JPH09172020A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPH09172020A JPH09172020A JP7333074A JP33307495A JPH09172020A JP H09172020 A JPH09172020 A JP H09172020A JP 7333074 A JP7333074 A JP 7333074A JP 33307495 A JP33307495 A JP 33307495A JP H09172020 A JPH09172020 A JP H09172020A
- Authority
- JP
- Japan
- Prior art keywords
- height
- bump
- semiconductor
- bump electrode
- wafer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/11—Manufacturing methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/11—Manufacturing methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/11—Manufacturing methods
- H01L2224/1147—Manufacturing methods using a lift-off mask
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/11—Manufacturing methods
- H01L2224/118—Post-treatment of the bump connector
- H01L2224/11848—Thermal treatments, e.g. annealing, controlled cooling
- H01L2224/11849—Reflowing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/14—Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/14—Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
- H01L2224/1401—Structure
- H01L2224/1403—Bump connectors having different sizes, e.g. different diameters, heights or widths
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/17—Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
- H01L2224/1705—Shape
- H01L2224/17051—Bump connectors having different shapes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73203—Bump and layer connectors
- H01L2224/73204—Bump and layer connectors the bump connector being embedded into the layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/0132—Binary Alloys
- H01L2924/01322—Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/35—Mechanical effects
- H01L2924/351—Thermal stress
- H01L2924/3511—Warping
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Wire Bonding (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は半導体装置に係り、特に
回路配線基板上にフリップチップ実装する半導体チップ
のボンディングパッド上に形成されたバンプ電極の改良
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to improvement of a bump electrode formed on a bonding pad of a semiconductor chip to be flip-chip mounted on a circuit wiring board.
【0002】[0002]
【従来の技術】近年、半導体装置は高集積化が進行し
て、実装技術も高密度化が求められている。半導体装置
の高密度実装技術にはワイヤボンディング技術、TAB
技術などが代表的に挙げられる。最も高密度の実装技術
として、コンピュータ機器などの半導体装置を高密度実
装する技術に用いられるフリップチップ実装技術が知ら
れている。このフリップチップ実装技術は、米国特許第
3401126号公報及び米国特許第3429040号
公報が開示されて以来、広く公知の技術となっている。2. Description of the Related Art In recent years, semiconductor devices have been highly integrated, and packaging technology is required to have high density. Wire bonding technology and TAB are used for high-density mounting technology of semiconductor devices.
Typical examples include technology. As the highest-density mounting technique, a flip-chip mounting technique used for high-density mounting of semiconductor devices such as computer equipment is known. This flip-chip mounting technique has become a widely known technique since the disclosure of US Pat. No. 3,401,126 and US Pat. No. 3,429,040.
【0003】図20は、一般的なバンプ電極の構成を表
す該略図である。図21は、図20に示すバンプ電極を
用いてフリップチップ実装を行なった様子を示す概略図
である。フリップチップ実装は、図20に示す様に、半
導体チップ2のボンディングパッド29上に突起形状を
有するバンプ電極3を形成して、図21に示す様に、こ
のバンプ電極3を介して半導体チップ2のボンディング
バッド29と回路配線基板25の接続用端子27とを電
気的、機械的に相互接続する技術である。FIG. 20 is a schematic diagram showing the structure of a general bump electrode. FIG. 21 is a schematic diagram showing a state where flip-chip mounting is performed using the bump electrodes shown in FIG. In the flip-chip mounting, as shown in FIG. 20, the bump electrode 3 having a protrusion shape is formed on the bonding pad 29 of the semiconductor chip 2, and as shown in FIG. This is a technique for electrically and mechanically interconnecting the bonding pad 29 and the connection terminal 27 of the circuit wiring board 25.
【0004】フリップチップ実装技術では、半導体チッ
プの熱膨張係数と回路配線基板の熱膨張係数が一般的に
互いに異なるために、バンプ電極部分に応力歪が発生す
る。バンプ電極部分の応力歪は、フリップチップ実装さ
れたバンプ電極を破壊させ、その信頼性寿命を低下させ
る。In the flip-chip mounting technology, since the coefficient of thermal expansion of a semiconductor chip and the coefficient of thermal expansion of a circuit wiring board are generally different from each other, stress strain occurs in the bump electrode portion. The stress strain of the bump electrode portion destroys the bump electrode mounted on the flip chip and reduces the reliability life thereof.
【0005】信頼性寿命は、IBM J.Res.De
velop.,13;251(1969)に記載されて
いるNf=Cf1/3 γmax -2・exp(1428/T
max )で表されるサイクル寿命の式(C;定数、f;周
波数、Tmax ;最大温度)から、バンプ部分に発生する
最大剪断歪γmax を減少させることにより信頼性寿命が
向上することが知られている。この信頼性寿命の式にお
いて、バンプ電極に発生する最大剪断歪γmax は、以下
の式で表される。Reliability life is described by IBM J. Res. De
velop. , 13; 251 (1969), Nf = Cf 1/3 γ max -2 · exp (1428 / T
It is possible to improve the reliability life by reducing the maximum shear strain γ max generated in the bump portion from the cycle life formula (C; constant, f; frequency, T max ; maximum temperature) represented by max ). Are known. In this reliability life formula, the maximum shear strain γ max generated in the bump electrode is represented by the following formula.
【0006】γmax ={1/(Dmin/2)2/β}
(V/πh1+β)1/β・d・ΔT・Δα (Dmin ;最小バンプ径、β;材料定数、V;はんだ体
積、h;はんだ高さ、Δα;熱膨張係数の差、ΔT;温
度差、d;チップ中心からバンプ中心までの距離) 従来より、フリップチップ実装の信頼性を向上させるた
め、(1)半導体チップの中心点からバンプ電極の中心
点までの距離を小さくする。(2)半導体チップの熱膨
張係数と回路配線基板の熱膨張係数の差を小さくする。
(3)温度差が大きくならない様に放熱性を向上させ
る。(4)バンプ電極構造と材料を応力歪に対し強固な
構造にする、などの手段が用いられてきた。特に、回路
配線基板と半導体チップを接続するバンプ電極高さを高
くする方法はバンプ電極に発生する最大剪断歪を小さく
するためには有効な方法であり、これまで多くの提案が
行われている。Γ max = {1 / (Dmin / 2) 2 / β }
(V / πh 1 + β ) 1 / β · d · ΔT · Δα (D min ; minimum bump diameter, β; material constant, V; solder volume, h; solder height, Δα; thermal expansion coefficient difference, ΔT ; Temperature difference, d; distance from the center of the chip to the center of the bump) In order to improve the reliability of flip-chip mounting, (1) the distance from the center point of the semiconductor chip to the center point of the bump electrode is reduced. (2) The difference between the coefficient of thermal expansion of the semiconductor chip and the coefficient of thermal expansion of the circuit wiring board is reduced.
(3) To improve heat dissipation so that the temperature difference does not increase. (4) Means such as making the bump electrode structure and the material strong against stress strain have been used. In particular, a method of increasing the height of the bump electrode connecting the circuit wiring board and the semiconductor chip is an effective method for reducing the maximum shear strain generated in the bump electrode, and many proposals have been made so far. .
【0007】このフリップチップ実装は、ベアチップを
回路配線基板に実装する方法であり、実装する前には半
導体チップの検査をする必要がある。この半導体チップ
の検査は、スループットを考慮して、ウエハ状態での検
査が求められている。特開昭62−243335号、特
開昭63−31129号、及び特開平3−125448
号公報には、半導体チップをウエハ状態でテストする方
法が開示されている。ここでは、検査する半導体ウエハ
に対してテストヘッドを用いて一括プロービングテスト
する方法を提案している。This flip chip mounting is a method of mounting a bare chip on a circuit wiring board, and it is necessary to inspect a semiconductor chip before mounting. This semiconductor chip inspection is required to be inspected in a wafer state in consideration of throughput. JP-A-62-243335, JP-A-63-31129, and JP-A-3-125448.
The publication discloses a method of testing a semiconductor chip in a wafer state. Here, a method of performing a collective probing test on a semiconductor wafer to be inspected using a test head is proposed.
【0008】しかしながら、例えば特開平1−1107
51号公報に記載されている様な電気メッキ法を用いて
バンプ電極を形成した場合、ウエハ周辺部においてバン
プ電極高さが高くなる現象が発生していた。これはバン
プ電極を形成する場合、ウエハ周辺部から供給している
電流の電流密度がウエハ周辺部のみ大きくなるためであ
る。However, for example, Japanese Patent Laid-Open No. 1-1107
When the bump electrode is formed by using the electroplating method as described in Japanese Patent Laid-Open No. 51, the phenomenon that the bump electrode height becomes high in the peripheral portion of the wafer occurs. This is because when forming bump electrodes, the current density of the current supplied from the peripheral portion of the wafer increases only in the peripheral portion of the wafer.
【0009】このようなウエハ周辺部のバンプ電極が高
く、中央部が低い分布を有する半導体ウエハに対して、
上記のテストヘッドを用いて検査した場合、ウエハ裏面
の中央部に圧力を加える必要があった。このとき検査す
る半導体ウエハが例えばGaAsなどの脆い材料で構成
されているとウエハ割れなどの問題が発生する。For such a semiconductor wafer having a high distribution of bump electrodes in the peripheral area of the wafer and a low distribution of central area,
When inspecting using the above test head, it was necessary to apply pressure to the central portion of the back surface of the wafer. At this time, if the semiconductor wafer to be inspected is made of a brittle material such as GaAs, problems such as wafer cracking occur.
