[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH08966A - Purification by electrodialysis - Google Patents

Purification by electrodialysis

Info

Publication number
JPH08966A
JPH08966A JP16613894A JP16613894A JPH08966A JP H08966 A JPH08966 A JP H08966A JP 16613894 A JP16613894 A JP 16613894A JP 16613894 A JP16613894 A JP 16613894A JP H08966 A JPH08966 A JP H08966A
Authority
JP
Japan
Prior art keywords
acid
chamber
intermediate chamber
polyvalent metal
electrodialysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16613894A
Other languages
Japanese (ja)
Inventor
Takemichi Kishi
剛陸 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Nucera Japan Ltd
Original Assignee
Chlorine Engineers Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorine Engineers Corp Ltd filed Critical Chlorine Engineers Corp Ltd
Priority to JP16613894A priority Critical patent/JPH08966A/en
Publication of JPH08966A publication Critical patent/JPH08966A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/36Regeneration of waste pickling liquors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PURPOSE:To purify a water soln. contg. multi-valent metal ions, etc., such as a water liq. of acid cleaning of metals, to recover the water soln. and to reuse it by performing continuously and smoothly electrodialysis of the soln. without lowering its electric current efficiency. CONSTITUTION:In an electrodialysis apparatus consisting of an anode chamber, an intermediate chamber and a cathode chamber, the intermediate chamber and the anode chamber are separated with an anion exchange membrane and the intermediate chamber and the cathode chamber are separated with an cation exchange membraane and a water soln. contg. 1 or 2 acids selected from among sulfuric acid, hydrochloric acid, phosphoric acid, chloric acid, perchloric acid and chromic acid is stored in the anode chamber (a). Multi-valent metal ions and/or a multi-valent metallic acid ions-contg. water soln. is stored in the intermediate chamber (b). In addition, a water soln. contg. inorg. salts and a pH buffer agent is stored in the cathode chamber (c) as a cathode liq. and by energizing electricity, the multi-valent metals in the water soln. stored in the intermediate chamber are decreased and removed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多価金属イオン及び/
または多価金属酸イオンを含有する水溶液を電気透析精
製処理する方法に関し、特に、金属類を酸洗浄する際に
発生する多価金属イオンを含有する酸洗浄廃酸より当該
金属イオンを電気透析により高い電流効率で除去減少し
て酸洗浄液を回収する電気透析精製法に関する。
The present invention relates to polyvalent metal ions and / or
Alternatively, the present invention relates to a method for electrodialyzing and purifying an aqueous solution containing a polyvalent metal acid ion, in particular, by electrodialyzing the metal ion from an acid-washing waste acid containing a polyvalent metal ion generated when the metal is acid-washed. The present invention relates to an electrodialysis purification method in which an acid washing solution is recovered by removing and reducing with high current efficiency.

【0002】[0002]

【従来の技術】鉄鋼、ステンレス、銅、亜鉛、アルミニ
ウム、カドミウム、錫、アンチモン、ビスマス等の金属
を酸洗浄した場合、金属イオンを含有する酸洗浄廃液が
副生する。従来、これらの酸洗浄廃液は、主にアルカリ
で中和するアルカリ中和法で処理後廃液処理されてい
た。アルカリ中和法は、洗浄用の酸と中和用のアルカ
リの原単位が悪く経済的でないこと、酸として硫酸や
フッ酸を使用した場合は石膏やフッ化カルシウム等のス
ラッジが大量に副生すること、酸として硝酸やリン酸
を使用した場合は廃水に大量の窒素やリンが混入するこ
と、酸液入れ換えによるライン停止に起因する生産性
が低下すること、及び、中和作業という2次処理に入
手が必要となる等の問題があった。そのため、このアル
カリ中和法に代わる方法も提案されている。例えば、特
公平2−45489号公報で提案される電気透析法があ
る。この方法は、多価金属イオンを含有する酸水溶液を
陽極液とし、無機の炭酸塩、炭酸水素塩もしくは水酸化
物またはそれらの混合物を陰極液とし、陽極液と陰極液
を陽イオン交換膜で隔離し電気透析する方法である。
2. Description of the Related Art When a metal such as steel, stainless steel, copper, zinc, aluminum, cadmium, tin, antimony or bismuth is acid-cleaned, an acid cleaning waste liquid containing metal ions is produced as a by-product. Conventionally, these acid cleaning waste liquids have been treated with a waste liquid after being treated by an alkali neutralization method in which they are mainly neutralized with an alkali. The alkali neutralization method is not economical because the basic unit of the acid for cleaning and the alkali for neutralization is poor, and when sulfuric acid or hydrofluoric acid is used as the acid, a large amount of sludge such as gypsum and calcium fluoride is by-produced. When nitric acid or phosphoric acid is used as an acid, a large amount of nitrogen or phosphorus is mixed into the wastewater, productivity is reduced due to line stoppage due to replacement of the acid solution, and a secondary process of neutralization work is performed. There was a problem that it was necessary to obtain it for processing. Therefore, an alternative method to the alkali neutralization method has been proposed. For example, there is an electrodialysis method proposed in Japanese Patent Publication No. 2-45489. This method uses an aqueous acid solution containing polyvalent metal ions as an anolyte, an inorganic carbonate, hydrogen carbonate or hydroxide or a mixture thereof as a catholyte, and an anolyte and a catholyte as cation exchange membranes. It is a method of isolation and electrodialysis.

【0003】[0003]

【発明が解決しようとする課題】上記提案の電気透析法
は、酸洗浄廃液等の被処理水溶液を循環させて処理でき
操作上は簡便であり、工業性に優れるものである。しか
しながら、発明者らによれば、多価金属イオンを含有す
る酸水溶液の酸濃度を高くすれば、金属除去の電流効率
が低下する点、多価金属として第一鉄イオンを含有する
被処理液の場合は第一鉄イオンが第二鉄イオンに酸化さ
れ、処理液を酸洗工程に回収し用いた場合鋼材表面にピ
ッテイングが生じる点、多価金属イオンを含有する被処
理液を陽極液とするため、陽極の寿命が短くなる点等の
種々の問題があることが知見された。発明者らは、上記
問題点を解消し、酸洗浄廃液等の多価金属イオン等を含
有する水溶液を、連続的に安定して且つ効率よく電気透
析で精製処理することができ、更に、工業上有用な電気
透析精製技術の開発を目的として鋭意検討を重ね、その
結果、本発明を完成するに至った。
The electrodialysis method proposed above is advantageous in that it can be treated by circulating an aqueous solution to be treated such as an acid washing waste liquid, is simple in operation, and is excellent in industrial property. However, according to the inventors, when the acid concentration of the acid aqueous solution containing polyvalent metal ions is increased, the current efficiency of metal removal is lowered, and the liquid to be treated containing ferrous ions as polyvalent metals is reduced. In the case of, the ferrous ion is oxidized to ferric ion, and when the treatment liquid is recovered in the pickling step and pitting occurs on the steel surface, the liquid to be treated containing polyvalent metal ions is used as the anolyte. Therefore, it has been found that there are various problems such as shortening the life of the anode. The inventors of the present invention have solved the above problems and can continuously and stably purify an aqueous solution containing a polyvalent metal ion or the like such as an acid cleaning waste solution by electrodialysis, and further As a result of intensive studies for the purpose of developing a more useful electrodialysis purification technique, the present invention has been completed.

