[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6018760B2 - Electrolytic recovery method of metallic zinc from acid solution containing zinc and iron generated from a metallic galvanizing factory - Google Patents

Electrolytic recovery method of metallic zinc from acid solution containing zinc and iron generated from a metallic galvanizing factory

Info

Publication number
JPS6018760B2
JPS6018760B2 JP52140594A JP14059477A JPS6018760B2 JP S6018760 B2 JPS6018760 B2 JP S6018760B2 JP 52140594 A JP52140594 A JP 52140594A JP 14059477 A JP14059477 A JP 14059477A JP S6018760 B2 JPS6018760 B2 JP S6018760B2
Authority
JP
Japan
Prior art keywords
zinc
iron
acid solution
acid
metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52140594A
Other languages
Japanese (ja)
Other versions
JPS5474224A (en
Inventor
嘉彦 高野
宏元 植嶋
赳夫 宇都宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP52140594A priority Critical patent/JPS6018760B2/en
Publication of JPS5474224A publication Critical patent/JPS5474224A/en
Publication of JPS6018760B2 publication Critical patent/JPS6018760B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は、鋼材の金属亜鉛メッキ工場におけるメッキ不
良品等の酸による溶解工程から生じる亜鉛、鉄を含有す
る酸溶液からの金属亜鉛の電解回収方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for electrolytically recovering metallic zinc from an acid solution containing zinc and iron generated from an acid dissolution process of defective plated products in a metal galvanizing factory for steel materials.

鋼材の電気又は熔融亜鉛メッキ工場においては、メッキ
不良品或いは熔融亜鉛俗のドロスや亜鉛酸化カス等の酸
による溶解工程から、既に溶解力が小さくなった亜鉛、
鉄を含む酸溶液が大量に発生する。
In electric or hot-dip galvanizing factories for steel materials, zinc whose dissolving power has already decreased due to the process of dissolving zinc with an acid such as defective plated products or dross from molten zinc and zinc oxide residue, etc.
A large amount of acid solution containing iron is generated.

従来、か)る酸溶液は、ほとんどの場合、アルカリで中
和後廃棄されているが、これは公害上の問題を引き起す
のみならず、資源の有効利用上好ましくない。最近では
、酸溶液中の亜鉛や鉄を回収しようとする試みも行なわ
れているが、未だ有効な手段は、開発されていない。本
発明は、上記のような亜鉛、鉄を含有する酸溶液から有
効成分を効率よく回収するための新規な方法を提供する
もので、その工業上の使用価値は極めて大きい。本発明
の回収方法は、上記酸溶液を電気エネルギーを利用し、
電解することにより、主に有効成分たる亜鉛を金属とし
て回収することにあるが、亜鉛、鉄を含有する酸溶液を
単に電解せしめたのでは、最初のうちこそ、金属亜鉛が
、比較的電流効率よく陰極に析出するものの、電解を更
に続行した場合には種々の問題が生じ、実質上電解は不
可能になる。即ち、電解を続行した場合には、亜鉛の析
出の電流効率が著しく低下すると同時に、陰極面に析出
した金属亜鉛の表面に多数の孔が生じ、亜鉛が再溶解し
てしまう現象が見られる。例えば、亜鉛65タノ夕、鉄
25夕/夕、遊離硫酸90夕/夕からなる酸溶液を、3
0午○、3.4A/d〆で電解を行なった場合、電解初
期には、亜鉛析出の電流効率が84%であるのが、電解
開始1時間後には、電流効率が72%に低下し、更に電
解を続行すると5時間後には陰極の析出亜鉛は完全に溶
解してしまう。本発明者は、このような現象を招くこと
なく、長期に亘つて安定して上記酸溶液から金属亜鉛を
回収できる方法を提供すべ〈研究を行なったところ該目
的の達成には、酸溶液中の酸濃度と鉄/亜鉛の濃度比が
大きく影響していることが見い出された。
Conventionally, in most cases, such acid solutions have been neutralized with alkali and then discarded, but this not only causes pollution problems but is also unfavorable from the standpoint of effective use of resources. Recently, attempts have been made to recover zinc and iron from acid solutions, but no effective means have yet been developed. The present invention provides a novel method for efficiently recovering active ingredients from acid solutions containing zinc and iron as described above, and has extremely high industrial value. The recovery method of the present invention utilizes electrical energy to convert the acid solution into
By electrolyzing, the main purpose is to recover zinc, which is an active ingredient, as a metal.However, if an acid solution containing zinc and iron is simply electrolyzed, the metal zinc will have a relatively low current efficiency. Although it is often deposited on the cathode, various problems occur when electrolysis is continued further, making electrolysis practically impossible. That is, when electrolysis is continued, the current efficiency for zinc deposition is significantly reduced, and at the same time, a large number of pores are formed on the surface of the metallic zinc deposited on the cathode surface, and the zinc is redissolved. For example, an acid solution consisting of 65 parts of zinc, 25 parts of iron, and 90 parts of free sulfuric acid,
When electrolysis is carried out at 3.4 A/d at 0:00, the current efficiency for zinc deposition is 84% at the beginning of electrolysis, but the current efficiency drops to 72% one hour after the start of electrolysis. If electrolysis is continued further, the zinc deposited on the cathode will be completely dissolved after 5 hours. The inventor of the present invention aims to provide a method for recovering metallic zinc from the acid solution in a stable manner over a long period of time without causing such a phenomenon. It was found that the acid concentration and the iron/zinc concentration ratio have a large influence.