【0010】さらに、半導体ウエハ表面にはAl配線な
どによりデバイスが形成され圧縮応力が発生し、通常デ
バイス面が凹形状になる反り状態を有している。このた
め、半導体ウエハ周辺部に高さの高いバンプ電極が形成
されると裏面に圧力を加えても、一括プロービングが極
めて困難になるという問題があった。解決する方法とし
て、凸形状を有するテストヘッドを用いることが考えら
れるが、反り状態に合わせたテストヘッドを作製するこ
とは極めて困難であった。Further, a device is formed on the surface of the semiconductor wafer by Al wiring or the like to generate a compressive stress, and the device surface usually has a warped state in which the device surface is concave. For this reason, when the bump electrodes having a high height are formed in the peripheral portion of the semiconductor wafer, there is a problem that collective probing becomes extremely difficult even if pressure is applied to the back surface. A possible solution is to use a test head having a convex shape, but it has been extremely difficult to fabricate a test head that matches the warped state.
【0011】以上の様に、従来、フリップチップ実装方
法では、半導体チップと回路配線基板の熱膨張係数の相
異に起因する応力歪がバンプ電極部分に発生し、バンプ
電極を破壊させ、信頼性を低下させるという極めて重大
な問題があった。As described above, in the conventional flip-chip mounting method, stress strain caused by the difference in the coefficient of thermal expansion between the semiconductor chip and the circuit wiring board is generated in the bump electrode portion, and the bump electrode is destroyed, resulting in reliability. There was a very serious problem of lowering.
【0012】このため、バンプ電極に応力が集中しない
構造にするべく、従来より多くの提案が行われてきた。
特に、バンプ電極高さを高くする方法は応力歪を緩和す
るために有効な方法であり、多くの提案が行われてい
る。Therefore, many proposals have been made in the past so as to provide a structure in which stress is not concentrated on the bump electrodes.
In particular, the method of increasing the height of the bump electrode is an effective method for relaxing the stress strain, and many proposals have been made.
【0013】しかしながら、バンプ電極高さを高くする
と、バンプ電極高さにばらつきが多く発生し、はんだを
溶融させても回路配線基板の全ての電極パッドと確実な
接続を行なうことが困難となるという問題があった。However, if the bump electrode height is increased, the bump electrode height varies widely, and it becomes difficult to make reliable connection with all the electrode pads of the circuit wiring board even if the solder is melted. There was a problem.
【0014】従って、バンプ電極高さを高くする場合に
は、接続を確実に行なうため、バンプ電極高さを研削な
どの方法を用いて均一化する必要があった。Therefore, when the bump electrode height is increased, it is necessary to make the bump electrode height uniform by using a method such as grinding in order to ensure the connection.
【0015】また、フリップチップ実装では、はんだの
セルフアライン効果を用いてバンプ接続精度を向上させ
ている。セルフアラインを用いた接続には、半導体チッ
プ4隅のバンプ電極径を他のバンプ電極径よりも大きく
して接続する方法、半導体チップのバンプ電極と回路配
線基板の電極とを一定寸法だけ均等に変化させる方法な
どが提案されている。Further, in flip-chip mounting, the bump connection accuracy is improved by using the self-alignment effect of solder. For connection using self-alignment, the bump electrode diameter at the four corners of the semiconductor chip is made larger than the other bump electrode diameters, and the bump electrodes of the semiconductor chip and the electrodes of the circuit wiring board are made uniform by a certain size. A method of changing it has been proposed.
【0016】しかしながら、バンプ電極が極めて微細に
なり、回路配線基板の電極ピッチと半導体チップの電極
ピッチとの誤差が接続精度に大きく影響する様な場合、
フリップチップ実装ができなくなるという問題があっ
た。However, when the bump electrodes become extremely fine and the error between the electrode pitch of the circuit wiring board and the electrode pitch of the semiconductor chip greatly affects the connection accuracy,
There is a problem that flip chip mounting cannot be performed.
【0017】さらに、フリップチップ実装では、実装歩
留りを向上させるため、ウエハ状態で半導体チップを検
査することが求められていた。Further, in the flip chip mounting, in order to improve the mounting yield, it is required to inspect the semiconductor chip in a wafer state.
【0018】しかしながら、バンプ電極を形成した半導
体ウエハでは、バンプ電極をメッキ形成する場合の電流
の影響から、ウエハ周囲のバンプ電極の高さがウエハ中
心部のバンプ電極の高さに比べて高くなる傾向を有して
いた。このため、これまでに提案されていたような、テ
ストヘッドを用いた一括プロービングでは確実な検査が
できなくなる問題が発生していた。この問題はバンプ電
極が形成されるウエハ面が凹形状を有する場合、特に顕
著になっていた。However, in a semiconductor wafer having bump electrodes formed thereon, the height of the bump electrodes around the wafer becomes higher than the height of the bump electrodes at the center of the wafer due to the influence of the current when the bump electrodes are formed by plating. Had a tendency. For this reason, there has been a problem that reliable inspection cannot be performed by batch probing using a test head, which has been proposed so far. This problem has been particularly remarkable when the wafer surface on which the bump electrodes are formed has a concave shape.
【0019】[0019]
【発明が解決しようとする課題】本発明は、上記従来技
術の問題を鑑みてなされたものであり、その第1の目的
は、半導体チップを切り出す前の半導体ウエハの状態
で、その接続検査を容易に行なうことができる接続信頼
性に優れた半導体装置を提供することにある。SUMMARY OF THE INVENTION The present invention has been made in view of the above problems of the prior art. A first object of the present invention is to perform a connection inspection in the state of a semiconductor wafer before cutting semiconductor chips. An object of the present invention is to provide a semiconductor device which is easily connected and has excellent connection reliability.
【0020】また、本発明の第2の目的は、半導体チッ
プにおいて隣接するバンプ間での短絡を防止し、またア
ッセンブリするときの圧力が一箇所に集中して半導体チ
ップが破壊されることを防ぐことにより、接続信頼性の
高い半導体装置を提供することにある。A second object of the present invention is to prevent a short circuit between adjacent bumps in a semiconductor chip and to prevent the pressure at the time of assembly from being concentrated in one place and breaking the semiconductor chip. Thus, a semiconductor device with high connection reliability is provided.
【0021】[0021]
【課題を解決するための手段】本発明は、第1に、半導
体ウエハ、該半導体ウエハ上に設けられた複数のボンデ
ィングパッド、及び該ボンディングパッド上に形成され
たバンプ電極を有し、前記バンプ電極の高さが前記半導
体ウエハの中心部から外周部方向に対して、段階的に小
さくなっていることを特徴とする半導体装置を提供す
る。First, the present invention has a semiconductor wafer, a plurality of bonding pads provided on the semiconductor wafer, and bump electrodes formed on the bonding pads. There is provided a semiconductor device characterized in that the height of the electrode is gradually reduced from the central portion of the semiconductor wafer toward the outer peripheral portion.
【0022】このとき、好ましくは、半導体ウエハの外
周半径をRとし、半導体ウエハの曲率半径をrとし、半
導体ウエハの中心から距離xに配置されるバンプ電極高
さをhとするとき、バンプ電極の高さは、0.8R(R
−x)/2r≦h≦1.3R(R−x)/2rの値を有
する。At this time, preferably, where R is the outer radius of the semiconductor wafer, r is the radius of curvature of the semiconductor wafer, and h is the height of the bump electrode located at a distance x from the center of the semiconductor wafer, the bump electrode is The height of 0.8R (R
-X) /2r≦h≦1.3R (R−x) / 2r.
【0023】本発明は、第2に、半導体チップ、該半導
体チップ上に設けられた複数のボンディングパッド、及
び該ボンディングパッド上に形成されたバンプ電極を含
む半導体装置であって、第1のバンプ電極の高さを
h1 、第2のバンプ電極の高さをh2 、第n−1のバン
プ電極の高さをhn-1 、第nバンプ電極高さをhn とす
るとき、前記バンプ電極の高さの比は、0.8<hn /
hn-1 <1.2の範囲内であることを特徴とする半導体
装置を提供する。Secondly, the present invention is a semiconductor device comprising a semiconductor chip, a plurality of bonding pads provided on the semiconductor chip, and bump electrodes formed on the bonding pads, wherein the first bump When the height of the electrode is h 1 , the height of the second bump electrode is h 2 , the height of the n−1th bump electrode is h n−1 , and the height of the nth bump electrode is h n , the ratio of the height of the bump electrodes, 0.8 <h n /
Provided is a semiconductor device characterized in that h n-1 <1.2.
【0024】第1及び第2の発明において、バンプ電極
は、少なくとも鉛元素、錫元素を含有する、はんだ材料
で構成されることが好ましい。In the first and second inventions, the bump electrode is preferably made of a solder material containing at least lead element and tin element.
【0025】[0025]
【発明の実施の形態】第1の発明によれば、半導体ウエ
ハ上に形成されるバンプ電極高さ分布が、ウエハの中心
部から外周部に対して段階的に小さくされる。このよう
な高さ分布は、従来の半導体ウエハのバンプ電極の高さ
分布とは全く反対である。このため、これまでウエハ中
央部のバンプ電極が小さいために、一括プロービングが
できなかったが、第1の発明にかかる半導体ウエハを用
いると、従来のテストヘッドを用いて十分な検査が可能
となる。According to the first aspect of the present invention, the height distribution of bump electrodes formed on a semiconductor wafer is gradually reduced from the central portion of the wafer to the outer peripheral portion. Such a height distribution is completely opposite to the height distribution of the bump electrodes of the conventional semiconductor wafer. For this reason, it has been impossible to perform collective probing because the bump electrode in the central portion of the wafer is small so far. However, when the semiconductor wafer according to the first invention is used, sufficient inspection can be performed using the conventional test head. .