【0004】[0004]

【課題を解決するための手段】本発明によれば、陽極
室、中間室及び陰極室とからなる電気透析装置におい
て、中間室と陽極室とは陰イオン交換膜で、中間室と陰
極室とは陽イオン交換膜で隔離されると共に、(a)陽
極室に硫酸、塩酸、硝酸、リン酸、塩素酸、過塩素酸、
クロム酸の1または2以上を含有する水溶液を陽極液と
して収容し、(b)中間室に多価金属イオン及び/また
は多価金属酸イオンを含有する水溶液を収容し、(c)
陰極室に無機塩及びpH緩衝剤を含有する水溶液を陰極
液として収容して通電することにより中間室に収容する
水溶液中の多価金属を減少除去することを特徴とする電
気透析精製法が提供される。本発明の上記電気透析精製
法において、陽極室、中間室及び陰極室が、それぞれ各
室から収容される水溶液を抜出し処理して各収容液とな
した後、再び、各室に戻す循環系を有すると共に、陽極
室の循環系において水が補給され、前記中間室の循環系
において被電気透析液が補給され、且つ、前記陰極室の
循環系において多価金属成分を分離除去し所定の無機塩
及びpH緩衝剤が補給されることが好ましい。
According to the present invention, in an electrodialysis apparatus comprising an anode chamber, an intermediate chamber and a cathode chamber, the intermediate chamber and the anode chamber are anion exchange membranes, and the intermediate chamber and the cathode chamber. Is isolated by a cation exchange membrane, and (a) sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, chloric acid, perchloric acid,
An aqueous solution containing one or more chromic acids is contained as an anolyte, (b) an aqueous solution containing polyvalent metal ions and / or polyvalent metal acid ions is contained in the intermediate chamber, (c)
Provided is an electrodialysis purification method characterized in that an aqueous solution containing an inorganic salt and a pH buffer is contained in a cathode chamber as a catholyte and electricity is applied to reduce and remove polyvalent metals in the aqueous solution contained in an intermediate chamber. To be done. In the electrodialysis purification method of the present invention, the anode chamber, the intermediate chamber and the cathode chamber, after the aqueous solution contained in each chamber is extracted and made into each contained liquid, the circulation system is returned to each chamber again. In addition, water is replenished in the circulation system of the anode chamber, electrodialysis liquid is replenished in the circulation system of the intermediate chamber, and the polyvalent metal component is separated and removed in the circulation system of the cathode chamber to give a predetermined inorganic salt. And pH buffer is preferably supplemented.

【0005】[0005]

【作用】本発明は上記のように構成され、所定の無機塩
及びpH緩衝剤を含有する水溶液が収容される陰極室と
中間室とを陽イオン交換膜で隔離すると同時に、無機酸
水溶液を収容する陽極室と中間室を陰イオン交換膜で隔
離し、中間室に多価金属イオン及び/または多価金属酸
イオンを含有する水溶液を収容して通電するため、中間
室に収容される酸洗浄廃液等の水溶液中に含有される多
価金属イオン等の多価金属成分は、陰極室に拡散移動し
水酸化物が生成するようにpH値が調整されている陰極
近傍で水酸化物として沈澱する。また、陰極室で沈澱し
た多価金属の水酸化物は陰極室の循環系により抜き出さ
れ、分離処理され除去することができる。更に、各室に
収容される水溶液は、通電により組成が変化するため一
部を抜き出しそれぞれ循環系において処理されて、所定
の収容液に調整され各室に戻され、連続的に電気透析を
行うことができる。また、中間室の循環系には酸洗浄液
等の被電気透析液を補給することができ、含有多価金属
を連続的に除去して液を再生し、回収し、再使用するこ
とができる。本発明の中間室においては、多価金属イオ
ンの全イオンに対する比率が上がるため、金属除去の電
流効率が上昇する。また、電極を保持することなく、陽
イオン及び陰イオン交換膜により隔離された陰極室及び
陽極室に隣接される中間室に多価金属酸イオンを含有す
る水溶液を収容し、電気透析して回収するため、第1鉄
イオンが含有される場合でも、従来の陽極室での第1鉄
イオンが第2鉄イオンへ酸化され酸洗工程でのピッテイ
ング生成トラブルが生起されず、また、金属イオン存在
による陽極寿命の短縮がなくなり、電解透析を連続的に
円滑に促進することできる。
The present invention is configured as described above, and separates the cathode chamber and the intermediate chamber, in which the aqueous solution containing the predetermined inorganic salt and the pH buffer is contained, by the cation exchange membrane, and at the same time, contains the inorganic acid aqueous solution. The anode chamber and the intermediate chamber are separated by an anion exchange membrane, and the aqueous solution containing the polyvalent metal ion and / or the polyvalent metal acid ion is stored in the intermediate chamber to energize, so that the acid cleaning stored in the intermediate chamber is performed. The polyvalent metal component such as polyvalent metal ion contained in the aqueous solution such as waste liquid is adjusted to have a pH value so as to diffuse and move into the cathode chamber to generate hydroxide, and precipitates as hydroxide near the cathode. To do. Further, the hydroxide of the polyvalent metal precipitated in the cathode chamber can be extracted by the circulation system of the cathode chamber, separated and removed. Furthermore, since the composition of the aqueous solution contained in each chamber changes due to energization, a part of the aqueous solution is extracted and processed in a circulation system, adjusted to a predetermined contained liquid, returned to each chamber, and continuously electrodialyzed. be able to. Further, the circulation system of the intermediate chamber can be replenished with an electrodialysis liquid such as an acid cleaning liquid, and the polyvalent metal contained can be continuously removed to regenerate, recover and reuse the liquid. In the intermediate chamber of the present invention, the ratio of polyvalent metal ions to all ions is increased, so that the current efficiency of metal removal is increased. Further, without holding the electrode, an aqueous solution containing a polyvalent metal acid ion is stored in an intermediate chamber adjacent to the cathode chamber and the anode chamber, which is separated by a cation and anion exchange membrane, and electrodialysis is performed to collect the aqueous solution. Therefore, even if the ferrous ion is contained, the ferrous ion in the conventional anode chamber is oxidized to ferric ion and the pitting generation trouble in the pickling process does not occur, and the presence of metal ion exists. As a result, the anode life is not shortened, and electrolytic dialysis can be continuously and smoothly promoted.