即ち、酸濃度が大きい場合も、鉄ノ亜鉛の濃度比が大き
い場合も、上記現象は加速され、電流効率の低下及び析
出亜鉛の溶解を招くことになる。本発明は、上記新規な
知見に基き、且つか)る酸溶液中の鉄/亜鉛の濃度比を
調整する新規な手段を採用することにより、上記目的を
達成できる方法を提供する。
That is, both when the acid concentration is high and when the iron-to-zinc concentration ratio is high, the above phenomenon is accelerated, leading to a decrease in current efficiency and dissolution of precipitated zinc. The present invention provides a method that can achieve the above object by employing a novel means for adjusting the iron/zinc concentration ratio in the acid solution based on the above novel findings.

即ち、本発明の特徴とするところは、金属亜鉛メッキ工
場から生じる亜鉛、鉄を含有する駿溶液を脱酸してpH
O〜3に調整せしめた後、キレート性イオン交換樹脂と
接触せしめて、上記溶液中の鉄/亜鉛の濃度(夕/そ)
比を0.025以下にせしめて電解し、電解槽の陰極に
金属亜鉛を選択的に析出せしめることにある。亜鉛、鉄
を含有する酸溶液から電解法によって亜鉛を有効的に回
収する場合の前処理としてキレート性、イオン交換樹脂
で鉄のみを選択的に除去する方法は従来知られていない
。か)るキレート性イオン交換樹脂は上記酸溶液の場合
、驚くべきことにほぼ100%鉄のみを選択的に吸着し
鉄/亜鉛の濃度(夕/夕)比が容易に0.025以下に
することができる。か)る特性は、酸溶液のpHが、上
記比較的大きい範囲においてのみ発揮されるが、上記し
たように、本発明の場合、鉄、亜鉛を含有する酸溶液中
の酸濃度を低下させ、柵を高めることがもともと必要で
あるので、上記でpH力;高いことは何ら支障とならな
い。
That is, the feature of the present invention is that a solution containing zinc and iron produced from a metal galvanizing factory is deoxidized to adjust its pH.
After adjusting the concentration of iron/zinc in the solution to O ~ 3, contact it with a chelating ion exchange resin to determine the concentration of iron/zinc in the solution.
The purpose is to perform electrolysis with a ratio of 0.025 or less to selectively deposit metallic zinc on the cathode of an electrolytic cell. Conventionally, there is no known method for selectively removing only iron using a chelating or ion exchange resin as a pretreatment for effectively recovering zinc from an acid solution containing zinc and iron by electrolysis. Surprisingly, in the case of the above acid solution, the chelating ion exchange resin selectively adsorbs almost 100% of iron only, and easily reduces the iron/zinc concentration (T/T) ratio to 0.025 or less. be able to. The above characteristics are exhibited only when the pH of the acid solution is in the above-mentioned relatively large range, but as described above, in the case of the present invention, the acid concentration in the acid solution containing iron and zinc is reduced, Since it is originally necessary to raise the fence, the above-mentioned high pH does not pose any problem.

以下、本発明をその代表的フローシートを示した第1図
に従って説明すると、通常亜鉛溶解槽から排出される亜
鉛、鉄を含有する酸溶液1は、まずpH調整工程2に入
り、pHを0〜3、好ましくは、0.5〜1.5の範囲
に調整される。
Hereinafter, the present invention will be explained with reference to FIG. 1 showing a typical flow sheet thereof. An acid solution 1 containing zinc and iron normally discharged from a zinc dissolving tank first enters a pH adjustment step 2 to reduce the pH to 0. -3, preferably in the range of 0.5-1.5.