【0026】特に、第1の発明によれば、好ましくは、
半導体ウエハ上に形成されるバンプ電極高さhを、バン
プ電極が形成される位置xに対して0.8R(R−x)
/2r≦h≦1.3R(R−x)/2rかつR≠xに調
整し、最適化を行なうことにより、一括プロービングを
容易に実施することが可能になる。Particularly, according to the first invention, preferably,
The bump electrode height h formed on the semiconductor wafer is 0.8R (R−x) with respect to the position x where the bump electrode is formed.
By adjusting /2r≦h≦1.3R(R−x)/2r and R ≠ x and performing optimization, batch probing can be easily performed.
【0027】また、本発明では、バンプ電極をはんだで
構成することにより、バンプ高さのばらつきははんだの
塑性変形で吸収され、プロービングを容易に実施するこ
とが可能となる。Further, according to the present invention, since the bump electrode is made of solder, the bump height variation is absorbed by the plastic deformation of the solder, and the probing can be easily performed.
【0028】第2の発明によれば、隣接するバンプ電極
の高さに、0.8<hn /hn-1 <1.2の範囲のばら
つきを持たせている。高さが異なるように形成された隣
接するバンプ電極は、その体積が異なることから、接続
時に、隣接するバンプ電極間での短絡が発生しにくい。According to the second invention, the height of the adjacent bump electrodes are to have a variation in the range of 0.8 <h n / h n- 1 <1.2. Adjacent bump electrodes formed so as to have different heights have different volumes, so that a short circuit is unlikely to occur between the adjacent bump electrodes at the time of connection.
【0029】また、本発明による分布の範囲であれば、
バンプ電極に発生する最大剪断歪を小さくするために従
来用いられていた高さの高いバンプ電極を形成する必要
がなく、隣接するバンプ電極間での短絡の問題は起こら
ない。Further, within the range of distribution according to the present invention,
It is not necessary to form a bump electrode having a high height, which has been conventionally used in order to reduce the maximum shear strain generated in the bump electrode, and the problem of short circuit between adjacent bump electrodes does not occur.
【0030】更に、これまで高さの高いバンプ電極が部
分的に存在するとアッセンブリするとき一箇所に圧力が
集中され半導体チップが破壊される問題があったが、本
発明による分布ではアッセンブリでの圧力が半導体チッ
プ上でほぼ均一に分散されるため信頼性の高い接続が可
能になる。Further, there has been a problem that when a bump electrode having a high height is partially present, the pressure is concentrated at one place and the semiconductor chip is broken when the assembly is performed. However, in the distribution according to the present invention, the pressure at the assembly is increased. Are almost evenly distributed on the semiconductor chip, so that highly reliable connection is possible.
【0031】以下、図1ないし図11を参照し、本発明
の実施形態について説明する。図1は第1の発明に係る
半導体ウエハを用いた半導体装置の一実施形態を示す斜
視構成図である。図2は、第2の発明に係る半導体チッ
プを用いた半導体装置の一実施形態を示す断面構成図で
ある。図3ないし図10は、本発明に係る半導体装置の
製造方法の一実施形態を示す工程断面図であり、図11
は、本発明に係る半導体装置を製造するための電気メッ
キ装置を示す図である。Embodiments of the present invention will be described below with reference to FIGS. FIG. 1 is a perspective configuration diagram showing an embodiment of a semiconductor device using a semiconductor wafer according to the first invention. FIG. 2 is a sectional configuration diagram showing an embodiment of a semiconductor device using the semiconductor chip according to the second invention. 3 to 10 are process cross-sectional views showing an embodiment of a method of manufacturing a semiconductor device according to the present invention.
FIG. 3 is a diagram showing an electroplating apparatus for manufacturing a semiconductor device according to the present invention.
【0032】図1ないし図11において、1は半導体ウ
エハ、2は半導体チップ、3はバンプ電極、4は半導体
ウエハの外周半径R、5は半導体ウエハの曲率半径r、
6は半導体ウエハ中心から距離xの位置、21は第1バ
ンプ電極高さ、22は第2バンプ電極高さ、23は第1
バンプ電極半径L1 、24は第2バンプ電極半径L2を
示す。1 to 11, 1 is a semiconductor wafer, 2 is a semiconductor chip, 3 is a bump electrode, 4 is an outer radius R of the semiconductor wafer, 5 is a radius of curvature r of the semiconductor wafer,
6 is a position at a distance x from the center of the semiconductor wafer, 21 is the height of the first bump electrode, 22 is the height of the second bump electrode, and 23 is the first bump electrode.
The bump electrode radii L 1 and 24 represent the second bump electrode radii L 2 .
【0033】図1に示すように、第1の発明にかかる半
導体装置では、少なくとも複数個のボンディングパッド
上にバンプ電極3が形成された半導体チップ2を有する
半導体ウエハ1において、バンプ電極3の高さがウエハ
の中心部から周辺部に対して、段階的に小さくなるよう
に形成されており、そのバンプ電極3の高さは0.8R
(R−x)/2r≦h≦1.3R(R−x)/2rとな
っている。バンプ電極3は、好ましくは、鉛、錫を少な
くとも含むはんだから構成されている。As shown in FIG. 1, in the semiconductor device according to the first aspect of the present invention, in a semiconductor wafer 1 having a semiconductor chip 2 having bump electrodes 3 formed on at least a plurality of bonding pads, the height of bump electrodes 3 is increased. Are formed so as to gradually decrease from the central portion of the wafer to the peripheral portion thereof, and the height of the bump electrode 3 is 0.8 R.
(R−x) /2r≦h≦1.3R (R−x) / 2r. The bump electrode 3 is preferably composed of solder containing at least lead and tin.
【0034】また、図2に示すように、第2の発明にか
かる半導体装置では、少なくとも複数個のボンディング
パッド28上にバンプ電極3が形成された半導体チップ
において、電極径L1 23、Ln-1 、Ln 、及びL2 2
4が同一であり、高さh1 、hn-1 、hn 、及びh2 が
異なるバンプ電極3を0.8<hn /hn-1 <1.2の
高さ比で形成している。好ましくは、形成されるバンプ
電極3ははんだから構成されている。Further, as shown in FIG. 2, in the semiconductor device according to the second invention, in the semiconductor chip in which the bump electrodes 3 are formed on at least a plurality of bonding pads 28, the electrode diameters L 1 23, L n. -1 , L n , and L 2 2
4 are the same and formed with a height h 1, h n-1, h n, and the bump electrode 3 h 2 are different 0.8 <height ratio h n / h n-1 < 1.2 ing. Preferably, the formed bump electrode 3 is composed of solder.
【0035】第1の実施形態 以下、第1の実施形態について説明する。First Embodiment The first embodiment will be described below.
【0036】第1の実施形態にかかるバンプ電極を備え
た半導体装置は、図3ないし図10に示す工程により製
造される。The semiconductor device having the bump electrode according to the first embodiment is manufactured by the steps shown in FIGS.
【0037】先ず、図3に示すように、半導体チップ1
上にボンディングパッド29が形成され、ボンディング
パッド29の一部分を除いて例えばPSG(リン・シリ
カ・ガラス)あるいはSiN(窒化シリコン)等から構
成されるパッシベーション膜30が形成される。さら
に、その上に、例えばCu/Ti膜(Cu=1μm、T
i=0.1μm)が全面に蒸着される。このCu/Ti
膜は、バンプを電気メッキで形成する場合のカソードメ
タルとして用いられる。First, as shown in FIG. 3, the semiconductor chip 1
A bonding pad 29 is formed on the bonding pad 29, and a passivation film 30 made of, for example, PSG (phosphorus-silica-glass) or SiN (silicon nitride) is formed except a part of the bonding pad 29. Furthermore, for example, a Cu / Ti film (Cu = 1 μm, T
i = 0.1 μm) is vapor-deposited on the entire surface. This Cu / Ti
The film is used as a cathode metal when the bumps are electroplated.
【0038】このCu/Ti膜は、バンプ電極3を電気
メッキで形成後、必要部分をエッチングすることで最終
的にはバンプ電極のバリアメタル29となる。This Cu / Ti film finally becomes the barrier metal 29 of the bump electrode by forming the bump electrode 3 by electroplating and then etching a necessary portion.
【0039】次いで、図4に示すように、厚膜レジスト
AZ4903(ヘキストジャパン社製)をスピンコート
して、膜厚が100μm厚のレジスト膜51を形成し、
露光/現像により90μm平方の開口寸法を有するボン
ディングパッド29よりも一辺が5μm大きい寸法を有
する100μmの開口部をCu/Ti膜上に形成する。
露光はレジストの厚みが厚くても充分な量の露光エネル
ギーを照射して、現像はAZ400Kデベロッパー(ヘ
キストジャパン社製)により行う。メッキレジスト膜5
1の壁面角度調整は、例えば13th、IEMT Sy
mp.pp208,1992に記載されているように、
露光エネルギー、レジストとガラスマスクとの距離、現
像液の濃度を調整することにより制御する。Then, as shown in FIG. 4, a thick film resist AZ4903 (manufactured by Hoechst Japan) is spin-coated to form a resist film 51 having a film thickness of 100 μm.