【0006】以下、本発明について詳細に説明する。本
発明の電気透析は、陽極室、中間室及び陰極室とから構
成されるいわゆる3室法に相当する。中間室は陽極室及
び陰極室により隣接され、陽極室とは陰イオン交換膜で
隔離され、陰極室とは陽イオン交換膜で隔離される。陽
極室及び陰極室と中間室とを、いずれも陽イオン交換膜
で隔離したり、陽イオン交換膜及び陰イオン交換膜の両
者で隔離するのは、電流効率が低く好ましくない。本発
明の陽極室は、硫酸、塩酸、硝酸、リン酸、塩素酸、過
塩素酸、クロム酸からなる無機酸の1または2以上を含
有する水溶液を陽極液として収容し、陰極室に無機塩及
びpH緩衝剤を含有する水溶液を陰極液として収容す
る。また、中間室には、多価金属イオン及び/または多
価金属酸イオン(以下、単に多価金属イオン等とする)
を含有する被電気透析精製処理水溶液を収容して通電す
ることにより、含有される多価金属を陰極室に拡散移動
して除去することができる。中間室に収容して電気透析
精製処理する多価金属イオン等を含有する水溶液として
は、(1)溶解多価陽イオンが混在して汚染された電気
めっき型酸の水溶液、(2)多価金属を含む酸の陰イオ
ンと陽イオンとからなる塩の水溶液、(3)硫酸、リ
ン、ハロゲンまたは炭素を含む酸の陰イオンと多価金属
陽イオンとからなる塩の水溶液または(4)これらの混
合物を挙げることができる。特に、本発明においては、
鋼板等金属の酸洗浄廃液を好適に適用することができ
る。
Hereinafter, the present invention will be described in detail. The electrodialysis of the present invention corresponds to a so-called three-chamber method including an anode chamber, an intermediate chamber and a cathode chamber. The intermediate chamber is adjacent to the anode chamber and the cathode chamber, is separated from the anode chamber by an anion exchange membrane, and is separated from the cathode chamber by a cation exchange membrane. It is not preferable to separate the anode chamber, the cathode chamber, and the intermediate chamber from each other by a cation exchange membrane or both the cation exchange membrane and the anion exchange membrane because the current efficiency is low. The anode chamber of the present invention contains an aqueous solution containing one or more inorganic acids consisting of sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, chloric acid, perchloric acid and chromic acid as an anolyte, and the cathode chamber contains an inorganic salt. And an aqueous solution containing a pH buffer is contained as a catholyte. In the intermediate chamber, polyvalent metal ions and / or polyvalent metal acid ions (hereinafter simply referred to as polyvalent metal ions, etc.)
The polyvalent metal contained can be diffused and moved to the cathode chamber and removed by containing and energizing the aqueous solution for electrodialysis purification treatment containing the. As the aqueous solution containing polyvalent metal ions to be stored in the intermediate chamber and subjected to electrodialysis purification treatment, (1) an aqueous solution of an electroplating acid contaminated with dissolved polyvalent cations, (2) polyvalent An aqueous solution of a salt containing an anion of an acid containing a metal and a cation, (3) An aqueous solution of a salt containing an anion of an acid containing a sulfuric acid, phosphorus, halogen or carbon and a polyvalent metal cation, or (4) Can be mentioned. In particular, in the present invention,
The acid cleaning waste liquid of a metal such as a steel plate can be preferably applied.

【0007】本発明の陰極液は、無機塩としてアルカリ
金属、アルカリ土類金属の水酸化物、硫酸塩、塩化物、
硝酸塩、塩素酸塩、過塩素酸塩の1または2以上を含有
する水溶液が使用できる。これらの無機塩の中から、除
去精製したい多価金属種、陽極液及び中間室液の陰イオ
ン種、及び、工業的実施の運転コスト等を考慮して適宜
選択して使用することができる。好ましくは、無機塩の
陰イオン種と、陽極液及び/または中間室液の陰イオン
種とが同一とするのがよい。本発明の陰極液中の無機塩
は電気伝導度を上げ、電解中の電圧を低下させることが
できる。陰極液に含有させる無機塩の濃度は、特に制限
されるものではなく、濃度が大きくなる程、電気伝導度
が向上するため望ましい。しかし、飽和溶液では、塩の
析出等のおそれがあり、通常、飽和溶解度未満の濃度と
する。
The catholyte of the present invention contains, as inorganic salts, hydroxides, sulfates and chlorides of alkali metals and alkaline earth metals,
An aqueous solution containing one or more of nitrate, chlorate and perchlorate can be used. From these inorganic salts, the polyvalent metal species to be removed and purified, the anionic species of the anolyte and intermediate chamber liquids, the operating cost of industrial implementation, and the like can be appropriately selected and used. Preferably, the anion species of the inorganic salt and the anion species of the anolyte solution and / or the intermediate chamber solution are the same. The inorganic salt in the catholyte of the present invention can increase the electrical conductivity and reduce the voltage during electrolysis. The concentration of the inorganic salt contained in the catholyte is not particularly limited, and the higher the concentration, the higher the electric conductivity, which is desirable. However, in a saturated solution, there is a risk of salt precipitation and the like, and the concentration is usually less than the saturated solubility.