脱酸手段としては、遊離酸濃度を低下せしめればよく、
電気透析又は拡散透析が使用されるが、単に亜鉛の酸化
ガス又はドロスを添加して遊離酸濃度を低下せしめても
よい。電気透析又は拡散透析は、陽イオン交換膜及び/
又は陰イオン交換膜を使用した既知の手段が採用される
。電気透析又は、拡散透析により回収された酸(電気透
析のときは、濃縮液、拡散透析のときは回収液)は、必
要に応じて他の分野或いは亜鉛溶解槽で再使用される。
pHを調整された酸溶液3は、次いで、好ましくは、過
酸化水素、塩素などの適宜の酸化剤を使用してそこに含
まれる2価の鉄を3価の鉄にせしめる。
As a means of deoxidizing, it is sufficient to reduce the free acid concentration.
Electrodialysis or diffusion dialysis may be used, but zinc oxidizing gas or dross may simply be added to reduce the free acid concentration. Electrodialysis or diffusion dialysis uses a cation exchange membrane and/or
Alternatively, known means using an anion exchange membrane may be employed. The acid recovered by electrodialysis or diffusion dialysis (in the case of electrodialysis, the concentrated solution, in the case of diffusion dialysis, the recovered solution) is reused in other fields or in the zinc dissolution tank, as necessary.
The pH-adjusted acid solution 3 is then preferably converted to trivalent iron from the divalent iron contained therein using a suitable oxidizing agent such as hydrogen peroxide or chlorine.

而る後、該酸溶液キレート樹脂4と接触される。キレー
ト樹脂としてはスチレン系、フェノール類、アルデヒド
類の縮合体があるフェノール系、アクリルェステル系の
樹脂母体にキレート基としてジエチレントリアミン、ト
リヱチレンテトラミン、テトラエチレンベンタミン、ベ
ンタエチレンヘキサミン等のアミン類やィミノニ酢酸あ
るいは上記アミン類とハロゲン化酢酸と反応物であるア
ミノカルボン酸類、ジェタノールアミン、ジプロパノー
ルアミン等のアルコールアミン類、尿素、チオ尿素等の
尿素類のキレート基を導入したものが使用されるが、こ
の中でも特に(ただし、Mはアルカリ金属または水素、
R,,R2は水素またはアルキル基) で示されるフェノール化合物とフェノール額およびァル
デヒド類を架橋三次元化してなるフェノール系キレート
樹脂が好ましい。
Thereafter, it is brought into contact with the acid solution chelating resin 4. Chelate resins include styrene, phenols, phenolics with condensates of aldehydes, acrylester resins, and chelate groups such as amines such as diethylenetriamine, triethylenetetramine, tetraethylenebentamine, and bentaethylenehexamine. imiminoniacetic acid or aminocarboxylic acids which are reactants of the above amines and halogenated acetic acid, alcohol amines such as jetanolamine and dipropanolamine, and those into which chelate groups of ureas such as urea and thiourea have been introduced are used. (However, M is an alkali metal or hydrogen,
A phenolic chelate resin formed by three-dimensionally crosslinking a phenol compound represented by R, , R2 is hydrogen or an alkyl group, a phenol group, and an aldehyde is preferred.

キレート樹脂は、必要に応じて例えば、活性炭、石炭、
シリカゲル、ゼオライトに坦持して使用できる。酸溶液
とキレート樹脂との接触は、空間速度を好ましくは0.
1〜2.0特には0.2〜2.0にて行なわれる。
The chelate resin can be, for example, activated carbon, coal,
Can be used supported on silica gel or zeolite. The contact between the acid solution and the chelating resin is performed at a space velocity of preferably 0.
1 to 2.0, particularly 0.2 to 2.0.

なおキレート樹脂の再生は、好ましくは硫酸あるいは塩
酸等の鉱酸の再生剤5の作用により行なわれる。かくし
て酸溶液中の鉄/亜鉛の濃度比は0.025以下好まし
くは0.009〆下にせしめるようにする。酸濃度及び
鉄/亜鉛の濃度比を上記範囲に調整せしめた酸溶液6は
、続いて電解される。
The chelate resin is preferably regenerated by the action of a mineral acid regenerant 5 such as sulfuric acid or hydrochloric acid. Thus, the iron/zinc concentration ratio in the acid solution is made to be less than 0.025, preferably less than 0.009. The acid solution 6 whose acid concentration and iron/zinc concentration ratio have been adjusted to the above ranges is then electrolyzed.

