JPS6160148B2 - - Google Patents
Info
- Publication number
- JPS6160148B2 JPS6160148B2 JP53012093A JP1209378A JPS6160148B2 JP S6160148 B2 JPS6160148 B2 JP S6160148B2 JP 53012093 A JP53012093 A JP 53012093A JP 1209378 A JP1209378 A JP 1209378A JP S6160148 B2 JPS6160148 B2 JP S6160148B2
- Authority
- JP
- Japan
- Prior art keywords
- cathode
- anode
- copper
- diaphragm
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 29
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 21
- 229910017604 nitric acid Inorganic materials 0.000 claims description 21
- 239000002253 acid Substances 0.000 claims description 19
- 229910052802 copper Inorganic materials 0.000 claims description 19
- 239000010949 copper Substances 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 18
- 239000002699 waste material Substances 0.000 claims description 14
- 239000007788 liquid Substances 0.000 claims description 13
- 150000001450 anions Chemical class 0.000 claims description 11
- 238000005554 pickling Methods 0.000 claims description 11
- 229910000859 α-Fe Inorganic materials 0.000 claims description 11
- 150000001768 cations Chemical class 0.000 claims description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 9
- 239000012528 membrane Substances 0.000 claims description 7
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 6
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 239000010936 titanium Substances 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 238000005868 electrolysis reaction Methods 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 239000000243 solution Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000003011 anion exchange membrane Substances 0.000 description 2
- 238000005341 cation exchange Methods 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- NQNBVCBUOCNRFZ-UHFFFAOYSA-N nickel ferrite Chemical compound [Ni]=O.O=[Fe]O[Fe]=O NQNBVCBUOCNRFZ-UHFFFAOYSA-N 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/36—Regeneration of waste pickling liquors
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrolytic Production Of Metals (AREA)
Description
【発明の詳細な説明】
本発明は、銅及び硝酸を含有する廃液から、電
解により硝酸及び金属銅粉末を再生し、回収する
方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for regenerating and recovering nitric acid and metallic copper powder from a waste liquid containing copper and nitric acid by electrolysis.
各種金属加工業における銅の酸洗仕上工程にお
いては、かなり高濃度で硝酸を含有する溶液が用
いられている。例えば銅条、銅線、銅パート又は
銅合金製品を仕上洗浄する場合には高濃度の硝酸
又は硝酸と硫酸の混合液が使用されている。とこ
ろでこのような場合に使用される酸溶液に共通す
る問題点は、作業量に応じて金属濃度の上昇、及
び酸濃度の低下をきたし、作業能率が次第に低下
してやがて使用限界に達するようになることであ
る。この結果、生成した酸溶液は、多くの場合専
門業者に引取らせるか、あるいは中和処理、凝集
沈殿処理後上澄液のみを排水することによつて処
理されているが、これには多額の経費が必要なた
め、経営上、経済的に多くの負担を与える原因と
なつている。 In the pickling and finishing process of copper in various metal processing industries, solutions containing nitric acid at a fairly high concentration are used. For example, when finishing cleaning copper strips, copper wires, copper parts, or copper alloy products, highly concentrated nitric acid or a mixture of nitric acid and sulfuric acid is used. By the way, a common problem with acid solutions used in such cases is that the metal concentration increases and the acid concentration decreases depending on the amount of work, and the work efficiency gradually decreases until the limit of use is reached. It is what happens. As a result, the generated acid solution is often treated by a specialist company, or by draining only the supernatant after neutralization or coagulation/precipitation treatment, but this requires a large amount of money. This is a major financial burden on management as it requires additional expenses.