【0008】本発明の陰極液には、上記無機塩の他、p
H緩衝剤が含有される。pH緩衝剤としては、(1)ア
ルカリ金属、アルカリ土類金属、またはアンモニアの亜
硫酸塩類または亜硫酸水素塩類、(2)アンモニアの水
酸化物、硫酸塩、塩化物、硝酸塩、塩素酸塩または過塩
素酸塩、(3)リン酸、ホウ酸、酢酸、クエン酸、フタ
ル酸、酒石酸、乳酸、ジェチルバビルツル酸またはジメ
チルグリシンの酸類、(4)2,4,6−トリメチルピ
リジン、トリス(ヒドロキシメチル)アミノメタン、2
−アミノメチル1,3−プロパンジオール、エチルモル
ホリン、フェニルヒドラジン、アニリン、ピリジン、キ
ノリン、ヘキサミンまたは尿素の含窒素化合物から選ば
れた1または2以上を適宜選択して用いることができ
る。本発明の上記pH緩衝剤は、陰極液、特に陰極近傍
における陰極液のpH値を、中間室液から陰極室に移動
する多価金属の水酸化物生成に適した範囲に維持し、電
気透析を連続して安定化することができる。即ち、陰極
室と中間室とを隔離する陽イオン交換膜近辺の陰極液
は、一般に、陽極室及び/または中間室からの水素イオ
ン(H+ )が拡散するため、pHが低下する傾向にあ
る。一方、陰極では水素ガスが発生し、それに伴い水酸
化イオン(OH-)が生成するため、陰極周辺の陰極液の
pHは上がる傾向にある。このためpH緩衝剤を含有し
ない場合は、陰極室の陽イオン交換膜付近で多価金属イ
オン等の水酸化物が析出し、電気透析が不能となる。本
発明においては、陰極液に上記pH緩衝剤を含有させる
ことにより、陽イオン交換膜の陰極室側のpHを多価金
属イオン等が水酸化物として析出しない酸性度に保ち、
同時に、陰極付近の陰極液のpHを多価金属イオン等が
水酸化物として析出する値以上に保つことができる。本
発明の陰極液のpH値は、多価金属イオン種、多価金属
イオン濃度、電解条件等により変化するため一概にはい
えないが、通常、4〜12、好ましくは6〜10になる
ように調整するのが好ましい。本発明のpH緩衝剤の種
類及び添加量は、多価金属イオン種、多価金属イオン濃
度、電解条件及び運転コスト等により適宜選択する。通
常、中間室液の酸濃度が高い場合は、陽イオン交換膜付
近は酸性側に傾くので、陰極液のpHがやや高くても陽
イオン交換膜に多価金属イオン等が水酸化物として析出
することは少ない。また、多価金属イオンがアルミニウ
ムや亜鉛のような両性イオンである場合は、陰極液のp
Hを厳密に調整制御し、低めに設定するのが好ましい。
陰極液のpHを低下させたいときは酸型のpH緩衝剤を
添加し、一方、陰極液のpHを上げたいときは無機水酸
化物または有機アミン化合物等から選択したpH緩衝剤
を添加するのがよい。
In the catholyte of the present invention, in addition to the above inorganic salt, p
An H buffer is included. Examples of the pH buffering agent include (1) alkali metal, alkaline earth metal, or ammonia sulfite or hydrogen sulfite, (2) ammonia hydroxide, sulfate, chloride, nitrate, chlorate, or perchlorine. Acid salts, (3) phosphoric acid, boric acid, acetic acid, citric acid, phthalic acid, tartaric acid, lactic acid, benzyl bilturic acid or dimethylglycine acids, (4) 2,4,6-trimethylpyridine, tris (hydroxy) Methyl) aminomethane, 2
-Aminomethyl 1,3-propanediol, ethylmorpholine, phenylhydrazine, aniline, pyridine, quinoline, hexamine or one or more selected from urea-containing nitrogen compounds can be appropriately selected and used. The pH buffer of the present invention maintains the pH value of the catholyte, especially the catholyte in the vicinity of the cathode, in a range suitable for the production of hydroxides of polyvalent metals that move from the intermediate chamber liquid to the cathode chamber, and perform electrodialysis. Can be continuously stabilized. That is, in the catholyte near the cation exchange membrane that separates the cathode chamber and the intermediate chamber, the pH tends to decrease because hydrogen ions (H + ) from the anode chamber and / or the intermediate chamber generally diffuse. . On the other hand, since hydrogen gas is generated at the cathode and hydroxide ions (OH ) are generated along with it, the pH of the catholyte around the cathode tends to rise. For this reason, when the pH buffer is not contained, hydroxides such as polyvalent metal ions are deposited in the vicinity of the cation exchange membrane in the cathode chamber, making electrodialysis impossible. In the present invention, by containing the pH buffer agent in the catholyte, the pH of the cation exchange membrane on the cathode chamber side is maintained at an acidity such that polyvalent metal ions do not precipitate as hydroxides,
At the same time, the pH of the catholyte near the cathode can be maintained above the value at which polyvalent metal ions or the like are deposited as hydroxides. The pH value of the catholyte of the present invention varies depending on the polyvalent metal ion species, polyvalent metal ion concentration, electrolysis conditions, etc., but cannot be generally stated, but it is usually 4 to 12, preferably 6 to 10. It is preferable to adjust The type and addition amount of the pH buffer agent of the present invention are appropriately selected depending on the polyvalent metal ion species, the polyvalent metal ion concentration, the electrolysis conditions, the operating cost, and the like. Usually, when the acid concentration of the intermediate chamber liquid is high, the vicinity of the cation exchange membrane is inclined to the acidic side, so even if the pH of the catholyte is slightly high, polyvalent metal ions, etc. will precipitate as hydroxide on the cation exchange membrane. There is little to do. When the polyvalent metal ion is an amphoteric ion such as aluminum or zinc, the p of the catholyte is
It is preferable to strictly adjust and control H and set it to a low level.
If you want to lower the pH of the catholyte, add an acid type pH buffer, while if you want to raise the pH of the catholyte, add a pH buffer selected from inorganic hydroxides or organic amine compounds. Is good.

【0009】本発明で使用する陽イオン交換膜として
は、市販されているハイドロカーボン系やパーフルオロ
カーボン系の陽イオン交換膜が使用できる。但し、酸性
の条件下で使用するため、官能基としてカルボン酸のみ
を有する膜は使用できない。本発明で使用する陰イオン
交換膜としては、市販されているハイドロカーボン系や
パーフルオロカーボン系の陰イオン交換膜が使用でき
る。本発明の電気透析装置は、その使用する電気透析槽
の型式等は特に制限されるものではない。いわゆるフィ
ルタープレス型、ボックス型、タンク型のいずれも使用
できる。また、電極の接続方式としては、単極式及び複
極式のいずれも採用できる。更に、本発明の陽極を構成
する材質は、電解条件で劣化しない耐久性の高いものが
好ましく、黒鉛、チタンまたはタンタル金属上に白金イ
リジウム合金をコーティングしたもの等が使用できる。
また陰極材質は、陽極と同様に電解条件で劣化しない耐
久性の高いものが好ましく、ステンレス、ニッケル、鉄
鋼上をニッケルメッキしたもの、黒鉛、チタン金属上に
白金をコーティングしたもの等が使用できる。本発明の
電気透析精製において、電気透析条件は、特に、制限さ
れるものではなく、一般に、電流密度1〜100A/d
2 、電解液温度10〜100℃の範囲で、電解効率の
よい条件を適宜選択することができる。
As the cation exchange membrane used in the present invention, commercially available hydrocarbon or perfluorocarbon cation exchange membranes can be used. However, since it is used under acidic conditions, a film having only a carboxylic acid as a functional group cannot be used. As the anion exchange membrane used in the present invention, commercially available hydrocarbon-based or perfluorocarbon-based anion exchange membranes can be used. The electrodialysis apparatus of the present invention is not particularly limited in the type of electrodialysis tank used. Any of so-called filter press type, box type and tank type can be used. Further, as a method of connecting the electrodes, either a monopolar type or a bipolar type can be adopted. Further, the material constituting the anode of the present invention is preferably highly durable and does not deteriorate under electrolysis conditions, and graphite, titanium or tantalum metal coated with platinum iridium alloy can be used.
The cathode material is preferably highly durable and does not deteriorate under electrolysis conditions like the anode, and stainless steel, nickel, steel plated with nickel, graphite, titanium metal coated with platinum, and the like can be used. In the electrodialysis purification of the present invention, the electrodialysis conditions are not particularly limited, and generally, the current density is 1 to 100 A / d.
Conditions with good electrolysis efficiency can be appropriately selected within the range of m 2 and the temperature of the electrolytic solution of 10 to 100 ° C.