本発明において、使用される電解槽7としては、既知の
ものが使用されるが、好ましくは、陽極として鈴、銀含
有鉛(Aタ約1%)、チタン白金メッキが使用され、陰
極としては、アルミニウム、鉄、ステンレスが使用され
る。特に陰極としてのアルミニウムの使用は、析出され
た亜鉛の剥離を極めて容易にし、本発明を成功裡に実施
させる。極間は、好ましくは15〜30脚に保持される
。遊離酸濃度を低くするために、必要に応じて使用され
る陰イオン交換膜としては、酸の透過性の小さい陰イオ
ン交換膜が好ましい。電解温度は、液の電気抵抗の観点
からは高い程有利であるが、過度に高い場合には、析出
亜鉛の純度が低下するので、好ましくは、20〜50q
oで実施される。電流密度は、高い程電解初期には、亜
鉛析出電流効率が良くなるが、樹枝状に析出しやすく、
電解が進むにつれて悪くなり、また陽極との短絡の危険
性があり、平滑な霞折面及び純度の良い亀祈亜鉛を得る
ためには、0.5〜1帆/dの、特には2〜弘/d〆が
好ましい。上記酸溶液を電解せしめる場合、酸溶液中の
遊離酸濃度及び鉄/亜鉛の濃度比は、電解の進行につれ
て、次の反応(酸が硫酸のとき)に従って、亜鉛が金属
として析出すると同時に遊離酸濃度及び鉄/亜鉛の濃度
比がいずれも増大する。
In the present invention, known electrolytic cells 7 are used, but preferably, bell, silver-containing lead (about 1% A), or titanium platinum plating is used as the anode, and as the cathode, , aluminum, iron, and stainless steel are used. In particular, the use of aluminum as the cathode makes stripping of the deposited zinc very easy and allows the invention to be carried out successfully. The distance between poles is preferably kept at 15 to 30 legs. As the anion exchange membrane used as needed to lower the free acid concentration, an anion exchange membrane with low acid permeability is preferable. The higher the electrolysis temperature is, the more advantageous it is from the viewpoint of the electrical resistance of the liquid, but if it is too high, the purity of the deposited zinc will decrease, so it is preferably 20 to 50q.
It will be carried out at o. The higher the current density, the better the current efficiency for zinc deposition at the initial stage of electrolysis, but the zinc deposition is more likely to occur in a dendritic form.
It gets worse as the electrolysis progresses, and there is a risk of short circuit with the anode, so in order to obtain a smooth hazy surface and high-purity Kameyori zinc, it is necessary to use 0.5 to 1 sail/d, especially 2 to 1 d. Hiro/d〆 is preferred. When the above acid solution is subjected to electrolysis, the free acid concentration and the iron/zinc concentration ratio in the acid solution change as the electrolysis progresses, and at the same time as zinc precipitates as a metal, free acid Both the concentration and the iron/zinc concentration ratio increase.

陰極:ZnS04→Zn(金属)十S042‐陽極:。Cathode: ZnS04→Zn (metal) 10S042-Anode:.

H−一を2川十′2日十十S042‐→日2S04 電解における酸溶液の遊離酸濃度及び鉄/亜鉛の濃度比
は、前者は好ましくは、200夕/そ以下〜pH4に相
当する濃度まで、特には、50夕/そ以下〜軸2に相当
する濃度の範囲、そして後者は好ましくは、0.7以下
特には0.1以下に保持するようにせしめられる。
The free acid concentration and the iron/zinc concentration ratio of the acid solution in electrolysis are preferably a concentration corresponding to 200 μm/or less to pH 4. The range of concentrations corresponding to axis 2 is from up to, in particular, below 50 m/s, and the latter is preferably kept below 0.7, in particular below 0.1.

従って、遊離酸濃度又は鉄/亜鉛の濃度比が上記範囲を
越えた場合には、電解をやめるか又は適宜の手段により
、遊離酸濃度及び鉄/亜鉛の濃度比を上記範囲に調整し
て電解を続けることができる。酸溶液の遊離酸濃度を上
記範囲に制御するには、例えば、電気透析又は拡散透析
が使用される。
Therefore, if the free acid concentration or iron/zinc concentration ratio exceeds the above range, either stop electrolysis or adjust the free acid concentration and iron/zinc concentration ratio to the above range by appropriate means and then start electrolysis. can continue. To control the free acid concentration of the acid solution within the above range, for example, electrodialysis or diffusion dialysis is used.