By exposure / development, a 100 μm opening having a dimension of 5 μm on each side is formed on the Cu / Ti film as compared with the bonding pad 29 having a 90 μm square opening dimension.
The exposure is performed by irradiating a sufficient amount of exposure energy even if the resist is thick, and the development is performed by an AZ400K developer (manufactured by Hoechst Japan). Plating resist film 5
The wall angle adjustment of No. 1 is, for example, 13th, IEMT Sy
mp. As described in pp208, 1992,
It is controlled by adjusting the exposure energy, the distance between the resist and the glass mask, and the concentration of the developing solution.
【0040】このようにして、図5に示すように、ボン
ディングパッド29に対応する部分よりも大きな寸法で
レジスト膜51が開口形成されているシリコンウエハ
を、下記の混合溶液からなる硫酸銅メッキ液に浸漬し
て、浴温度25℃でCu/Tiを陰極として、リン含有
(0.03〜0.08wt%)高純度銅板を陽極とし
て、電流密度1〜5(A/dm2 )で緩やかに攪拌しな
がら、銅層31を35μm電気メッキする。このとき形
成する銅31は必ずしも35μm厚にメッキする必要は
なく、必要に応じて膜厚は任意に設定できる。従って、
銅層31をCu/Ti上に厚付けする必要は必ずしもな
く、Cu/Tiのままであっても良い。また、Cu/T
i上に形成する場合の銅は必ずしもメッキ法である必要
はなく、公知の技術であるEB蒸着法、スパッタ法を用
いて、所定の膜厚を有するCuを形成して何ら問題はな
い。従って、最終的に製造されるバンプ電極中の銅形状
は、特に限定されるものではない。In this way, as shown in FIG. 5, a silicon wafer on which a resist film 51 is formed with a larger size than the portion corresponding to the bonding pad 29 is formed into a copper sulfate plating solution containing the following mixed solution. And Cu / Ti as a cathode and a phosphorus-containing (0.03-0.08 wt%) high-purity copper plate as an anode at a bath temperature of 25 ° C. and a current density of 1-5 (A / dm 2 ) gently. While stirring, the copper layer 31 is electroplated to 35 μm. The copper 31 formed at this time does not necessarily need to be plated to a thickness of 35 μm, and the film thickness can be set arbitrarily as necessary. Therefore,
The copper layer 31 does not necessarily need to be thickly deposited on Cu / Ti, and may be Cu / Ti as it is. Also, Cu / T
When forming on i, copper does not necessarily have to be a plating method, and there is no problem in forming Cu having a predetermined film thickness by using a well-known technique such as EB vapor deposition method and sputtering method. Therefore, the shape of the copper in the finally manufactured bump electrode is not particularly limited.
【0041】 硫酸銅メッキ液 硫酸銅5水和物 2オンス/ガロン 硫酸 30オンス/ガロン 塩酸 10ppm チオキサンテート−s−プロパンスルホン酸 (またはチオキサンテートスルホン酸) 20ppm ポリエチレングリコール(分子量:400,000) 40ppm ポリエチレンイミン(分子量:600) と塩化ベンジルとの反応生成物 2ppm または 硫酸銅5水和物 30オンス/ガロン 硫酸 8オンス/ガロン 塩酸 30ppm ジチオカルバメート−s−プロパンスルホン酸 30ppm ポリプロピレングリコール(分子量:700) 10ppm ポリエチレンイミンと臭化アリル またはジメチル硫酸との反応生成物 0.3ppm 次いで、メッキ浴を下記に記載するスルホン酸はんだメ
ッキ液に変えて、電気銅メッキの場合と同様に、Cu/
Tiを陰極としてメッキ液に対応する組成の、例えば高
純度共晶はんだ板を陽極として電気メッキを行う。電流
密度は1〜4(A/dm2 )とし、浴温度25℃で緩や
かに攪拌しながらはんだ組成(Pb/Sn)が共晶組成
にほぼ等しい、あるいはPb側またはSn側にわずかに
移行した組成のはんだ合金32を銅上に65μm析出さ
せ、図6のような構成を得る。Copper Sulfate Plating Solution Copper Sulfate Pentahydrate 2 ounces / gallon Sulfuric acid 30 ounces / gallon Hydrochloric acid 10 ppm Thioxanthate-s-propanesulfonic acid (or thioxanthatesulfonic acid) 20 ppm Polyethylene glycol (molecular weight: 400,000) ) 40 ppm Polyethylenimine (molecular weight: 600) 2 ppm reaction product with benzyl chloride or copper sulfate pentahydrate 30 oz / gallon Sulfuric acid 8 oz / gallon hydrochloric acid 30 ppm Dithiocarbamate-s-propanesulfonic acid 30 ppm Polypropylene glycol (molecular weight: 700) 10 ppm Reaction product of polyethyleneimine and allyl bromide or dimethylsulfate 0.3 ppm Then, the plating bath was changed to the sulfonic acid solder plating solution described below, and the same as in the case of electrolytic copper plating. To, Cu /
Electroplating is performed using Ti as a cathode and a high-purity eutectic solder plate having a composition corresponding to the plating solution as an anode. The current density was 1 to 4 (A / dm 2 ), and the solder composition (Pb / Sn) was almost equal to the eutectic composition or slightly shifted to the Pb side or Sn side while gently stirring at a bath temperature of 25 ° C. A solder alloy 32 having a composition is deposited on copper to a thickness of 65 μm to obtain a structure as shown in FIG.
【0042】 スルホン酸はんだメッキ液 錫イオン(Sn2+) 12容量% 鉛イオン(Pb2+) 30容量% 脂肪族スルホン酸 41容量% ノニオン系界面活性剤 5容量% カチオン系界面活性剤 5容量% イソプロピルアルコール 7容量% このとき用いる電気メッキ装置としては、例えば図11
に示す噴流式の電気メッキ装置を用いることができる。
この方式の電気メッキ装置は、ECC 1990 Pr
oceeding pp460−pp469に記載され
ている様に、電流供給は、ウエハ周囲に対してカソード
電極を接触させて行なう。Sulfonic acid solder plating solution Tin ion (Sn 2+ ) 12% by volume Lead ion (Pb 2+ ) 30% by volume Aliphatic sulfonic acid 41% by volume Nonionic surfactant 5% by volume Cationic surfactant 5% by volume % Isopropyl alcohol 7% by volume As an electroplating apparatus used at this time, for example, FIG.
The jet type electroplating device shown in FIG.
This type of electroplating equipment is based on ECC 1990 Pr
As described in Aceeding pp460-pp469, the current supply is performed by bringing the cathode electrode into contact with the periphery of the wafer.
【0043】この電気メッキ装置は、図11に示すよう
に、カップ型のメッキ処理槽を有するメッキ装置本体6
1と、メッキ処理槽の周壁上部に設けられたアノード電
極67及びカソード電極66と、メッキ処理槽の下部に
設けられ、アノード電極67に接続された複数の開孔7
0をもつアノード板62とを有する。As shown in FIG. 11, this electroplating apparatus has a plating apparatus main body 6 having a cup-type plating treatment tank.
1, an anode electrode 67 and a cathode electrode 66 provided on the upper part of the peripheral wall of the plating treatment tank, and a plurality of openings 7 provided at the lower part of the plating treatment tank and connected to the anode electrode 67.
And an anode plate 62 with zero.
【0044】駆動電源に接続されたアノードピン63、
カソードピン65を、各々、アノード電極67、カソー
ド電極66に接触することにより、所定の電圧が印加さ
れる。メッキに供される基板1は、メッキ処理槽上部
に、アノード板62と対向して配置され、カソード電極
と接続される。Anode pin 63 connected to the driving power supply,
A predetermined voltage is applied by bringing the cathode pin 65 into contact with the anode electrode 67 and the cathode electrode 66, respectively. The substrate 1 to be plated is arranged above the plating tank so as to face the anode plate 62 and is connected to the cathode electrode.
【0045】メッキ液は、メッキ処理槽底部の導入口6
8から導入され、アノード板の開孔70を通ってカソー
ド電極と接続された基板に向かって流れ、基板上でメッ
キ処理が行なわれ、メッキ金属が析出される。その後、
メッキ処理後の廃液は、メッキ処理槽周壁上部に設けら
れた図示しない排出口から排出される。このメッキ処理
において、所望のメッキ金属が析出される基板1上で
は、メッキ液は、基板中心部から周辺部へと放射状に広
がるように流れる。The plating solution is introduced through the inlet 6 at the bottom of the plating treatment tank.
8 is introduced into the anode plate, flows through the openings 70 in the anode plate toward the substrate connected to the cathode electrode, and a plating process is performed on the substrate to deposit a plating metal. afterwards,
The waste liquid after the plating process is discharged from a discharge port (not shown) provided on the upper part of the peripheral wall of the plating process tank. In this plating process, on the substrate 1 on which a desired plated metal is deposited, the plating solution flows so as to spread radially from the central portion of the substrate to the peripheral portion.