【0010】本発明において、陽極室、中間室及び陰極
室の各室から収容される各室液の一部を抜き出し、それ
ぞれ必要に応じて処理し、各室液をメークアップした
後、それぞれ各室に戻す循環系を有する。この場合、各
室水溶液の抜き出し及び供給の循環は、通常、ポンプを
用いて行うことができる。この循環系を形成させること
により連続的に電気透析精製を行い、中間室の循環系に
多価金属イオン等含有の水溶液を常時補給して、中間室
液として連続して多価金属イオン等を除去して精製し、
回収、再使用することができる。上記の電気透析連続的
操作において、陰極液循環系においては析出した多価金
属水酸化物を除去し電極液を補給し、中間室液の循環系
からは一部系外に流出させ、多価金属成分を含有する液
または含有イオン成分等を補給し、また、陽極液循環系
からは陽極室で生成した酸分に相当する量を一部系外に
流出させ、所定の水を補給する。陽極室及び中間室にお
いては、多価金属イオンが水素イオンに変換され酸が生
成するので、循環系から流出された陽極液及び中間室液
は、必要に応じ蒸発缶等で一部の水分を蒸発処理した
後、回収して金属の酸洗浄処理工程で再使用することが
できる。陰極液循環系からの多価金属水酸化物の除去
は、ろ過装置等を用いて行うことができ、単位時間当た
り陰極液内で生成する水酸化物と同量の水酸化物を系外
に排出するのが好ましい。ろ過方法は特に限定されず、
ベルトフィルター、フィルタープレス、プリコートフィ
ルター等が使用できる。なお、電解透析操作をバッチ方
式で実施する場合、多価金属水酸化物の排出は間歇的に
実施することができる。
In the present invention, a part of each chamber liquid contained in each chamber of the anode chamber, the intermediate chamber and the cathode chamber is extracted, treated as necessary, and each chamber liquid is made up. It has a circulation system that returns to the chamber. In this case, extraction and supply circulation of the aqueous solution in each chamber can usually be performed using a pump. By forming this circulation system, electrodialysis purification is continuously performed, and the circulation system in the intermediate chamber is constantly replenished with an aqueous solution containing polyvalent metal ions, etc. Removed and purified,
It can be collected and reused. In the above continuous electrodialysis operation, the polyvalent metal hydroxide that has precipitated is removed in the catholyte circulation system and the electrode solution is replenished. A liquid containing a metal component, a contained ionic component, or the like is replenished, and an amount corresponding to the acid component generated in the anode chamber is partially outflowed from the anolyte circulation system to replenish predetermined water. In the anode chamber and the intermediate chamber, polyvalent metal ions are converted to hydrogen ions to generate an acid, so the anolyte and intermediate chamber liquids flowing out from the circulation system may have part of their water content evaporated by an evaporator or the like. After the evaporation treatment, it can be recovered and reused in the metal acid cleaning treatment step. Removal of polyvalent metal hydroxide from the catholyte circulation system can be performed using a filtration device, etc., and the same amount of hydroxide as that produced in the catholyte per unit time is removed from the system. It is preferably discharged. The filtration method is not particularly limited,
Belt filters, filter presses, precoat filters, etc. can be used. When the electrolytic dialysis operation is carried out in a batch system, the discharge of the polyvalent metal hydroxide can be carried out intermittently.

【0011】本発明において、陰極液量は電気透析の進
行に伴い増加する傾向にある。それは、中間室からの陽
イオン拡散移動に伴われる浸透水があるためであり、浸
透水により陰極室中の陰極液は徐々に希薄化される。従
って、上記のように循環系に無機塩とpH緩衝剤からな
る電極液を適宜補給添加して陰極液組成を所定の範囲に
調整維持する。また、陽極液は電気透析の進行に伴い減
少し、酸濃度は上昇する傾向にある。これは、陽極での
酸生成と水の分解が起こるためである。従って、循環系
で水の添加と陽極液の系外への抜出しを調節することに
より、陽極液の酸濃度を所定の範囲に調整維持する。陽
極液の調節酸濃度は、電極寿命、電解電圧、蒸発缶によ
る水除去経費、金属の酸洗浄処理工程の水収支等により
最適な値を適宜選択できる。中間室液に含有される多価
金属イオンの水素イオンへの変換率は、電力原単位等の
電解性能、陽イオン交換膜への多価金属水酸化物付着
性、酸回収設備等の総合評価により、最適な値を適宜選
択できる。本発明において、中間室液として供給して好
適に処理される金属等酸洗浄廃液は、電気透析精製処理
に先立ち前処理することができる。一般に、酸洗浄廃液
は多価金属イオン等のほかに水素イオンを含有している
ので、予め、酸洗浄廃液を拡散透析処理し酸分のみを除
去することにより、多価金属イオン/水素イオン比を高
めることにより、電気透析精製での多価金属回収効率を
向上させることができる。
In the present invention, the amount of catholyte tends to increase with the progress of electrodialysis. This is because there is permeated water that accompanies the diffusion movement of cations from the intermediate chamber, and the catholyte in the cathodic chamber is gradually diluted by the permeated water. Therefore, as described above, an electrode solution comprising an inorganic salt and a pH buffer is appropriately replenished and added to the circulation system to adjust and maintain the composition of the catholyte within a predetermined range. Further, the anolyte tends to decrease with the progress of electrodialysis, and the acid concentration tends to increase. This is because acid generation and water decomposition occur at the anode. Therefore, the acid concentration of the anolyte is adjusted and maintained within a predetermined range by controlling the addition of water and the withdrawal of the anolyte from the system by the circulation system. The adjusted acid concentration of the anolyte can be appropriately selected as an optimum value depending on the life of the electrode, the electrolytic voltage, the cost of water removal by the evaporator, the water balance of the metal acid cleaning process, and the like. The conversion rate of polyvalent metal ions contained in the intermediate chamber liquid to hydrogen ions is the comprehensive evaluation of electrolytic performance such as electric power consumption, adhesion of polyvalent metal hydroxide to cation exchange membranes, acid recovery equipment, etc. Therefore, the optimum value can be appropriately selected. In the present invention, the waste liquid for washing with acid such as metal, which is preferably supplied as an intermediate chamber liquid and treated, can be pretreated prior to electrodialysis purification treatment. In general, the acid cleaning waste liquid contains hydrogen ions in addition to polyvalent metal ions. Therefore, the acid cleaning waste liquid is subjected to diffusion dialysis treatment in advance to remove only the acid content, so that the polyvalent metal ion / hydrogen ion ratio is increased. It is possible to improve the polyvalent metal recovery efficiency in electrodialysis purification by increasing the value.