これらの電気透析又は拡散透析は、腸イオン交換膜及び
/又は陰イオン交換膜を使用した既知の手段が採用され
、電解中の酸溶液の一部を系外に取り出し、電気透析又
は拡散透析することにより、酸溶液中の酸がそこから除
去され、脱酸された酸溶液は、再び電解に戻される。電
気透析又は拡散透析により回収された酸(電気透析のと
きの濃縮液、拡散透析のときの回収液)は必要に応じて
他の分野或いは亜鉛溶解槽で再使用される。遊離酸濃度
を制御するためには、酸溶液を電解する電解槽7の陰極
及び陽極を陰イオン交換膜8で区画し、酸溶液を陰極室
に供給し電解することによっても行なわれうる。即ち、
か)る場合には、電解槽の陽極室に、適宜の電解質溶液
、好ましくは処理される酸溶液のと同じ酸を存在させて
電解することにより、電解につれて陰極室の酸溶液中の
酸根(例えば、S04‐‐,01−など)は、陰イオン
交換膜を通じて陽極に移行し、陽極で生成する水素イオ
ンと反応して酸が生成、回収される。か)る場合には、
陰極室において、酸濃度が供給した当初以上には増大し
ないので、陰極における亜鉛の析出にとって特に好まし
い。また酸溶液中の鉄/亜鉛の濃度比は、例えば上記の
ようにして遊離酸濃度を低下せしめた後、上記したキレ
ート樹脂と接触させることにより容易に制御調整するこ
とができる。
For these electrodialysis or diffusion dialysis, known means using intestinal ion exchange membranes and/or anion exchange membranes are adopted, and a part of the acid solution during electrolysis is taken out of the system and subjected to electrodialysis or diffusion dialysis. Thereby, the acid in the acid solution is removed therefrom and the deoxidized acid solution is returned to the electrolysis. The acid recovered by electrodialysis or diffusion dialysis (concentrated solution during electrodialysis, recovered solution during diffusion dialysis) is reused in other fields or in the zinc dissolution tank as necessary. The free acid concentration can also be controlled by separating the cathode and anode of the electrolytic cell 7 for electrolyzing the acid solution with an anion exchange membrane 8, and supplying the acid solution to the cathode chamber for electrolysis. That is,
(2), the acid radicals ( For example, S04--, 01-, etc.) migrate to the anode through an anion exchange membrane, react with hydrogen ions generated at the anode, and produce and recover acid. ), if
It is particularly favorable for the deposition of zinc at the cathode, since in the cathode chamber the acid concentration does not increase beyond what was originally supplied. Further, the iron/zinc concentration ratio in the acid solution can be easily controlled by, for example, reducing the free acid concentration as described above and then bringing it into contact with the chelate resin described above.

かくして、本発明によれば、上記酸溶液の電解は支障な
く実施され、そして、電解槽の陰極に回収された電折金
属亜鉛は、優れた純度、品質を有するので、金属亜鉛と
して種々の用途に利用でき、例えば熔融亜鉛格に循環し
て使用できる。
Thus, according to the present invention, the electrolysis of the acid solution is carried out without any problems, and the electrolyzed metal zinc recovered at the cathode of the electrolytic cell has excellent purity and quality, and can be used for various purposes as metal zinc. For example, it can be recycled to molten zinc.

一方、亜鉛析出後の母液たる酸溶液9は、亜鉛そして鉄
濃度が低下しているので、再び亜鉛溶解槽に循環使用で
きる。もちろん、場合によっては、循環使用することな
く、中和した後廃棄することもできる。なお、本発明に
て処理される亜鉛、鉄を含有する酸溶液(亜鉛、鉄は酸
塩の形態にある)は、上記したように、鋼材の電気又は
熔融亜鉛メッキ工場において、メッキ不良品、或いは熔
融亜鉛格のドロスや亜鉛酸化ガス等の酸による溶解工程
から所謂廃液として得られるような亜鉛濃度50〜10
0夕/夕、鉄濃度5〜100夕/そ、遊離酸濃度50〜
100夕/そのものが主な対象となる。これは、特に廃
液と称されるものでなくともよく、未だ酸溶解液として
有効なものでもよい。酸の種類としては、例えば、硫酸
、塩酸などであるが、電解操作の容易さからなかでもよ
い硫酸溶液が好ましい。駿溶液中には上記亜鉛、鉄以外
に、本発明の特に電解の実施にあたって支障にならない
ような他の金属又は物質が含有されていてもよい。以下
に本発明を更に具体的に示すために実施例を挙げるが、
本発明は、上記の記載及び下記の実施例によって限定さ
れることなく本発明の範囲内で種々の変更が可能である
On the other hand, the acid solution 9, which is the mother liquor after zinc precipitation, has a reduced concentration of zinc and iron, so it can be recycled to the zinc dissolving tank again. Of course, depending on the case, it may be disposed of after being neutralized without being recycled. In addition, as mentioned above, the acid solution containing zinc and iron (zinc and iron are in the form of an acid salt) treated in the present invention is used to remove defective plated products, Or a zinc concentration of 50 to 10, such as that obtained as so-called waste liquid from a dissolution process using acids such as molten zinc-grade dross or zinc oxide gas.
0 evening/evening, iron concentration 5~100 evening/so, free acid concentration 50~
100 evenings/ itself is the main target. This does not need to be particularly called a waste liquid, and may be one that is still effective as an acid dissolving liquid. Examples of the acid include sulfuric acid and hydrochloric acid, but sulfuric acid solution is preferred because of ease of electrolytic operation. In addition to the above-mentioned zinc and iron, the Shun solution may contain other metals or substances that do not interfere with the implementation of the present invention, especially the electrolysis. Examples are given below to demonstrate the present invention more specifically, but
The present invention is not limited by the above description and the following examples, and various modifications can be made within the scope of the present invention.