他方、金属含有廃液を電解処理して、これより
金属を回収し、前記したような経済的負担を軽減
する試みもなされている。しかしながら、前記し
たような高濃度の酸溶液の場合、電解によりいつ
たん析出した金属が再び酸に溶解したり、析出し
た金属が陰極表面に付着して回収困難になる上
に、強酸に耐えうる電極材料として白金、ロジウ
ムのような高価な貴金属を使用しなければならら
ないため、工業的に実用化するには多くの難点が
ある。 On the other hand, attempts have also been made to electrolytically treat metal-containing waste liquids to recover metals therefrom, thereby reducing the above-mentioned economic burden. However, in the case of a highly concentrated acid solution as mentioned above, the precipitated metal may dissolve in the acid once again due to electrolysis, or the precipitated metal may adhere to the cathode surface, making it difficult to recover. Since expensive noble metals such as platinum and rhodium must be used as electrode materials, there are many difficulties in putting this method into practical use industrially.
本発明者らは銅又は銅合金製品の酸洗い廃液か
ら、簡単に金属銅及び硝酸を回収する方法を開発
するためにに鋭意研究を重ねた結果、電解装置に
工夫を加えるとともに、陰極側のPHを特定範囲内
に制御することにより、陰極側に金属銅を粉末状
態で析出させるとともに、陽極側に硝酸を再生し
うることを見出し、この知見に基づいて本発明を
なすに至つた。 The inventors of the present invention have conducted intensive research to develop a method for easily recovering metallic copper and nitric acid from pickling waste liquid of copper or copper alloy products. We have discovered that by controlling the pH within a specific range, it is possible to precipitate metallic copper in powder form on the cathode side and regenerate nitric acid on the anode side, and based on this knowledge, we have accomplished the present invention.
すなわち、本発明は、銅又は銅合金製品の酸洗
い工程で生じる銅及び硝酸を含有する酸廃液を、
両極のうちの少なくとも陽極をフエライト電極と
し、かつ陽極と陰極の間にアニオン隔膜とカチオ
ン隔膜との組合せ、あるいは複数の両性膜の組合
せにより陽極域、中間域及び陰極域を形成させた
装置内で、陰極域のPHを0.5〜2.0の範囲内に維持
しながら電解処理し、陽極域に硝酸を、陰極域に
粉末状態の銅を再生させることを特徴とする酸廃
液の処理方法を提供するものである。 That is, the present invention uses acid waste liquid containing copper and nitric acid generated in the pickling process of copper or copper alloy products.
In a device in which at least the anode of both electrodes is a ferrite electrode, and an anode region, an intermediate region, and a cathode region are formed between the anode and the cathode by a combination of an anion diaphragm and a cation diaphragm, or a combination of a plurality of amphoteric films. , to provide a method for treating acid waste liquid, which is characterized by performing electrolytic treatment while maintaining the pH of the cathode region within the range of 0.5 to 2.0, and regenerating nitric acid in the anode region and powdered copper in the cathode region. It is.
本発明方法においては、電極の中、少なくとも
陽極の方は、フエライト電極とする必要がある。
このようなフエライト電極としては、NiO5〜40
モル%とFe2O395〜60モル%からなるニツケルフ
エライト電極やCoO5〜40モル%とFe2O395〜60
モル%からなるコバルトフエライト電極が好適で
ある。陰極の方は必ずしもフエライト電極である
必要はなく、電解の際に慣用されている電極、例
えば鉄電極、炭素電極、チタン電極などでもよ
い。 In the method of the present invention, at least the anode among the electrodes must be a ferrite electrode.
Such ferrite electrodes include NiO5~40
Nickel ferrite electrode consisting of 95-60 mol% of Fe 2 O 3 and 5-40 mol % of CoO or 95-60 mol % of Fe 2 O 3
A cobalt ferrite electrode consisting of mol % is preferred. The cathode is not necessarily a ferrite electrode, but may be an electrode commonly used in electrolysis, such as an iron electrode, a carbon electrode, or a titanium electrode.