【0012】[0012]

【実施例】以下、本発明の一実施例について図面を参照
しながら詳細に説明する。但し、本発明は下記実施例に
より制限されるものではない。図1は、本発明の一実施
例の電気透析フロー説明図である。図1の電気透析セル
は、陽極室2、中間室11及び陰極室13の3室からな
り、陽極室2と中間室11とは陰イオン交換膜により、
また陰極室13と中間室11とは陽イオン交換膜により
それぞれ隔離されて構成される。各室にはそれぞれ陽極
液循環ライン4、中間室液循環ライン10及び陰極液循
環ライン16による循環系が形成されている。図1にお
いて、陽極室2では、陽極1で水素イオン、酸素ガスま
たは塩素ガスが生成する。陽極液中に塩化物イオンが多
く存在する場合は塩素ガスが生成することがある。陽極
1で発生する酸素ガスまたは塩素ガスは陽極液循環ライ
ン4の途中のライン3から系外に排出される。一方、陽
極液の一部は、陽極液循環ライン4の途中のライン6か
ら回収酸として抜出され、蒸発缶または金属酸洗浄工程
に送られる。陽極室には陰イオン交換膜9を通って、中
間室11より陰イオンが移動してくる。陽極液循環ライ
ン4にライン5から水が供給される。また、中間室11
では陽イオン交換膜12を通って、多価金属イオン水素
イオンが陰極室13に移動する。中間室液は中間室液循
環ライン10の途中のライン7から被処理金属酸洗浄廃
液が供給され、途中のライン8から一部系外に抜出され
る。ライン8から抜出された中間室液は蒸発缶または金
属酸洗浄工程に送られる。陰極室13では、陰極14で
水素イオンが電子と結びつき水素ガスと水酸イオンを生
成する。生成された水素ガスは陰極液循環ライン16の
ライン15から系外に排出される。陰極室13では多価
金属イオンと水酸イオンが反応して多価金属水酸化物が
生成する。陽イオン交換膜12の陰極側は多価金属イオ
ンが水酸化物を生成しないようにpH緩衝剤で、pH値
を7〜9に維持される。陰極室13で生成した多価金属
水酸化物は、陰極液循環ライン16の途中に配置される
ろ過器17で分離し、ライン18から系外に排出し、ろ
液は陰極液循環ライン16に戻される。また、ライン1
9より陰極液循環系から系外に排出される量に見合う無
機塩及びpH緩衝剤が補給され所定の陰極液組成が維持
される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. However, the present invention is not limited to the following examples. FIG. 1 is an explanatory diagram of an electrodialysis flow according to an embodiment of the present invention. The electrodialysis cell of FIG. 1 is composed of three chambers, an anode chamber 2, an intermediate chamber 11 and a cathode chamber 13, and the anode chamber 2 and the intermediate chamber 11 are formed by an anion exchange membrane.
Further, the cathode chamber 13 and the intermediate chamber 11 are separated from each other by a cation exchange membrane. A circulation system including an anolyte circulation line 4, an intermediate chamber liquid circulation line 10 and a catholyte circulation line 16 is formed in each chamber. In FIG. 1, in the anode chamber 2, hydrogen ions, oxygen gas or chlorine gas is generated in the anode 1. If a large amount of chloride ions are present in the anolyte, chlorine gas may be generated. Oxygen gas or chlorine gas generated at the anode 1 is discharged out of the system through a line 3 in the middle of the anolyte circulation line 4. On the other hand, a part of the anolyte is withdrawn as a recovered acid from the line 6 in the middle of the anolyte circulation line 4 and sent to an evaporator or a metal acid washing step. Anions move from the intermediate chamber 11 to the anode chamber through the anion exchange membrane 9. Water is supplied from the line 5 to the anolyte circulation line 4. In addition, the intermediate chamber 11
Then, the polyvalent metal ions hydrogen ions move to the cathode chamber 13 through the cation exchange membrane 12. As the intermediate chamber liquid, the metal acid cleaning waste liquid to be treated is supplied from a line 7 in the middle of the intermediate chamber liquid circulation line 10, and a part of the liquid is withdrawn from the system through a line 8 in the middle. The intermediate chamber liquid extracted from the line 8 is sent to an evaporator or a metal acid cleaning step. In the cathode chamber 13, hydrogen ions combine with electrons at the cathode 14 to generate hydrogen gas and hydroxide ions. The produced hydrogen gas is discharged from the system through the line 15 of the catholyte circulation line 16. In the cathode chamber 13, polyvalent metal ions react with hydroxide ions to produce polyvalent metal hydroxide. On the cathode side of the cation exchange membrane 12, a pH buffer is used to prevent polyvalent metal ions from generating hydroxide, and the pH value is maintained at 7-9. The polyvalent metal hydroxide produced in the cathode chamber 13 is separated by a filter 17 arranged in the middle of the catholyte circulation line 16 and discharged to the outside of the system through a line 18, and the filtrate is fed to the catholyte circulation line 16. Will be returned. Also, line 1
The inorganic catholyte and the pH buffer corresponding to the amount discharged from the catholyte circulation system to the outside of the system are replenished from 9 to maintain a predetermined catholyte composition.

【0013】実施例1〜3 上記図1に示したものと同様な3室法電気透析セルを、
陽極室、中間室及び陰極室のセル枠にアクリル樹脂を用
い、10cm×10cmの電極寸法を有する陽極及び陰
極として共に白金メッキしたチタンエキスバンドメタル
を使用し、また、陽イオン交換膜としてデュポン社製の
商品名ナフィオンNE−450を、陰イオン交換膜とし
て旭硝子社製の商品名セレミオンAAVを使用して形成
した。上記のように形成した3室法電気透析セルを用
い、電流密度30A/dm2 、電解温度50±5℃の条
件で、表1に示した原液組成の各種酸洗浄廃液を3日間
電気透析した。その結果を表1に示した。
Examples 1 to 3 A three-chamber electrodialysis cell similar to that shown in FIG.
Acrylic resin was used for the cell frames of the anode chamber, the intermediate chamber and the cathode chamber, and platinum-plated titanium extract band metal was used as both the anode and the cathode having an electrode size of 10 cm × 10 cm, and the cation exchange membrane was manufactured by DuPont. Nafion NE-450 manufactured by Asahi Glass Co., Ltd. was used as an anion exchange membrane. Using the three-chamber electrodialysis cell formed as described above, various acid cleaning waste solutions having the stock solution compositions shown in Table 1 were electrodialyzed for 3 days under the conditions of current density of 30 A / dm @ 2 and electrolysis temperature of 50. +-. 5.degree. The results are shown in Table 1.