実施例 1 溶融亜鉛メッキの不良品、治具の酸溶解槽から排出され
る亜鉛97.6夕/そ、鉄6.4タノク、硫酸60夕/
夕を含む廃液10.8夕に亜鉛酸化ガス380夕を溶解
して、遊離硫酸を10夕/夕に低下させ、更に過酸化水
素40夕を添加することにより、廃液中の鉄イオンの酸
化処理を行なった。
Example 1 Defective hot-dip galvanized products, zinc discharged from the acid dissolving tank of the jig: 97.6 yen/so, iron: 6.4 yen, sulfuric acid: 60 yen/so
Oxidation treatment of iron ions in the waste liquid was carried out by dissolving 380 g of zinc oxide gas in the waste liquid containing 10.8 g and reducing the free sulfuric acid to 10 g/g and further adding 40 g of hydrogen peroxide. I did this.

その結果、亜鉛131夕/Z、鉄6.4夕/そ、硫酸1
0夕/そになった。この処理液5.42をキレート樹脂
塔に供給して除鉄を行なった。キレート樹脂にはを使用
し、 −CH2NrくCH2COOH)2 酸溶液を空間速度0.4で供給した。
As a result, zinc 131/Z, iron 6.4/Z, sulfuric acid 1
0 evening/It became so. 5.42 ml of this treated solution was supplied to a chelate resin tower to remove iron. A -CH2Nr(CH2COOH)2 acid solution was used as the chelate resin and supplied at a space velocity of 0.4.

このようにして除鉄された酸液は亜鉛131夕/そ、鉄
0.2夕/夕、硫酸10夕/れこなった。次いで、上記
酸溶液を、陰極として、アルミニウム、陽極として鉛を
使用する無隔膿電解槽(陰極面積4.凶〆、極間距離2
伽)に供V給し、液温を40こ0に維持しながら弘/d
めで電解を行なった。
The acid solution thus iron-removed contained 131 t/d of zinc, 0.2 d/d of iron, and 10 d/d of sulfuric acid. Next, the above acid solution was applied to a non-separated electrolytic tank using aluminum as the cathode and lead as the anode (cathode area: 4 mm, distance between electrodes: 2
伽) while maintaining the liquid temperature at 40℃.
I carried out electrolysis.

電解を9.5時間継続したところ陰極に純度99.9%
の金属亜鉛471.4夕が得られ、その析出電流効率は
83%であった。電解槽から排出された酸溶液は、亜鉛
43.7夕/夕、鉄0.22/そ、硫酸100.8夕/
そであり、再び酸溶解槽に循環使用した。比較例 実施例で得られた酸化処理液を実施例と異なり、イオン
交予算塔に供給することなく、そのまま電解槽にて電解
した。
After electrolysis continued for 9.5 hours, the purity of the cathode was 99.9%.
471.4 pieces of metallic zinc were obtained, and the deposition current efficiency was 83%. The acid solution discharged from the electrolytic cell contains 43.7 t/d of zinc, 0.22/d of iron, and 100.8 d/d of sulfuric acid.
It was used again for circulation in the acid dissolution tank. Comparative Example Unlike the Example, the oxidized liquid obtained in the Example was directly electrolyzed in an electrolytic cell without being supplied to an ion exchanger.

電解槽は実施例と同型式のものを使用し且つ同条件で実
施した。電解当初には、電流効率97%で金属亜鉛が析
出したが、電解を続行したところ、電解開始2時間後に
は52%に低下し、更に3時間後には陰極に析出した亜
鉛が、電解液に溶解し始めた。実施例 2 熔融亜鉛メッキ不良品のメッキ溶解工程から排出された
亜鉛75.0夕/そ、鉄10.1夕/そ、硫酸70.1
夕/夕を含む廃液を、電気透析により脱酸して、pHI
.0にした液をキレート樹脂塔に供給して除鉄を行なっ
た。
The same type of electrolytic cell as in the example was used and the experiment was carried out under the same conditions. At the beginning of electrolysis, metallic zinc was deposited with a current efficiency of 97%, but when electrolysis was continued, it decreased to 52% 2 hours after the start of electrolysis, and after another 3 hours, the zinc deposited on the cathode was absorbed into the electrolyte. It started to dissolve. Example 2 Zinc discharged from the plating melting process of defective hot-dip galvanized products: 75.0 mm of zinc/10.1 mm of iron/70.1 mm of sulfuric acid
The waste liquid containing S/N was deoxidized by electrodialysis and the pH
.. The zero-strength liquid was supplied to a chelate resin tower to remove iron.