本発明方法において、陽極と陰極の間に介在さ
せるアニオン隔膜は、電解に際しアニオンのみを
通過させる隔膜であつて、このようなものとして
は、セレミオンAMV、ASV及びDMV(いずれも
旭硝子社製、強塩基性陰イオン交換膜の登録商標
名)、ネオセプタAV−4T、AF−4T、AVS−4T
及びASF−4T(いずれも徳山曹達社製、強塩基
性陰イオン交換膜の登録商標名)などをあげるこ
とができる。また、カチオン隔膜は、電解に際
し、カチオンのみを通過させる隔膜であつて、こ
のようなものとしては、セレミオンCMV(旭硝
子社製、強酸性陽イオン交換膜の登録商標名)、
ネオセプタCL−25T、CH−45T及びC66−5T
(いずれも徳山曹達社製、強酸性陽イオン交換膜
の登録商標名)などをあげることができる。さら
に、両性隔膜は、電解に際し、陽極側から陰極側
へカチオンを、また陰極側から陽極側へアニオン
をそれぞれ通過させる性質をもつ隔膜であつて、
このようなものとしては、例えばネオセプタ
CSV(徳山曹達社製、両性膜の登録商標名)が
ある。 In the method of the present invention, the anion diaphragm interposed between the anode and the cathode is a diaphragm that allows only anions to pass through during electrolysis. (Registered trademark name of basic anion exchange membrane), Neocepta AV-4T, AF-4T, AVS-4T
and ASF-4T (both manufactured by Tokuyama Soda Co., Ltd., registered trademarks of strong basic anion exchange membranes). In addition, a cation diaphragm is a diaphragm that allows only cations to pass through during electrolysis, and examples of such membranes include Selemion CMV (manufactured by Asahi Glass Co., Ltd., a registered trademark of a strong acidic cation exchange membrane),
Neocepta CL-25T, CH-45T and C66-5T
(all manufactured by Tokuyama Soda Co., Ltd., registered trademarks of strong acidic cation exchange membranes). Furthermore, an amphoteric diaphragm is a diaphragm that has the property of allowing cations to pass from the anode side to the cathode side and anions from the cathode side to the anode side during electrolysis, and
Examples of this include neoceptor
There is CSV (manufactured by Tokuyama Soda Co., Ltd., a registered trademark name for amphoteric membrane).
本発明方法における電解は、通常の電解条件、
例えば電圧2〜100V、電流50〜500Aを用いて行
うことができる。電流密度は、アニオン隔膜とカ
チオン隔膜併用の場合、0.5〜5A/dm2、両性隔
膜の場合10〜50A/dm2の範囲が好適である。こ
の際、陰極域のPHを0.5〜2.0の範囲内に保持する
ことが必要であり、必要ならば適量の酸を添加し
て調節する。このPHが0.5よりも低くなると銅を
粉末状で回収することができないし、またPHが
2.0よりも高くなると金属の析出が十分に行われ
なくなる。 The electrolysis in the method of the present invention is carried out under normal electrolytic conditions,
For example, it can be performed using a voltage of 2 to 100V and a current of 50 to 500A. The current density is preferably in the range of 0.5 to 5 A/dm 2 when an anion diaphragm and a cation diaphragm are used together, and in the range of 10 to 50 A/dm 2 in the case of an amphoteric diaphragm. At this time, it is necessary to maintain the pH of the cathode region within the range of 0.5 to 2.0, and if necessary, adjust it by adding an appropriate amount of acid. If this pH is lower than 0.5, copper cannot be recovered in powder form, and the pH is lower than 0.5.
If it is higher than 2.0, metal precipitation will not be sufficient.
次に添附図面に従つて本発明方法をさらに詳細
に説明する。 Next, the method of the present invention will be explained in more detail with reference to the accompanying drawings.