【0046】この装置では、電流密度はウエハ周囲が高
い分布を有しており、一般的には、堆積されるメッキ膜
厚はウエハ周辺部が厚くなる傾向がある。しかしなが
ら、本発明では、メッキ装置内を循環してウエハに接触
するメッキ液の噴流流量を最適化することによりウエハ
中央部での膜厚が厚いメッキ膜厚分布を達成することに
成功した。これはカソード電極となるウエハ表面でのイ
オン拡散層厚の分布がメッキ液の噴流流量に依存して変
化することを考慮し、イオン拡散層厚を噴流流量で制御
したためである。従来の噴流流量は5〜8 L/分に設
定されていたが、本発明では、例えば9〜20 L/
分、好ましくは14 L/分に設定される。この噴流流
量は、9 L/分より遅いと、メッキ電極付近でのメッ
キ液の撹拌が不十分となり、ウエハ周辺部のメッキ膜厚
が厚くなる傾向があり、20 L/分よりも速いと、撹
拌が強すぎて十分に滞積させることができない傾向があ
る。In this apparatus, the current density has a high distribution around the wafer, and in general, the deposited plating film thickness tends to be thicker around the wafer. However, the present invention succeeded in achieving a thick plating film thickness distribution in the central portion of the wafer by optimizing the jet flow rate of the plating liquid circulating in the plating apparatus and contacting the wafer. This is because the ion diffusion layer thickness is controlled by the jet flow rate in consideration of the fact that the distribution of the ion diffusion layer thickness on the surface of the wafer that becomes the cathode electrode changes depending on the jet flow rate of the plating solution. The conventional jet flow rate was set to 5 to 8 L / min, but in the present invention, for example, 9 to 20 L / min.
Minutes, preferably 14 L / min. If the jet flow rate is slower than 9 L / min, the plating solution is not sufficiently stirred in the vicinity of the plating electrode, and the plating film thickness around the wafer tends to be thick. If it is faster than 20 L / min, The agitation tends to be too strong to allow sufficient storage.
【0047】図12は、図11に示す電気メッキ装置を
用いて半導体ウエハ上にはんだを堆積させた場合の膜厚
分布である。図中、グラフ101は、噴流流量6 L/
分、グラフ102は、噴流流量20 L/分、グラフ1
03は、噴流流量14 L/分、グラフ104は、噴流
流量10 L/分の場合を示す。従来方法では、グラフ
101に示すように、ウエハ中央部の膜厚が小さい分布
を有していたのに対して、本発明による方法では、グラ
フ102、103、及び104に示すように、ウエハ中
央部の膜厚が厚い分布を有している。以上の方法により
バンプ電極材料であるはんだ合金がボンディングパッド
上に連続的にメッキ形成される。FIG. 12 shows a film thickness distribution when solder is deposited on a semiconductor wafer using the electroplating apparatus shown in FIG. In the figure, a graph 101 indicates a jet flow rate of 6 L /
Min, graph 102, jet flow rate 20 L / min, graph 1
03 shows the case where the jet flow rate is 14 L / min, and graph 104 shows the case where the jet flow rate is 10 L / min. In the conventional method, as shown in the graph 101, the film thickness in the central portion of the wafer has a small distribution, whereas in the method according to the present invention, as shown in the graphs 102, 103, and 104, The film thickness of the part has a thick distribution. By the above method, the solder alloy which is the bump electrode material is continuously plated on the bonding pad.
【0048】次いで、図7に示すように、ウエハ1上の
レジストAZ4903 51をアセトンに浸漬して剥離
除去する。このとき剥離溶液としてはAZリムーバー
(ヘキストジャパン社製)を用いることも可能である。Then, as shown in FIG. 7, the resist AZ4903 51 on the wafer 1 is immersed in acetone to remove it. At this time, it is also possible to use AZ remover (made by Hoechst Japan) as a stripping solution.
【0049】その後、Cu/Ti層28及び銅層バンプ
電極が形成されているウエハ1上に例えばメッキレジス
トと同じAZ4903(ヘキストジャパン社製)または
OFPR−800(東京応化社製)の粘度調整を行った
溶液をスピンコートし、レジスト被膜52を形成する。Then, on the wafer 1 on which the Cu / Ti layer 28 and the copper layer bump electrode are formed, for example, the viscosity adjustment of AZ4903 (manufactured by Hoechst Japan) or OFPR-800 (manufactured by Tokyo Ohka Co., Ltd.) which is the same as the plating resist is performed. The applied solution is spin-coated to form a resist film 52.
【0050】次いで、バンプ電極100μmよりも開口
寸法が2μm大きい一辺が104μmの開口パターンを
有するガラスマスクを必要位置に位置合わせした後に露
光する。露光は露光エネルギー2000mJで行い、露
光後150℃でウエハをホットプレート上でベークす
る。次いで、ベークしたウエハを現像液に浸漬して現像
する。以上の工程を行うことで、図8に示すようなレジ
スト膜51が、はんだ32を有するバンプ電極上に選択
的に形成される。次いで、例えば過硫酸アンモニウム、
硫酸、エタノールから構成される混合溶液、またはクエ
ン酸、過酸化水素水、界面活性剤から構成される混合溶
液で、銅の必要部分をエッチング除去後、アンモニア、
エチレンジアミン4酢酸、過酸化水素水から構成される
混合溶液でチタンの必要部分をエッチング除去して、最
後に被覆したエッチングレジストをアセトンを用いて溶
解除去することにより、図9に示すような半導体ウエハ
を得る。Next, a glass mask having an opening pattern having an opening dimension of 2 μm larger than the bump electrode 100 μm and a side of 104 μm is aligned with a required position and then exposed. The exposure is performed with an exposure energy of 2000 mJ, and the wafer is baked on a hot plate at 150 ° C. after the exposure. Next, the baked wafer is immersed in a developing solution and developed. By performing the above steps, the resist film 51 as shown in FIG. 8 is selectively formed on the bump electrode having the solder 32. Then, for example, ammonium persulfate,
With a mixed solution composed of sulfuric acid and ethanol, or a mixed solution composed of citric acid, hydrogen peroxide solution, and a surfactant, after removing the necessary portion of copper by etching, ammonia,
A necessary portion of titanium is removed by etching with a mixed solution composed of ethylenediaminetetraacetic acid and hydrogen peroxide solution, and the finally coated etching resist is dissolved and removed with acetone to obtain a semiconductor wafer as shown in FIG. To get
【0051】このようにして得られた半導体ウエハはリ
フローにより、図10に示すような構造となる。The semiconductor wafer thus obtained has a structure as shown in FIG. 10 by reflowing.
【0052】以上の工程を行うことにより図1に示す半
導体ウエハ、及び図2に示す様な半導体チップが形成さ
れる。By performing the above steps, the semiconductor wafer shown in FIG. 1 and the semiconductor chip shown in FIG. 2 are formed.
【0053】図1に示す半導体ウエハについて、その中
心からの距離に対するバンプ電極の最大高さをhn 、最
小高さをhn-1 としたときのバンプ電極高さ比分布hn
/hn-1 を表すグラフ図を図13に示す。図13より、
バンプ電極高さ比は、半導体チップ上でhn /hn-1 =
1とならない一定の範囲で分布していることがわかる。
これは、噴流流量によりカソード拡散層厚が制御されて
いるため、半導体ウエハ上における拡散層濃度分布が半
導体チップサイズでは同一にはならないためである。[0053] The semiconductor wafer shown in FIG. 1, the bump electrode height ratio distribution h n when the maximum height of the bump electrodes to the distance from its center and h n, the minimum height and h n-1
A graph showing / h n-1 is shown in FIG. From Figure 13,
The bump electrode height ratio is h n / h n-1 =
It can be seen that the distribution is within a certain range that does not become 1.
This is because the cathode diffusion layer thickness is controlled by the jet flow rate, so that the diffusion layer concentration distribution on the semiconductor wafer is not the same for the semiconductor chip size.
【0054】次いで、フリップチップ実装する半導体チ
ップを半導体ウエハ状態で検査する。図14は、本発明
の半導体装置のフリップチップ実装の様子を示す図であ
る。このときの検査は、例えば特公平6−80708号
公報に記載されている方法を用いて、図14に示す様な
状態で行うことができる。Next, the semiconductor chip to be flip-chip mounted is inspected in a semiconductor wafer state. FIG. 14 is a diagram showing a flip-chip mounting state of the semiconductor device of the present invention. The inspection at this time can be performed in the state as shown in FIG. 14 by using the method described in Japanese Patent Publication No. 6-80708, for example.
【0055】検査された半導体ウェハーは半導体チップ
に分割され、図2に示すような所定の範囲のバンプ高さ
を有する半導体装置となる。The inspected semiconductor wafer is divided into semiconductor chips to form a semiconductor device having a bump height in a predetermined range as shown in FIG.
【0056】第2の実施形態 次に、第2の実施形態について示す。Second Embodiment Next, a second embodiment will be described.
【0057】第2の実施形態にかかる半導体装置は、例
えば上述の銅メッキ及びスルホン酸はんだメッキ液とし
て、以下の組成を有する溶液を各々用いる以外は、第1
の実施形態と同様にして得られる。The semiconductor device according to the second embodiment is the same as the semiconductor device according to the first embodiment except that each of the above-mentioned copper plating and sulfonic acid solder plating solutions uses a solution having the following composition.
It can be obtained in the same manner as in the above embodiment.
