor memory with p-channel load transistor
US7518900B2 (en) Memory
US6829179B2 (en) Semiconductor storage device having substrate potential control
JPH0963290A (en) Semiconductor memory
US5793670A (en) Static semiconductor memory device including a bipolar transistor in a memory cell, semiconductor device including bipolar transistors and method of manufacturing bipolar transistors
JPH05218328A (en) Nand-type mask rom
US5101380A (en) Semiconductor memory device
JPS6155195B2 (en)
JP3084582B2 (en) Semiconductor storage device
JP2943543B2 (en) Semiconductor static memory
JP2599962B2 (en) Vertical ROM
JP2908483B2 (en) Nonvolatile semiconductor memory device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980616