キレート樹脂には実施例1と同じものを使用し、酸溶液
を空間速度1.0で供給した。このようにして得られた
酸液は、鉄/亜鉛の濃度比が0.003であり、この酸
溶液を電解した。電解槽は、陽極、陰極は実施例1と同
じであるが、該両極間を陰イオン交換膜“セレミオンA
AV”(旭硝子社製水素イオン灘透性陰イオン交換膜商
品名)を使用して陰極室と陽極室を区分し、上記脱酸液
を陰極室に稀送150夕/時間で供給、循環し、陽極室
には100夕/その硫酸を流速100夕/時間で供給、
循環し、電流密度5A/dので1斑時間運転した。陰極
には、純度99.9%の外観の美しい金属亜鉛が析出し
、その析出電流効率は%であった。またこの時点での陰
極液組成は、亜鉛 夕/そ、鉄 夕/夕、硫酸 夕/そ
であり、陽極液の硫酸濃度は123夕/そであり、酸溶
解槽に循環使用した。
The same chelate resin as in Example 1 was used, and the acid solution was supplied at a space velocity of 1.0. The acid solution thus obtained had an iron/zinc concentration ratio of 0.003, and was electrolyzed. In the electrolytic cell, the anode and cathode are the same as in Example 1, but an anion exchange membrane "Celemion A" is used between the two electrodes.
A cathode chamber and an anode chamber were separated using "AV" (a hydrogen ion permeable anion exchange membrane product name manufactured by Asahi Glass Co., Ltd.), and the deoxidizing solution was supplied and circulated to the cathode chamber at a rate of 150 evenings/hour. , the sulfuric acid was supplied to the anode chamber at a flow rate of 100 m/hour,
It was cycled and operated for one period at a current density of 5 A/d. Metallic zinc with a purity of 99.9% and a beautiful appearance was deposited on the cathode, and the deposition current efficiency was %. The composition of the catholyte at this point was zinc oxide/oxide, iron oxide/oxide, and sulfuric acid oxide/oxide, and the sulfuric acid concentration in the anolyte was 123 oxide/oxide, which was recycled to the acid dissolution tank.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明方法を実施するフローシートの一例で
ある。 1・…・・亜鉛、鉄を含有する酸溶液、2・・…・抑調
整工程、4・・・・・・キレート樹脂塔、7・・・・・
・電解槽。
FIG. 1 is an example of a flow sheet for carrying out the method of the present invention. 1... Acid solution containing zinc and iron, 2... Suppression step, 4... Chelate resin tower, 7...
・Electrolytic cell.

Claims (1)

【特許請求の範囲】 1 金属亜鉛メツキ工場から生じる亜鉛、鉄を含有する
酸溶液を脱酸してpH0〜3に調整せしめた後、一般式
▲数式、化学式、表等があります▼ (ただし、Mはア
ルカリ金属または水素、R_1,R_2は水素またはア
ルキル基)で示されるフエノール化合物とフエノール類
およびアルデヒド類を架橋三次元化してなるフエノール
系キレート樹脂と接触せしめて上記溶液中の鉄/亜鉛の
濃度(g/l)比を0.025以下にせしめて電解し、
電解槽の陰極に金属亜鉛を選択的に析出せしめるように
したことを特徴とする上記亜鉛、鉄を含有する酸溶液か
らの金属亜鉛の電解回収方法。 2 脱酸は電気透析法又は拡散透析法による特許請求の
範囲第1項記載の方法。 3 電解は陰イオン交換膜で区画された電解槽を使用し
、該電解槽の陰極室にて上記酸溶液を電解することによ
り、酸根を陽極室に移行させて脱酸しながら実施する特
許請求の範囲第1項記載の方法。
[Claims] 1. After deoxidizing an acid solution containing zinc and iron produced from a metal galvanizing factory and adjusting the pH to 0 to 3, the general formula ▲ includes mathematical formulas, chemical formulas, tables, etc. ▼ (however, M is an alkali metal or hydrogen, R_1 and R_2 are hydrogen or alkyl groups), and the iron/zinc in the solution is brought into contact with a phenolic chelate resin obtained by cross-linking three-dimensionally phenols and aldehydes. Electrolyze with a concentration (g/l) ratio of 0.025 or less,
A method for electrolytically recovering metallic zinc from an acid solution containing zinc and iron, characterized in that metallic zinc is selectively deposited on the cathode of an electrolytic cell. 2. The method according to claim 1, in which deoxidation is performed by electrodialysis or diffusion dialysis. 3. A patent claim in which electrolysis is carried out using an electrolytic cell partitioned by an anion exchange membrane, and by electrolyzing the acid solution in the cathode chamber of the electrolytic cell, the acid radicals are transferred to the anode chamber and deoxidized. The method described in item 1.
JP52140594A 1977-11-25 1977-11-25 Electrolytic recovery method of metallic zinc from acid solution containing zinc and iron generated from a metallic galvanizing factory Expired JPS6018760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52140594A JPS6018760B2 (en) 1977-11-25 1977-11-25 Electrolytic recovery method of metallic zinc from acid solution containing zinc and iron generated from a metallic galvanizing factory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52140594A JPS6018760B2 (en) 1977-11-25 1977-11-25 Electrolytic recovery method of metallic zinc from acid solution containing zinc and iron generated from a metallic galvanizing factory