【0014】[0014]

【表1】 [Table 1]

【0015】比較例1〜3 陽極室、中間室及び陰極室をいずれもデュポン社製の商
品名ナフィオンNE−450を用いて隔離した以外は実
施例1と同様に形成した3室法電気透析セルを用い、陽
極液として2Nの硫酸を使用し、電流密度は30A/d
2 、電解温度を50±5℃の条件で、表2に示した原
液組成の各種酸酸洗浄廃液を3日間電気透析した。その
結果を表2に示した。
Comparative Examples 1 to 3 A three-chamber electrodialysis cell formed in the same manner as in Example 1 except that the anode chamber, the intermediate chamber and the cathode chamber were all isolated by using Nafion NE-450 (trade name) manufactured by DuPont. 2N sulfuric acid was used as the anolyte, and the current density was 30 A / d.
Under conditions of m 2 and electrolysis temperature of 50 ± 5 ° C., various acid / acid cleaning waste solutions having the stock solution compositions shown in Table 2 were electrodialyzed for 3 days. The results are shown in Table 2.

【0016】[0016]

【表2】 [Table 2]

【0017】上記実施例及び比較例より明らかなよう
に、本発明の電気透析精製法は、高い電流効率で金属酸
洗浄廃液等の多価金属イオン及び/または多価金属酸イ
オンを含有する水溶液から多価金属イオンを除去して精
製できることが分かる。
As is clear from the above Examples and Comparative Examples, the electrodialysis purification method of the present invention is an aqueous solution containing a polyvalent metal ion and / or a polyvalent metal acid ion such as a metal acid washing waste liquid with high current efficiency. It can be seen from the above that the polyvalent metal ion can be removed for purification.

【0018】[0018]

【発明の効果】本発明の電気透析精製法は、陽極室、中
間室及び陰極室の3室からなる電気透析セルにおいて、
隔膜として陰イオン交換膜と陽イオン交換膜を使用し、
また陰極液として無機塩とpH緩衝剤の混合水溶液を使
用し、中間室に被精製処理水溶液の多価金属イオン及び
/または多価金属酸イオンを含有する水溶液を収容して
電気透析することにより、従来法より低い電力原単位で
電気透析ができる。
The electrodialysis purification method of the present invention comprises an electrodialysis cell consisting of an anode chamber, an intermediate chamber and a cathode chamber,
Using anion exchange membrane and cation exchange membrane as the diaphragm,
In addition, by using a mixed aqueous solution of an inorganic salt and a pH buffer as a catholyte, and containing an aqueous solution containing a polyvalent metal ion and / or a polyvalent metal acid ion of the aqueous solution to be purified in the intermediate chamber and performing electrodialysis. , Electric dialysis can be performed with a lower power consumption rate than the conventional method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の電気透析フロー説明図であ
る。
FIG. 1 is an explanatory diagram of an electrodialysis flow according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 陽極 2 陽極室 3、5、6、7、8、15、18、19 ライン 4 陽極液循環ライン 9 陰イオン交換膜 10 中間室液循環ライン 11 中間室 12 陽イオン交換膜 13 陰極室 14 陰極 16 陰極液循環ライン 17 ろ過器 1 Anode 2 Anode Chamber 3, 5, 6, 7, 8, 15, 18, 19 Line 4 Anolyte Circulation Line 9 Anion Exchange Membrane 10 Intermediate Chamber Liquid Circulation Line 11 Intermediate Chamber 12 Cation Exchange Membrane 13 Cathode Chamber 14 Cathode 16 Catholyte circulation line 17 Filter

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 陽極室、中間室及び陰極室とからなる電
気透析装置において、中間室と陽極室とは陰イオン交換
膜で、中間室と陰極室とは陽イオン交換膜で隔離される
と共に、(a)陽極室に硫酸、塩酸、リン酸、塩素酸、
過塩素酸及びクロム酸から選ばれた1または2以上を含
有する水溶液を陽極液として収容し、(b)中間室に多
価金属イオン及び/または多価金属酸イオンを含有する
水溶液を収容し、且つ、(c)陰極室に無機塩及びpH
緩衝剤を含有する水溶液を陰極液として収容して通電す
ることにより中間室に収容する水溶液中の多価金属を減
少除去することを特徴とする電気透析精製法。
1. An electrodialyzer comprising an anode chamber, an intermediate chamber and a cathode chamber, wherein the intermediate chamber and the anode chamber are separated by an anion exchange membrane, and the intermediate chamber and the cathode chamber are separated by a cation exchange membrane. , (A) In the anode chamber, sulfuric acid, hydrochloric acid, phosphoric acid, chloric acid,
An aqueous solution containing one or more selected from perchloric acid and chromic acid was contained as an anolyte, and (b) an aqueous solution containing polyvalent metal ions and / or polyvalent metal acid ions was contained in the intermediate chamber. And (c) Inorganic salt and pH in the cathode chamber
An electrodialysis purification method characterized in that a polyvalent metal contained in an aqueous solution contained in an intermediate chamber is reduced and removed by accommodating an aqueous solution containing a buffer as a catholyte and energizing it.
【請求項2】 前記陽極室、中間室及び陰極室が、それ
ぞれ各室に収容する各水溶液を抜出し処理した後、再
び、各室に戻す循環系を有してなる請求項1記載の電気
透析精製法。
2. The electrodialysis according to claim 1, wherein each of the anode chamber, the intermediate chamber and the cathode chamber has a circulation system for returning the respective aqueous solutions stored in the respective chambers to the respective chambers. Purification method.
【請求項3】 前記陽極室の循環系において水が補給さ
れ、前記中間室の循環系において被電気透析液が補給さ
れ、且つ、前記陰極室の循環系において多価金属成分を
分離して所定の無機塩及びpH緩衝剤が補給されて処理
される請求項2記載の電気透析精製法。
3. A circulating system in the anode chamber is replenished with water, a circulating system in the intermediate chamber is replenished with electrodialysate, and a circulating system in the cathode chamber separates a polyvalent metal component to a predetermined amount. 3. The electrodialysis purification method according to claim 2, wherein the inorganic salt and the pH buffer are supplemented and treated.
【請求項4】 前記中間室に収容される水溶液に含有さ
れる多価金属成分が、陰極近傍にて水酸化物として沈澱
するように前記pH緩衝剤を選択して陰極液のpH値を
調整してなる請求項1〜3いずれか記載の電気透析精製
法。
4. The pH value of the catholyte is adjusted by selecting the pH buffering agent so that the polyvalent metal component contained in the aqueous solution contained in the intermediate chamber precipitates as a hydroxide near the cathode. The electrodialysis purification method according to any one of claims 1 to 3, wherein
【請求項5】 前記pH緩衝剤が、(1)アルカリ金
属、アルカリ土類金属、またはアンモニアの亜硫酸塩類
或いは亜硫酸水素塩類、(2)アンモニアの水酸化物、
硫酸塩、塩化物、硝酸塩、塩素酸塩または過塩素酸塩、
(3)リン酸、ホウ酸、酢酸、クエン酸、フタル酸、酒
石酸、乳酸、ジエチルバビルツル酸またはジメチルグリ
シンの酸類、及び、(4)2,4,6−トリメチルピリ
ジン、トリス(ヒドロキシメチル)アミノメタン、2−
アミノメチル1,3−プロパンジオール、エチルモルホ
リン、フェニルヒドラジン、アニリン、ピリジン、キノ
リン、ヘキサミンまたは尿素の含窒素化合物から選ばれ
た1または2以上である請求項1〜4いずれか記載の電
気透析精製法。
5. The pH buffer is (1) an alkali metal, an alkaline earth metal, or a sulfite or bisulfite of ammonia, (2) a hydroxide of ammonia,
Sulfate, chloride, nitrate, chlorate or perchlorate,
(3) Phosphoric acid, boric acid, acetic acid, citric acid, phthalic acid, tartaric acid, lactic acid, diethylbabirturic acid or dimethylglycine acids, and (4) 2,4,6-trimethylpyridine, tris (hydroxymethyl) Aminomethane, 2-
The electrodialysis purification according to any one of claims 1 to 4, which is one or more selected from nitrogen-containing compounds such as aminomethyl 1,3-propanediol, ethylmorpholine, phenylhydrazine, aniline, pyridine, quinoline, hexamine or urea. Law.
【請求項6】 前記多価金属が、鉄、ニッケル、クロ
ム、銅、亜鉛、アルミニウム、カドミウム、錫、アンチ
モン及びビスマスの1または2以上である請求項1〜5
いずれか記載の電気透析精製法。
6. The polyvalent metal is one or more of iron, nickel, chromium, copper, zinc, aluminum, cadmium, tin, antimony and bismuth.
The electrodialysis purification method according to any one.
JP16613894A 1994-06-24 1994-06-24 Purification by electrodialysis Pending JPH08966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16613894A JPH08966A (en) 1994-06-24 1994-06-24 Purification by electrodialysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16613894A JPH08966A (en) 1994-06-24 1994-06-24 Purification by electrodialysis

Publications (1)

Publication Number Publication Date
JPH08966A true JPH08966A (en) 1996-01-09

Family

ID=15825750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16613894A Pending JPH08966A (en) 1994-06-24 1994-06-24 Purification by electrodialysis

Country Status (1)

Country Link
JP (1) JPH08966A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006527067A (en) * 2003-04-30 2006-11-30 株式会社荏原製作所 Wastewater treatment method and apparatus
JP2010051863A (en) * 2008-08-27 2010-03-11 Omega:Kk Electrode structure
JP2016043290A (en) * 2014-08-20 2016-04-04 株式会社アルバック Electrodialyzer and electrodialysis method for cleaned waste water
CN113562820A (en) * 2021-07-22 2021-10-29 生态环境部华南环境科学研究所 High-efficient separator of inferior/phosphite in chemical nickel plating waste liquid
CN116081838A (en) * 2021-10-31 2023-05-09 中国石油化工股份有限公司 Method for treating organic phosphine wastewater by utilizing homogeneous catalysis wet oxidation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006527067A (en) * 2003-04-30 2006-11-30 株式会社荏原製作所 Wastewater treatment method and apparatus
JP2010051863A (en) * 2008-08-27 2010-03-11 Omega:Kk Electrode structure
JP2016043290A (en) * 2014-08-20 2016-04-04 株式会社アルバック Electrodialyzer and electrodialysis method for cleaned waste water
CN113562820A (en) * 2021-07-22 2021-10-29 生态环境部华南环境科学研究所 High-efficient separator of inferior/phosphite in chemical nickel plating waste liquid
CN116081838A (en) * 2021-10-31 2023-05-09 中国石油化工股份有限公司 Method for treating organic phosphine wastewater by utilizing homogeneous catalysis wet oxidation

Similar Documents

Publication Publication Date Title
JP6223442B2 (en) Method and apparatus for producing or recovering hydrochloric acid from a metal salt solution
US5264097A (en) Electrodialytic conversion of complexes and salts of metal cations
EP0149917B1 (en) Electrodialytic conversion of multivalent metal salts
US6827832B2 (en) Electrochemical cell and process for reducing the amount of organic contaminants in metal plating baths
JPH07118886A (en) Method for producing hydrocarbon from carbon dioxide
JPH0780253A (en) Electrodialytic purifying method
JPH08966A (en) Purification by electrodialysis
US20120156126A1 (en) Process and apparatus for precipitating cationic metal hydroxides and the recovery of sulfuric acid from acidic solutions
US5225054A (en) Method for the recovery of cyanide from solutions
KR960000306B1 (en) Membrane electrolysis apparatus
JPH0824586A (en) Method for electrodialysis-treating nitric acid and hydrofluoric acid washing waste liquid and device therefor
EP4026607A1 (en) Apparatus for producing acidic aqueous solution and method for producing acidic aqueous solution
WO1995023880A1 (en) Treatement of electrolyte solutions
EP1337472A1 (en) Process and apparatus for removal and destruction of dissolved nitrate.
US11794147B2 (en) Wastewater treatment method and wastewater treatment apparatus
JPS5837596A (en) Method of processing radioactive liquid waste containing nitrate
JP3651872B2 (en) Method for removing sulfate and chlorate radicals in brine
JPH08276187A (en) Method for electrochemical processing of sulfite-containing solution
JPS6018760B2 (en) Electrolytic recovery method of metallic zinc from acid solution containing zinc and iron generated from a metallic galvanizing factory
JPH0238536A (en) Separation of noble metal in acidic iridium solution
JPH0833830A (en) Method for electrodialytically refining aqueous iron ion-containing solution
JPS6160148B2 (en)
JPH0219500A (en) Method for regenerating iron plating solution
JPH0810581A (en) Cell for electrodialytic refining
CA2329553A1 (en) An electrochemical cell and process for reducing the amount of organic contaminants in metal plating baths