第1図は、本発明方法においてアニオン隔膜と
カチオン隔膜の組合せを用いて行う実施態様の例
を示すフローシートであつて、電解槽1はアニオ
ン隔膜2とカチオン隔膜3により陽極室4、中間
室5′及び陰極室6に分離されており、陽極室4
には陽極としてフエライト電極7、陰極室6には
陰極として鉄電極8がそれぞれ配置されている。 FIG. 1 is a flow sheet showing an example of an embodiment using a combination of an anion diaphragm and a cation diaphragm in the method of the present invention. 5' and a cathode chamber 6, and an anode chamber 4.
A ferrite electrode 7 is arranged as an anode in , and an iron electrode 8 is arranged as a cathode in the cathode chamber 6 .
酸洗層9からポンプ10によつて汲み上げられ
た銅及び硝酸を含有する酸洗廃液は、供給管11
を通つて中間室5に導入される。陽極7と陰極8
の間に電圧を印加し、電解を行うと、廃液中の銅
イオンはカチオン隔膜3を通つて陰極8に至り、
電荷を与えて金属銅粉末となり析出する。この
際、酸例えば硝酸又は硫酸の添加により、陰極室
6のPHを0.5〜2.0に調節することが必要である。
析出した銅粉末は、陰極室6の底部に設けられた
取出口12より取り出される。 The pickling waste liquid containing copper and nitric acid pumped up from the pickling layer 9 by the pump 10 is fed to the supply pipe 11.
is introduced into the intermediate chamber 5 through. Anode 7 and cathode 8
When a voltage is applied between them and electrolysis is performed, the copper ions in the waste liquid pass through the cation diaphragm 3 and reach the cathode 8.
When charged, it becomes metallic copper powder and precipitates. At this time, it is necessary to adjust the pH of the cathode chamber 6 to 0.5 to 2.0 by adding an acid such as nitric acid or sulfuric acid.
The deposited copper powder is taken out from an outlet 12 provided at the bottom of the cathode chamber 6.
他方、電解によつて生じた陰イオンは、アニオ
ン隔膜2を通つて陽極7に至り、ここで硝酸とし
て再生される。この再生された硝酸は、排出管1
3を経て、酸洗層9へ返送循環させる。このよう
にして、円滑な酸洗処理が維持されるとともに金
属銅の回収がなされる。 On the other hand, anions generated by electrolysis reach the anode 7 through the anion diaphragm 2, where they are regenerated as nitric acid. This regenerated nitric acid is transferred to the discharge pipe 1
3 and then returned to the pickling layer 9 for circulation. In this way, a smooth pickling process is maintained and metallic copper is recovered.
次に、第2図は、5枚の両性隔膜を用いた本発
明の実施態様の例を示すフローシートであつて、
電解槽1は5枚の両性隔膜20,21,22,2
3及び24によつて陽極室4、陰極室6及び4個
の中間室25,26,27及び28に分離され、
陽極室4には陽極としてフエライト電極7、陰極
室6には陰極としてフエライト電極8がそれぞれ
配置されている。このように構成された電解装置
の陰極室以外の任意の室に、酸洗層9からポンプ
10によつて汲み上げた銅含有酸洗廃液を供給管
11を経て供給し、電解処理すると陰極室6に金
属銅粉末が析出する。この析出した金属銅粉末
は、取出口12より取り出される。他方、陽極室
4で再生された酸は、排出管13を通つて酸洗層
9へ返送循環される。この場合も、前記と同様、
酸の添加により陰極室6のPHを0.5〜2.0の範囲に
維持することが必要である。この両性隔膜を用い
る場合、この数を1枚にすると、陽極室の酸濃度
の上昇、金属分の減少、及び陰極室の酸濃度の減
少、陰極板上への金属析出はある程度認められる
が、その効率はあまり良好でない。したがつて、
両性隔膜は少なくとも2枚両極間に介在される必
要がある。 Next, FIG. 2 is a flow sheet showing an example of an embodiment of the present invention using five amphoteric diaphragms,
The electrolytic cell 1 has five amphoteric diaphragms 20, 21, 22, 2.