Publications (2)

Publication Number Publication Date
JPS5474224A JPS5474224A (en) 1979-06-14
JPS6018760B2 true JPS6018760B2 (en) 1985-05-11

Family

ID=15272315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52140594A Expired JPS6018760B2 (en) 1977-11-25 1977-11-25 Electrolytic recovery method of metallic zinc from acid solution containing zinc and iron generated from a metallic galvanizing factory

Country Status (1)

Country Link
JP (1) JPS6018760B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102080236A (en) * 2010-12-20 2011-06-01 湘西自治州兴湘科技开发有限责任公司 Purifying method of electrolyte used for production of high purity zinc

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077937A (en) * 1983-10-03 1985-05-02 Toppan Printing Co Ltd Metal recovering apparatus
US6514414B1 (en) * 2000-09-08 2003-02-04 Clariant Finance (Bvi) Limited Process for separation and removal of iron ions from basic zinc solution
KR100779594B1 (en) * 2001-11-09 2007-11-26 주식회사 포스코 Method for retrieving zinc contained in the solution used to chemical-polish zinc electroplating layer
CN110923470B (en) * 2019-12-16 2020-10-02 长沙华时捷环保科技发展股份有限公司 Comprehensive recovery process of zinc electrolysis waste liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102080236A (en) * 2010-12-20 2011-06-01 湘西自治州兴湘科技开发有限责任公司 Purifying method of electrolyte used for production of high purity zinc

Also Published As

Publication number Publication date
JPS5474224A (en) 1979-06-14

Similar Documents

Publication Publication Date Title
US3470044A (en) Electrolytic regeneration of spent ammonium persulfate etchants
EP1165443B1 (en) Water purification process
US4435256A (en) Process for making potassium ferrate [Fe(VI)] by the electrochemical formation of sodium ferrate
US5478448A (en) Process and apparatus for regenerating an aqueous solution containing metal ions and sulfuric acid
JP2009270188A (en) Method of manufacturing high-purity lithium hydroxide
JPH0532453B2 (en)
US3969207A (en) Method for the cyclic electrochemical processing of sulfuric acid-containing pickle waste liquors
JPS6018760B2 (en) Electrolytic recovery method of metallic zinc from acid solution containing zinc and iron generated from a metallic galvanizing factory
US3406108A (en) Regeneration of spent ammonium persulfate etching solutions
CN104651880B (en) The method that a kind of decopper(ing) point cyanogen simultaneous PROCESS FOR TREATMENT silver smelts the lean solution containing cyanogen
JP2005298870A (en) Method for recovering metal indium by electrowinning
JPH0489316A (en) Method for recovering copper sulfate from aqueous copper chloride solution containing hydrochloric acid
US5524780A (en) Control of regeneration of ammoniacal copper etchant
JPH06172881A (en) Desilvering or silver recovering method
CA1214748A (en) Process for nickel electroreplenishment for nickel refinery electrolyte
WO1995023880A1 (en) Treatement of electrolyte solutions
JPH04231487A (en) Regeneration method of pickling waste liquor containing metal salt and acid
JPH0699178A (en) Electrolytical treating method for waste chemical plating liquid
JPH08966A (en) Purification by electrodialysis
JPS592754B2 (en) Electrolytic recovery method for antimony, arsenic, mercury and tin
US3616322A (en) Process for purifying a catholyte used for electrolytic hydrodimerization of acrylonitrile
CN108754374A (en) A kind of zinc-plated online deferrization process using hydrogen peroxide and limewash
JP3651872B2 (en) Method for removing sulfate and chlorate radicals in brine
JPS58136786A (en) Diaphragm system electrolytic reduction method
JPS6142791B2 (en)