【0058】 はんだメッキ液 硫酸銅5水和物 30オンス/ガロン 硫酸 8オンス/ガロン 塩酸 15ppm ジチオカルバメート−s−プロパンスルホン酸 45ppm ポリプロピレングリコール(分子量:700) 15ppm ポリエチレンイミンと臭化アリル またはジメチル硫酸との反応生成物 0.45ppm スルホン酸はんだメッキ液 錫イオン(Sn2+) 12容量% 鉛イオン(Pb2+) 30容量% 脂肪族スルホン酸 61.5容量% カチオン系界面活性剤 7.5容量% イソプロピルアルコール 10.5容量% このようにして、図1に示すような半導体ウエハが得ら
れる。この半導体ウエハを第1の実施形態と同様にして
検査し、半導体チップに切り出すことにより図2に示す
ような半導体チップが得られる。Solder Plating Solution Copper Sulfate Pentahydrate 30 oz / gallon Sulfuric Acid 8 oz / gallon Hydrochloric Acid 15 ppm Dithiocarbamate-s-Propanesulfonic Acid 45 ppm Polypropylene Glycol (Molecular Weight: 700) 15 ppm Polyethyleneimine and Allyl Bromide or Dimethyl Sulfate Reaction product 0.45ppm Sulfonic acid solder plating solution Tin ion (Sn 2+ ) 12% by volume Lead ion (Pb 2+ ) 30% by volume Aliphatic sulfonic acid 61.5% by volume Cationic surfactant 7.5 volume % Isopropyl alcohol 10.5% by volume In this way, a semiconductor wafer as shown in FIG. 1 is obtained. This semiconductor wafer is inspected in the same manner as in the first embodiment and cut into semiconductor chips to obtain semiconductor chips as shown in FIG.
【0059】第1及び第2の実施形態にかかる半導体チ
ップは、通常の技術を用いて形成された回路配線基板に
搭載することができる。The semiconductor chips according to the first and second embodiments can be mounted on a circuit wiring board formed by a normal technique.
【0060】使用される回路配線基板の基板の材質及び
構造等は特に限定されるものではないが、ここでは、ガ
ラスエポキシ基板上に絶縁層と導体層をビルドアップさ
せた方式の、プリント基板SLC(Surface L
aminar Circuit)基板を例にとって、本
発明にかかる半導体チップを回路配線基板に搭載する工
程を説明する。Although the substrate material and structure of the circuit wiring board used are not particularly limited, here, the printed circuit board SLC of the type in which the insulating layer and the conductor layer are built up on the glass epoxy substrate is used. (Surface L
A process for mounting a semiconductor chip according to the present invention on a circuit wiring board will be described by taking an atomic circuit board as an example.
【0061】この回路配線基板では、半導体チップのバ
ンプ電極に対応する接続端子に、例えば110μmφの
開孔が設けられ、Cuが露出している。基板の端子部分
以外にはソルダレジストが被覆されている。先ず、公知
の技術であるハーフミラーを有して位置合わせを行うフ
リップチップボンダーを用い、半導体チップとこの回路
配線基板との位置合わせを行い、バンプ電極と回路配線
基板の接続端子を電気的、機械的に接触させる。このと
き、回路配線基板は加熱機構を有するステージ上に保持
され、窒素雰囲気中で、Pb/Sn=40/60の融点
よりも高い200℃に予備加熱されている。In this circuit wiring board, an opening of, for example, 110 μmφ is provided in the connection terminal corresponding to the bump electrode of the semiconductor chip, and Cu is exposed. A portion other than the terminal portion of the substrate is covered with solder resist. First, using a flip chip bonder that has a half mirror that is a well-known technique for alignment, the semiconductor chip and this circuit wiring board are aligned, and the bump electrodes and the connection terminals of the circuit wiring board are electrically connected, Make mechanical contact. At this time, the circuit wiring board is held on a stage having a heating mechanism and preheated to 200 ° C., which is higher than the melting point of Pb / Sn = 40/60, in a nitrogen atmosphere.
【0062】次に、半導体チップと回路配線基板が接触
された状態で、半導体チップを保持するコレットを、窒
素雰囲気中で、基板を搭載するステージと同じ温度の2
00℃に加熱し、バンプに形成されているはんだを溶融
することで、半導体チップと回路配線基板の電極とを、
電気的、機械的に仮接続させる。Next, while the semiconductor chip and the circuit wiring board are in contact with each other, the collet holding the semiconductor chip is placed in a nitrogen atmosphere at the same temperature as that of the stage on which the board is mounted.
By heating to 00 ° C. and melting the solder formed on the bumps, the semiconductor chip and the electrodes of the circuit wiring board are separated from each other.
Temporarily connect electrically and mechanically.
【0063】最後に、窒素雰囲気を有する250℃に加
熱されたリフロー炉中に、半導体チップを搭載した回路
配線基板を通過させることで、電気的、機械的接続を実
現させる。Finally, the circuit wiring board on which the semiconductor chip is mounted is passed through a reflow furnace heated to 250 ° C. having a nitrogen atmosphere to realize electrical and mechanical connection.
【0064】このとき、はんだの表面張力によりセルフ
アライン効果が発生し、マウント時に発生した多少の位
置ずれは修正され、正確な位置にボンディングが可能に
なる。At this time, the self-alignment effect is generated due to the surface tension of the solder, a slight positional deviation generated at the time of mounting is corrected, and bonding can be performed at an accurate position.
【0065】尚、必要に応じてフリップチップ実装した
半導体装置と回路配線基板が作る隙間部分に公知の技術
である樹脂を封止することも可能である。図15は、半
導体装置と回路配線基板との間に封止樹脂を適用した様
子を示す図である。If necessary, it is possible to seal resin, which is a known technique, in the gap formed by the flip-chip mounted semiconductor device and the circuit wiring board. FIG. 15 is a diagram showing a state in which a sealing resin is applied between the semiconductor device and the circuit wiring board.
【0066】ここで以上に示してきた半導体装置を評価
したところ以下の結果を得た。The semiconductor device shown above was evaluated and the following results were obtained.
【0067】図16は、図1に示すはんだ膜厚分布を有
する半導体ウェハーに対してバンプ電極形成を行い,プ
ローブヘッドで一括プロービングした場合、バンプ電極
の中心からの距離とプロービングが可能であったバンプ
電極高さとの関係を示したものである。5種類の半径を
有する半導体ウェハー50枚に対して測定を行った。測
定結果から各パラメータを一般化して、半導体ウェハー
の半径をR、半導体ウェハーの曲率半径をr、バンプ中
心から距離xの位置にあるバンプ電極高さをhとした。In FIG. 16, when bump electrodes were formed on a semiconductor wafer having the solder film thickness distribution shown in FIG. 1 and probed all together, the distance from the center of the bump electrodes and the probing were possible. It shows the relationship with the bump electrode height. The measurement was performed on 50 semiconductor wafers having 5 types of radii. Each parameter was generalized from the measurement result, and the radius of the semiconductor wafer was R, the radius of curvature of the semiconductor wafer was r, and the bump electrode height at a position x from the bump center was h.
【0068】図から明らかな様に、プロービングが可能
であったバンプ電極は半導体チップの中心から外周部に
向かって段階的に小さくなる分布を示し、h=R(R−
x)/2rで表現される線を中心として、0.8R(R
−x)/2r≦h≦1.3R(R−x)/2rの範囲を
有していることを見出だした。従って、バンプ電極高さ
分布を有する半導体ウェハーを用いれば一括プロービン
グが可能となる。As is apparent from the figure, the bump electrodes that were probable have a distribution that gradually decreases from the center of the semiconductor chip toward the outer periphery, and h = R (R-
x) / 2r centered on the line 0.8R (R
It has been found that it has a range of −x) /2r≦h≦1.3R (R−x) / 2r. Therefore, if a semiconductor wafer having a bump electrode height distribution is used, collective probing is possible.
【0069】また、プロービング後の状態を評価する
と、高さの高いバンプ電極は、はんだの塑性変形により
変形していた。更に、本発明の範囲から外れている高さ
を有するバンプ電極は、塑性変形が発生してもプロービ
ングできないことも解った。When the state after probing was evaluated, the bump electrodes with high height were deformed by the plastic deformation of the solder. Furthermore, it was also found that bump electrodes having a height outside the scope of the present invention cannot be probed even if plastic deformation occurs.
【0070】また、図17は、本発明による半導体チッ
プを用いた半導体装置を、回路配線基板にフリップチッ
プ実装した様子を示す図である。すべてのバンプ電極は
同一高さを有していないため、図17に示す様に接続さ
れたバンプ形状および大きさは同一にはなっていない。
この接続後のバンプ電極形状が相互に異なり、隣接する
バンプ間で短絡を発生しない分布範囲を求めた結果、
0.8<hn /hn-1 <1.2の範囲を有することが見
出だされた。FIG. 17 is a diagram showing a state in which a semiconductor device using a semiconductor chip according to the present invention is flip-chip mounted on a circuit wiring board. Since all the bump electrodes do not have the same height, the connected bump shapes and sizes are not the same as shown in FIG.
The bump electrode shapes after this connection are different from each other, and as a result of obtaining the distribution range in which a short circuit does not occur between adjacent bumps,
0.8 <to have a range of h n / h n-1 < 1.2 is has been found.
【0071】図18は本発明による半導体装置を回路配
線基板にフリップチップ実装した場合の接続率と高さ比
分布hn /hn-1 を示したグラフである。バンプ電極高
さをパラメータにしてある。図18から明らかな様に、
hn /hn-1 =1の場合を除いた0.8<hn /hn-1
<1と1<hn /hn-1 <1.2の範囲は接続率が10
0%になることが解った。FIG. 18 is a graph showing the connection ratio and the height ratio distribution h n / h n-1 when the semiconductor device according to the present invention is flip-chip mounted on a circuit wiring board. The bump electrode height is used as a parameter. As is clear from FIG.