3 and 24 into an anode chamber 4, a cathode chamber 6 and four intermediate chambers 25, 26, 27 and 28,
A ferrite electrode 7 is placed in the anode chamber 4 as an anode, and a ferrite electrode 8 is placed in the cathode chamber 6 as a cathode. The copper-containing pickling waste liquid pumped up from the pickling layer 9 by the pump 10 is supplied to any chamber other than the cathode chamber of the electrolyzer configured in this way through the supply pipe 11, and when electrolyzed, the cathode chamber 6 Metallic copper powder is deposited on the surface. This precipitated metallic copper powder is taken out from the takeout port 12. On the other hand, the acid regenerated in the anode chamber 4 is circulated back to the pickling layer 9 through the discharge pipe 13. In this case as well, as above,
It is necessary to maintain the pH of the cathode chamber 6 in the range of 0.5 to 2.0 by adding acid. When using this amphoteric diaphragm, if the number is reduced to one, an increase in the acid concentration in the anode chamber, a decrease in the metal content, a decrease in the acid concentration in the cathode chamber, and a certain amount of metal precipitation on the cathode plate will be observed. Its efficiency is not very good. Therefore,
At least two ampholytic diaphragms must be interposed between the two poles.
以上、2つの実施態様について説明したが、実
際にいずれの態様を選ぶかは、使用する隔膜の酸
に対する耐久性や電解条件などを考慮して決めら
れる。そして、このいずれの態様によつても、目
的とする金属銅粉末の回収及び硝酸の再生を同時
に、かつ良好な効率を行うことができる。 Although two embodiments have been described above, which embodiment is actually selected is determined by taking into consideration the acid durability of the diaphragm used, electrolytic conditions, etc. In either of these embodiments, the desired recovery of metallic copper powder and the regeneration of nitric acid can be performed simultaneously and with good efficiency.
本発明方法によると、高価な貴金属めつき電極
を用いることなく、銅含有酸性廃液からの金属銅
の回収及び酸の再生を同時に、かつ効率よく行う
ことができるので、工業的方法として非常に有意
義である。 According to the method of the present invention, metallic copper can be recovered from copper-containing acidic waste liquid and acid can be regenerated simultaneously and efficiently without using expensive noble metal plated electrodes, so it is very meaningful as an industrial method. It is.
次に実施例を示す。 Next, examples will be shown.
実施例 1
第1図に示す装置において、アニオン隔膜とし
てセレミオンAMV、カチオン隔膜としてセレミ
オンCMV、フエライト電極として40モル%の酸
化ニツケルとFe2O3に換算して60モル%の酸化鉄
からなるニツケルフエライト電極をそれぞれ使用
し、硝酸銅40g/を含有する硝酸濃度15%の廃
液を陽極室4及び中間室5に10ずつ、陰極室6
に硝酸水溶液(PH1)10を入れ、電気分解し
た。この際の電解条件は次のとおりであつた。Example 1 In the apparatus shown in FIG. 1, Selemion AMV was used as the anion diaphragm, Selemion CMV was used as the cation diaphragm, and nickel consisting of 40 mol% nickel oxide and 60 mol% iron oxide in terms of Fe 2 O 3 was used as the ferrite electrode. Using ferrite electrodes, 10 waste liquids with a nitric acid concentration of 15% containing 40 g of copper nitrate were placed in each of the anode chamber 4 and the intermediate chamber 5, and the cathode chamber 6.
A nitric acid aqueous solution (PH1) 10 was added to the solution and electrolyzed. The electrolysis conditions at this time were as follows.
電流密度 4A/dm2
処理時間 50時間
廃液供給速度 2/分
電極間距離 120mm
隔膜間距離 100mm
このようにして、陰極室から銅粉末160gが回
収され、陽極室に硝酸濃度28.5%の酸が再生され
た。Current density 4A/dm 2 Processing time 50 hours Waste liquid supply rate 2/min Distance between electrodes 120 mm Distance between diaphragms 100 mm In this way, 160 g of copper powder was recovered from the cathode chamber, and acid with a nitric acid concentration of 28.5% was regenerated in the anode chamber. It was done.
実施例 2
第2図に示す装置において、両性膜としてネオ
セプタCSVを用い、実施例1と同様の廃液を、
同様の処理条件で電気分解した。Example 2 In the apparatus shown in Fig. 2, Neocepta CSV was used as the amphoteric membrane, and the same waste liquid as in Example 1 was
Electrolyzed under similar processing conditions.
このようにして、陰極室から銅粉末162gが回
収され、陽極室に硝酸濃度25.0%の酸が再生され
た。 In this way, 162 g of copper powder was recovered from the cathode chamber, and acid with a nitric acid concentration of 25.0% was regenerated into the anode chamber.
第1図はアニオン隔膜とカチオン隔膜とを併用
する本発明方法のフローシート、第2図は両性膜
を用いる本発明方法のフローシートをそれぞれ示
す。図中符号1は電解槽、4は陽極室、5,2
5,26,27及び28は中間室、6は陰極室、
7は陽極、8は陰極である。
FIG. 1 shows a flow sheet for the method of the present invention using a combination of an anion diaphragm and a cation diaphragm, and FIG. 2 shows a flow sheet for the method of the present invention using an amphoteric membrane. In the figure, 1 is an electrolytic cell, 4 is an anode chamber, 5, 2
5, 26, 27 and 28 are intermediate chambers, 6 is a cathode chamber,
7 is an anode, and 8 is a cathode.
Claims (1)
び硝酸を含有する酸廃液を、両極のうちの少なく
とも陽極をフエライト電極とし、かつ陽極と陰極
の間にアニオン隔膜とカチオン隔膜との組合せ、
あるいは複数の両性膜の組合せにより陽極域、中
間域及び陰極域を形成させた装置内で、陰極域の
PHを0.5〜2.0の範囲内に維持しながら電解処理
し、陽極域に硝酸を、陰極域に粉末状態の銅を再
生させることを特徴とする酸廃液の処理方法。 2 陰極として鉄、炭素又はチタンを用いる特許
請求の範囲第1項記載の方法。 3 陰極域に硝酸又は硫酸を添加することにより
PHを0.5〜2.0に維持する特許請求の範囲第1項記
載の方法。[Scope of Claims] 1. An acid waste solution containing copper and nitric acid produced in the pickling process of copper or copper alloy products is processed by using a ferrite electrode as at least the anode of both electrodes, and an anion diaphragm and a cation diaphragm between the anode and the cathode. combination with diaphragm,
Alternatively, in a device in which an anode region, an intermediate region, and a cathode region are formed by a combination of multiple amphoteric membranes, the cathode region
A method for treating acid waste liquid, which comprises performing electrolytic treatment while maintaining the pH within a range of 0.5 to 2.0 to regenerate nitric acid in the anode region and powdered copper in the cathode region. 2. The method according to claim 1, wherein iron, carbon, or titanium is used as the cathode. 3 By adding nitric acid or sulfuric acid to the cathode area
The method according to claim 1, wherein the pH is maintained between 0.5 and 2.0.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1209378A JPS54104439A (en) | 1978-02-06 | 1978-02-06 | Recovering method for metallic copper from waste acidic solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1209378A JPS54104439A (en) | 1978-02-06 | 1978-02-06 | Recovering method for metallic copper from waste acidic solution |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS54104439A JPS54104439A (en) | 1979-08-16 |
JPS6160148B2 true JPS6160148B2 (en) | 1986-12-19 |
Family
ID=11795948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1209378A Granted JPS54104439A (en) | 1978-02-06 | 1978-02-06 | Recovering method for metallic copper from waste acidic solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS54104439A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0631857B2 (en) * | 1983-06-13 | 1994-04-27 | 神鋼パンテック株式会社 | Electrolytic release dyeing method |
JP4709995B2 (en) * | 2004-05-17 | 2011-06-29 | 国立大学法人富山大学 | Method for recovering useful metals contained in waste liquid |