0.8 excluding the case of h n / h n-1 = 1 <h n / h n-1
<1 and 1 <h n / h n- 1 < range of 1.2 connection of 10
It turned out to be 0%.
【0072】これは、hn /hn-1 =1の場合、バンプ
形状が太鼓型になると、バンプ形状がほぼ同一であるこ
とにより、隣接するバンプ間で短絡が発生する傾向があ
るためである。This is because when h n / h n-1 = 1 and when the bump shape is drum-shaped, the bump shapes tend to be the same and therefore a short circuit tends to occur between adjacent bumps. is there.
【0073】また、0.8<hn /hn-1 <1、1<h
n /hn-1 <1.2の場合は高さ比分布が大きすぎてバ
ンプ接続できない電極が現れる傾向がある。[0073] In addition, 0.8 <h n / h n -1 <1,1 <h
When n 1 / h n-1 <1.2, the height ratio distribution is so large that electrodes that cannot be bump-connected tend to appear.
【0074】更に、本実験とは別に、半導体チップの電
極ピッチと回路配線基板の電極ピッチが±5%異なって
いる半導体チップを回路配線基板上にフリップチップ実
装して、図18と同様の接続率とバンプ高さ比分布との
関係を求めた。この結果、本発明の高さ比分布の範囲を
有する半導体チップであれば、図17に示す結果と同様
の結果を示し、接続が100%可能なことを見出だし
た。これは、体積の大きなバンプ電極と体積の小さなバ
ンプ電極とで、接続形状が図17に示される様に異なる
ためである。Further, apart from this experiment, a semiconductor chip in which the electrode pitch of the semiconductor chip and the electrode pitch of the circuit wiring board differ by ± 5% is flip-chip mounted on the circuit wiring board, and the same connection as in FIG. 18 is made. The relationship between the ratio and the bump height ratio distribution was obtained. As a result, it has been found that the semiconductor chip having the range of the height ratio distribution of the present invention shows the same result as the result shown in FIG. 17, and 100% connection is possible. This is because the bump electrode having a large volume and the bump electrode having a small volume have different connection shapes as shown in FIG.
【0075】図19は、10mm×10mmの半導体チ
ップ上にPb/Sn=40/60のバンプ電極を256
個、径100μmφで形成し、SLC基板上にフリップ
チップ実装した試料の信頼性を評価した結果を示すグラ
フ図である。256ピンの中で1箇所でも接続がオープ
ンになった場合を不良にして、縦軸に累積不良率、横軸
に温度サイクルを示した。サンプル数は1000個、温
度サイクルは条件は(−55℃(30分)〜25℃(5
分)〜125℃(30分)〜25℃(5分))で行っ
た。FIG. 19 shows 256 bump electrodes of Pb / Sn = 40/60 on a semiconductor chip of 10 mm × 10 mm.
It is a graph which shows the result of having evaluated the reliability of the sample formed in 100 μm in diameter and flip-chip mounted on the SLC substrate. The case where the connection was opened at even one of the 256 pins was regarded as defective, and the vertical axis represents the cumulative failure rate and the horizontal axis represents the temperature cycle. The number of samples is 1000, and the temperature cycle conditions are (-55 ° C (30 minutes) to 25 ° C (5
Min) to 125 ° C (30 minutes) to 25 ° C (5 minutes)).
【0076】図19から明らかな様に、本発明によるバ
ンプ電極が形成された半導体装置は、従来のバンプ電極
が形成された半導体装置と比較して劣るところは全くな
く、高い信頼性を示すことが解った。これらの結果から
本発明を用いた半導体装置の信頼性は充分であることが
確認された。尚、本発明による半導体装置は樹脂封止を
行なった場合において、特に信頼性が著しく向上するこ
とも確認された。As is apparent from FIG. 19, the semiconductor device having the bump electrodes according to the present invention is not inferior to the conventional semiconductor device having the bump electrodes and exhibits high reliability. I understand. From these results, it was confirmed that the semiconductor device using the present invention has sufficient reliability. It was also confirmed that the reliability of the semiconductor device according to the present invention was remarkably improved when the semiconductor device was resin-sealed.
【0077】また本発明は、上述の実施形態に限定され
るものではなく、本発明の主旨を逸脱しない範囲で種々
に変更可能である。例えばバリアメタルはAu,W,A
g,Al,Cr,Tiであっても良く、形成するバンプ
電極材料は、例えばSb,In,Ga,Geなどが混合
されたものであっても良く、その効果は何ら変わるもの
ではない。The present invention is not limited to the above-mentioned embodiment, but can be variously modified without departing from the gist of the present invention. For example, barrier metal is Au, W, A
g, Al, Cr, Ti may be used, and the bump electrode material to be formed may be, for example, a mixture of Sb, In, Ga, Ge and the like, and the effect thereof is not changed at all.
【0078】[0078]
【発明の効果】第1の発明によれば、半導体ウェハー上
に形成されるバンプ電極高さ分布が、ウェハー中心部か
ら外周部に対して段階的に小さくなっているため、一括
プロービングが容易に可能である。これにより、従来の
テストヘッドを用いた接続検査が可能となる。According to the first aspect of the present invention, the height distribution of bump electrodes formed on a semiconductor wafer is gradually reduced from the central portion of the wafer to the outer peripheral portion thereof, which facilitates batch probing. It is possible. This enables connection inspection using a conventional test head.
【0079】また本発明の第2によれば、バンプ電極高
さを、0.8<hn /hn-1 <1.2としているため、
隣接するバンプ間での短絡を防止できる。これは体積の
大きなバンプ電極と体積の小さなバンプの接続形状が相
互に異なるためである。[0079] According to the second invention, since the bump electrodes height, and with 0.8 <h n / h n- 1 <1.2,
A short circuit between adjacent bumps can be prevented. This is because the bump electrodes having a large volume and the bumps having a small volume have different connection shapes.
【0080】さらに、本発明による分布の範囲であれ
ば、アッセンブリするときの圧力が半導体チップ上で均
一分散されるため、一箇所に圧力が集中され半導体チッ
プが破壊される問題を解決でき、信頼性の高い半導体装
置を実現できる。Further, within the distribution range according to the present invention, the pressure during assembly is evenly distributed on the semiconductor chip, so that the problem that the pressure is concentrated at one place and the semiconductor chip is broken can be solved. A highly reliable semiconductor device can be realized.
【図1】 第1の発明の一実施形態を示す該略的な斜視
図。FIG. 1 is a schematic perspective view showing an embodiment of a first invention.
【図2】 第2の発明の一実施形態を示す該略断面図。FIG. 2 is a schematic sectional view showing an embodiment of a second invention.
【図3】 本発明に係る半導体装置の製造方法の一実施
形態を示す工程断面図。FIG. 3 is a process sectional view showing an embodiment of a method for manufacturing a semiconductor device according to the present invention.
【図4】 本発明に係る半導体装置の製造方法の一実施
形態を示す工程断面図。FIG. 4 is a process sectional view showing an embodiment of a method for manufacturing a semiconductor device according to the present invention.
【図5】 本発明に係る半導体装置の製造方法の一実施
形態を示す工程断面図。FIG. 5 is a process sectional view showing an embodiment of a method for manufacturing a semiconductor device according to the present invention.
【図6】 本発明に係る半導体装置の製造方法の一実施
形態を示す工程断面図。FIG. 6 is a process sectional view showing an embodiment of a method for manufacturing a semiconductor device according to the present invention.
【図7】 本発明に係る半導体装置の製造方法の一実施
形態を示す工程断面図FIG. 7 is a process sectional view showing an embodiment of a method for manufacturing a semiconductor device according to the present invention.
【図8】 本発明に係る半導体装置の製造方法の一実施
形態を示す工程断面図。FIG. 8 is a process sectional view showing an embodiment of a method for manufacturing a semiconductor device according to the present invention.
【図9】 本発明に係る半導体装置の製造方法の一実施
形態を示す工程断面図。FIG. 9 is a process sectional view showing an embodiment of a method for manufacturing a semiconductor device according to the present invention.
【図10】 本発明に係る半導体装置の製造方法の一実
施形態を示す工程断面図。FIG. 10 is a process sectional view showing an embodiment of a method for manufacturing a semiconductor device according to the present invention.
【図11】 本発明に係る半導体装置を製造するための
電気メッキ装置を示す図。FIG. 11 is a diagram showing an electroplating apparatus for manufacturing a semiconductor device according to the present invention.
【図12】 半導体ウエハ上に堆積させたはんだの膜厚
分布を示すグラフ図。FIG. 12 is a graph showing a film thickness distribution of solder deposited on a semiconductor wafer.
【図13】 半導体ウエハの中心からの距離と、バンプ
電極の最大と最小の高さの比との関係を示すグラフ図。FIG. 13 is a graph showing the relationship between the distance from the center of the semiconductor wafer and the ratio of the maximum and minimum heights of bump electrodes.
【図14】 本発明の半導体装置のフリップチップ実装
の様子を示す図FIG. 14 is a diagram showing a flip-chip mounting state of a semiconductor device of the present invention.