FI124812B (en) * | 2010-01-29 | 2015-01-30 | Outotec Oyj | Method and apparatus for the manufacture of metal powder |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50140394A (en) * | 1974-04-27 | 1975-11-11 | ||
JPS516803A (en) * | 1974-06-10 | 1976-01-20 | Hitachi Ltd | KINZOKUYOKAISHORIHOHO OYOBI SONOSOCHI |
JPS5135394A (en) * | 1974-09-20 | 1976-03-25 | Fuji Electric Co Ltd | |
JPS5135395A (en) * | 1974-09-20 | 1976-03-25 | Fuji Electric Co Ltd | |
JPS51135173A (en) * | 1975-05-19 | 1976-11-24 | Asahi Glass Co Ltd | Method of treating waste liquor containing acids and metal salts there of |
-
1978
- 1978-02-06 JP JP1209378A patent/JPS54104439A/en active Granted
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50140394A (en) * | 1974-04-27 | 1975-11-11 | ||
JPS516803A (en) * | 1974-06-10 | 1976-01-20 | Hitachi Ltd | KINZOKUYOKAISHORIHOHO OYOBI SONOSOCHI |
JPS5135394A (en) * | 1974-09-20 | 1976-03-25 | Fuji Electric Co Ltd | |
JPS5135395A (en) * | 1974-09-20 | 1976-03-25 | Fuji Electric Co Ltd | |
JPS51135173A (en) * | 1975-05-19 | 1976-11-24 | Asahi Glass Co Ltd | Method of treating waste liquor containing acids and metal salts there of |
Also Published As
Publication number | Publication date |
---|---|
JPS54104439A (en) | 1979-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3764503A (en) | Electrodialysis regeneration of metal containing acid solutions | |
US6531050B1 (en) | Water purification process | |
US4306952A (en) | Electrolytic process and apparatus | |
US5264097A (en) | Electrodialytic conversion of complexes and salts of metal cations | |
JPH10128338A (en) | Method and device for preventing scale from being deposited in electric regeneration type continuous desalting apparatus | |
EP0247713A1 (en) | Method for the purification of zinc sulphate electrolyte | |
US20030089622A1 (en) | Electrochemical cell and process for reducing the amount of organic contaminants in metal plating baths | |
US3394068A (en) | Electrodialysis of pickle liquor using sequestrants | |
Bolger et al. | Electrochemical treatment and reuse of nickel plating rinse waters | |
JPS6160148B2 (en) | ||
JPH0780253A (en) | Electrodialytic purifying method | |
JPH06256999A (en) | Method for recovering and regenerating tin plating liquid | |
JPH0489316A (en) | Method for recovering copper sulfate from aqueous copper chloride solution containing hydrochloric acid | |
JPH01162789A (en) | Method and device for recovering metal deposited on carrier | |
JPH08966A (en) | Purification by electrodialysis | |
US4310395A (en) | Process for electrolytic recovery of nickel from solution | |
JPH0824586A (en) | Method for electrodialysis-treating nitric acid and hydrofluoric acid washing waste liquid and device therefor | |
JPS6376884A (en) | Method for regenerating chromate treatment liquid | |
JP3112807B2 (en) | Method of treating iron chloride solution containing nickel | |
JPH0238536A (en) | Separation of noble metal in acidic iridium solution | |
JP3242289B2 (en) | Method for treating iron chloride solution containing copper and nickel | |
JP3112805B2 (en) | Method of treating iron chloride solution containing nickel | |
JPH0219500A (en) | Method for regenerating iron plating solution | |
JP3651872B2 (en) | Method for removing sulfate and chlorate radicals in brine | |
JPS59170282A (en) | Method and device for electrolyzing dilute aqueous caustic alkali solution |