【図15】 半導体装置と回路配線基板との間に封止樹
脂を適用した様子を示す図FIG. 15 is a diagram showing a state in which a sealing resin is applied between a semiconductor device and a circuit wiring board.
【図16】 バンプ電極の中心からの距離とプロービン
グが可能であったバンプ電極高さとの関係を示す図本発
明に係る半導体装置を用いた実装構造図FIG. 16 is a diagram showing the relationship between the distance from the center of the bump electrode and the bump electrode height at which probing was possible. Mounting structure using the semiconductor device according to the present invention
【図17】 本発明による半導体チップを用いた半導体
装置を、回路配線基板にフリップチップ実装した様子を
示す図FIG. 17 is a view showing a state in which a semiconductor device using a semiconductor chip according to the present invention is flip-chip mounted on a circuit wiring board.
【図18】 フリップチップ実装した場合の接続率と高
さ比分布hn /hn- 1 との関係を表すグラフFIG. 18 is a graph showing the relationship between the connection ratio and the height ratio distribution h n / h n- 1 in the case of flip-chip mounting.
【図19】 フリップチップ実装した場合の信頼性の評
価を表すグラフ図FIG. 19 is a graph showing reliability evaluation when flip-chip mounting is performed.
【図20】 従来の技術を説明するための図FIG. 20 is a diagram for explaining a conventional technique.
【図21】 従来の技術を説明するための図FIG. 21 is a diagram for explaining a conventional technique.
1 半導体ウェハー 2 半導体チップ 3 バンプ電極 4 半導体ウェハーの半径R 5 半導体ウェハーの曲率半径r 6 半導体ウェハー中心からの距離x 21 第1のバンプ電極高さh1 22 第2のバンプ電極高さh2 23 第1のバンプ電極半径L1 24 第2のバンプ電極半径L2 25 回路配線基板 26 ソルダーレジスト 27 接続用端子 28 バリアメタル 29 ボンディングパッド 30 パッシベーション膜 31 銅メタル 32 はんだ 51 メッキレジスト 52 エッチングレジスト 53 封止樹脂1 semiconductor wafer 2 semiconductor chip 3 bump electrode 4 radius of semiconductor wafer R 5 radius of curvature of semiconductor wafer r 6 distance from center of semiconductor wafer x 21 first bump electrode height h 1 22 second bump electrode height h 2 23 1st bump electrode radius L 1 24 2nd bump electrode radius L 2 25 Circuit wiring board 26 Solder resist 27 Connection terminal 28 Barrier metal 29 Bonding pad 30 Passivation film 31 Copper metal 32 Solder 51 Plating resist 52 Etching resist 53 Sealing resin
Claims (3)
られた複数のボンディングパッド、及び該ボンディング
パッド上に形成されたバンプ電極を有し、前記バンプ電
極の高さが前記半導体ウエハの中心部から外周部方向に
対して、段階的に小さくなっていることを特徴とする半
導体装置。1. A semiconductor wafer, a plurality of bonding pads provided on the semiconductor wafer, and bump electrodes formed on the bonding pads, wherein the height of the bump electrodes is from a central portion of the semiconductor wafer. A semiconductor device characterized by being gradually reduced in size with respect to the outer peripheral direction.
エハの外周半径をRとし、前記半導体ウエハの曲率半径
をrとし、前記半導体ウエハの中心から距離xに配置さ
れるバンプ電極高さをhとするとき、 0.8R(R−x)/2r≦h≦1.3R(R−x)/
2r R≠x で表される式を満足することを特徴とする請求項1に記
載の半導体装置。2. The height of the bump electrode is a height of the bump electrode arranged at a distance x from the center of the semiconductor wafer, where R is the outer radius of the semiconductor wafer, r is the radius of curvature of the semiconductor wafer. When it is set to h, it is 0.8R (Rx) / 2r <= h <1.3R (Rx) /
The semiconductor device according to claim 1, wherein the expression represented by 2r R ≠ x is satisfied.
られた複数のボンディングパッド、及び該ボンディング
パッド上に形成されたバンプ電極を含む半導体装置であ
って、第1のバンプ電極の高さをh1 、第2のバンプ電
極の高さをh2 、第n−1のバンプ電極の高さを
hn-1 、第nバンプ電極高さをhn とするとき、前記バ
ンプ電極の高さの比は、0.8<hn /hn-1 <1.2
の範囲内であることを特徴とする半導体装置。3. A semiconductor device including a semiconductor chip, a plurality of bonding pads provided on the semiconductor chip, and bump electrodes formed on the bonding pads, wherein the height of the first bump electrode is h. 1 , where the height of the second bump electrode is h 2 , the height of the n−1 th bump electrode is h n−1 , and the height of the n th bump electrode is h n , the height of the bump electrode is ratio, 0.8 <h n / h n -1 <1.2
The semiconductor device is characterized by being within the range.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33307495A JP3397553B2 (en) | 1995-12-21 | 1995-12-21 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33307495A JP3397553B2 (en) | 1995-12-21 | 1995-12-21 | Semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09172020A true JPH09172020A (en) | 1997-06-30 |
JP3397553B2 JP3397553B2 (en) | 2003-04-14 |
Family
ID=18261981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33307495A Expired - Lifetime JP3397553B2 (en) | 1995-12-21 | 1995-12-21 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3397553B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6477011A (en) * | 1988-04-18 | 1989-03-23 | Minolta Camera Kk | Automatic focusing interchangeable lens camera |
JPH09283562A (en) * | 1996-04-18 | 1997-10-31 | Nec Corp | Integrated circuit device and method of connecting it to substrate |
JP2004308006A (en) * | 2003-04-07 | 2004-11-04 | Rohm & Haas Electronic Materials Llc | Electroplating composition, and method |
JP2007081150A (en) * | 2005-09-14 | 2007-03-29 | Rohm Co Ltd | Semiconductor device and substrate |
JP2012044080A (en) * | 2010-08-23 | 2012-03-01 | Kyocer Slc Technologies Corp | Wiring board |
JP2013168453A (en) * | 2012-02-14 | 2013-08-29 | Renesas Electronics Corp | Manufacturing method of semiconductor device and wafer |
WO2024060435A1 (en) * | 2022-09-22 | 2024-03-28 | 上海闻泰电子科技有限公司 | Wafer and manufacturing method therefor, and mask |
-
1995
- 1995-12-21 JP JP33307495A patent/JP3397553B2/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6477011A (en) * | 1988-04-18 | 1989-03-23 | Minolta Camera Kk | Automatic focusing interchangeable lens camera |
JPH09283562A (en) * | 1996-04-18 | 1997-10-31 | Nec Corp | Integrated circuit device and method of connecting it to substrate |
JP2004308006A (en) * | 2003-04-07 | 2004-11-04 | Rohm & Haas Electronic Materials Llc | Electroplating composition, and method |
JP2007081150A (en) * | 2005-09-14 | 2007-03-29 | Rohm Co Ltd | Semiconductor device and substrate |
JP2012044080A (en) * | 2010-08-23 | 2012-03-01 | Kyocer Slc Technologies Corp | Wiring board |
JP2013168453A (en) * | 2012-02-14 | 2013-08-29 | Renesas Electronics Corp | Manufacturing method of semiconductor device and wafer |
WO2024060435A1 (en) * | 2022-09-22 | 2024-03-28 | 上海闻泰电子科技有限公司 | Wafer and manufacturing method therefor, and mask |
Also Published As
Publication number | Publication date |
---|---|
JP3397553B2 (en) | 2003-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3378334B2 (en) | Semiconductor device mounting structure | |
US6030512A (en) | Device for forming bumps by metal plating | |
KR100339190B1 (en) | Barrier layers for electroplated snpb eutectic solder joints | |
TWI431744B (en) | Semiconductor device and method for making same | |
US5466635A (en) | Process for making an interconnect bump for flip-chip integrated circuit including integral standoff and hourglass shaped solder coating | |
US6130170A (en) | Process improvements for titanium-tungsten etching in the presence of electroplated C4's | |
JP2624703B2 (en) | Method and apparatus for forming bump | |
US20060223313A1 (en) | Copper interconnect post for connecting a semiconductor chip to a substrate and method of fabricating the same | |
JP2003007755A (en) | Barrier cap for lower bump metal | |
US6664128B2 (en) | Bump fabrication process | |
JP3397553B2 (en) | Semiconductor device | |
JP3412969B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2002016178A (en) | Semiconductor device and manufacturing method therefor | |
JP3400263B2 (en) | Semiconductor device, circuit wiring board, and semiconductor device mounting structure | |
US20080119056A1 (en) | Method for improved copper layer etching of wafers with c4 connection structures | |
JP2020178044A (en) | Semiconductor device, implementation structure of semiconductor device, and manufacturing method of semiconductor device | |
US12027483B2 (en) | Packaged semiconductor device with electroplated pillars | |
JP3373752B2 (en) | Semiconductor device | |
JPH11163015A (en) | Plating device | |
JPH05267306A (en) | Manufacture of semiconductor device | |
US20230378036A1 (en) | Package assembly including package substrate with elongated solder resist opening and methods for forming the same | |
TWI718964B (en) | Conductive pillar bump and manufacturing method therefore | |
JP2009135345A (en) | Semiconductor device and manufacturing method thereof | |
Datta | Flip-chip interconnection | |
JP2000294585A (en) | Bump structure and method of forming the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080214 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090214 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100214 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100214 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110214 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120214 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120214 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130214 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140214 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |