JPH08327006A - Supercritical variable pressure once-through boiler - Google Patents
Supercritical variable pressure once-through boilerInfo
- Publication number
- JPH08327006A JPH08327006A JP13353595A JP13353595A JPH08327006A JP H08327006 A JPH08327006 A JP H08327006A JP 13353595 A JP13353595 A JP 13353595A JP 13353595 A JP13353595 A JP 13353595A JP H08327006 A JPH08327006 A JP H08327006A
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- peripheral wall
- steam
- wall
- outlet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B29/00—Steam boilers of forced-flow type
- F22B29/06—Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
- F22B29/067—Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes operating at critical or supercritical pressure
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は電力事業用その他、産業
用の超臨界圧変圧貫流ボイラの火炉系統構成に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a furnace system configuration of a supercritical pressure transformer once-through boiler for power utilities and other industries.
【0002】[0002]
【従来の技術】図6は従来の超臨界圧変圧貫流ボイラの
構成の一例を示す系統図である。図において、後部煙道
(20)内に配置された図示しない節炭器を出たボイラ
水は、火炉入口連絡管(1)を経て火炉(22)の下部
にある火炉周壁蒸発管入口管寄せ(4)に入り、ほぼ垂
直に配置された火炉周壁を構成する火炉周壁蒸発管
(2)内を加熱されつつ上昇して火炉最上部に至る。そ
して火炉周壁蒸発管出口管寄せ(5)から、火炉出口連
絡管(6)を経て気水分離器(7)に流入し、ここで蒸
気とドレンに分離される。気水分離器(7)で分離され
た蒸気は、過熱器入口連絡管(21)を経て過熱器(1
7)へと流れる。一方、気水分離器(7)で分離された
ドレンは、ドレン排出管(9)を経て循環ポンプ(1
9)により前記節炭器の入口に戻される。この場合当然
なことながら、気水分離器(7)内のドレンレベルが一
定レベル以下とならぬように、ドレンレベル調整弁(1
8)により制御されるようになっている。2. Description of the Related Art FIG. 6 is a system diagram showing an example of the configuration of a conventional supercritical pressure transformer once-through boiler. In the figure, the boiler water exiting the economizer (not shown) arranged in the rear flue (20) passes through the furnace inlet connecting pipe (1) and then moves toward the furnace peripheral wall evaporation pipe inlet pipe located at the lower part of the furnace (22). (4) Enters and goes up to the uppermost part of the furnace while being heated in the furnace peripheral wall evaporation pipe (2) which constitutes the furnace peripheral wall arranged almost vertically. Then, it enters the steam / water separator (7) from the furnace peripheral wall evaporating pipe outlet header (5) through the furnace outlet connecting pipe (6), where it is separated into steam and drain. The steam separated by the steam separator (7) passes through the superheater inlet communication pipe (21) and is passed through the superheater (1
It flows to 7). On the other hand, the drain separated by the steam separator (7) passes through the drain discharge pipe (9) and the circulation pump (1
It is returned to the inlet of the economizer by 9). In this case, as a matter of course, the drain level adjusting valve (1) should be set so that the drain level in the steam separator (7) does not fall below a certain level.
8).
【0003】このような系統を有する従来のボイラの火
炉周壁蒸発管(2)に対する設計上の考慮点としては、
貫流型ということもあり、火炉出口流体のエンタルピレ
ベルは図5に示す火炉の静特性データのように、亜臨界
圧領域では飽和温度よりも高く設定されるが、次項で述
べる理由によって、その過熱度が極力小さくなるように
設計されている。Design considerations for the furnace peripheral wall evaporation pipe (2) of the conventional boiler having such a system are as follows.
Since it is a once-through type, the enthalpy level of the fluid at the outlet of the furnace is set higher than the saturation temperature in the subcritical pressure region as shown in the static characteristic data of the furnace shown in Fig. 5, but due to the reason described in the next section, its overheating It is designed to be as small as possible.
【0004】[0004]
【発明が解決しようとする課題】前項に述べたような従
来のボイラにおいて、火炉周壁蒸発管出口部の管群間で
温度アンバランスが発生する問題がある。これは、炉内
の燃焼状況によって壁面内の熱吸収量に偏差が発生した
場合に、これが各蒸発管の出口流体温度のアンバランス
となって現れるものである。火炉周壁のメタル温度にア
ンバランスが生じると、それに伴う熱応力による火炉耐
圧部の障害が危惧されるので、この温度アンバランスを
防止する対応策の早期確立が迫られている。In the conventional boiler as described in the preceding paragraph, there is a problem that a temperature imbalance occurs between the tube groups at the outlet of the evaporating tubes of the peripheral wall of the furnace. This is because when there is a deviation in the amount of heat absorption in the wall surface due to the combustion condition in the furnace, this appears as an imbalance in the outlet fluid temperature of each evaporation tube. If an imbalance occurs in the metal temperature of the peripheral wall of the furnace, there is a risk of damage to the pressure-resistant part of the furnace due to the associated thermal stress. Therefore, early establishment of a countermeasure to prevent this temperature imbalance is urgently required.
【0005】これに対する設計上の配慮としては、各蒸
発管の入口にオリフィス等を設け、熱吸収偏差に応じて
給水量を調整することにより、出口流体温度のアンバラ
ンスを抑えることがまず考えられるが、熱吸収量の偏差
や給水配分特性はボイラ負荷によって変化するから、こ
の方法で温度アンバランスを無くすことは現実には難し
い。As a design consideration for this, it is first considered that an orifice or the like is provided at the inlet of each evaporation pipe and the amount of water supplied is adjusted according to the heat absorption deviation to suppress the imbalance of the outlet fluid temperature. However, it is actually difficult to eliminate the temperature imbalance by this method because the deviation of the heat absorption amount and the water supply distribution characteristic change depending on the boiler load.
【0006】そこで、この温度アンバランスを無くす根
本的な方法として、火炉周壁蒸発管出口の流体エンタル
ピレベルをウェットの状態としての火炉の設計を行なう
ことが考えられる。そうすれば、先に引用した図5の火
炉静特性データのa〜b間で多少の熱吸収量の差、つま
り流体エンタルピのアンバランスが発生しても、流体の
温度としては飽くまでも飽和温度で一定となるから、温
度差としては表われないことになる。Therefore, as a fundamental method for eliminating this temperature imbalance, it is conceivable to design the furnace such that the fluid enthalpy level at the outlet of the furnace peripheral wall evaporator tube is in a wet state. Then, even if there is some difference in the amount of heat absorption between a and b of the static characteristic data of the furnace shown in FIG. 5, that is, the imbalance of the fluid enthalpy occurs, the temperature of the fluid is saturated at the saturation temperature. Since it becomes constant, it does not appear as a temperature difference.
【0007】しかしながら、火炉の体格寸法は燃料が完
全燃焼するのに必要な空間として決定されるのであるか
ら、それ以下に火炉を小さくして火炉周壁の伝熱面積を
減らすことはできない。そのために、火炉周壁出口のボ
イラ水系統に付加して、更に蒸発器の役割を果たす伝熱
面を後流側に設けることにより、火炉周壁蒸発管出口の
流体エンタルピレベルをウエットに設計する例もあっ
た。図7は、そのような従来の事例の火炉特性を示す図
である。しかしながらこの場合、静特性的にはウエット
となっても、動特性的には同図に示すように、メタルの
蓄熱容量により「負荷上げ」と「負荷下げ」とでヒステ
リシスを持った特性を示す。特に「負荷下げ」の場合
は、図に示されるように大きな過熱度の発生する可能性
がある。また図8は、上記図7の場合と異なり、蒸発器
からなる伝熱面が後部煙道に設けられていないボイラの
場合であり、静的には火炉周壁蒸発管出口の流体のエン
タルピレベルが図7の事例よりも高い(ドライ)が、蒸
発器のメタル重量が少ない分、動的な過熱度の上昇はや
や少ない特性を示している。However, since the size of the furnace is determined as the space required for complete combustion of the fuel, it is not possible to make the furnace smaller than that and reduce the heat transfer area of the peripheral wall of the furnace. Therefore, there is also an example in which the fluid enthalpy level at the outlet of the furnace peripheral wall evaporation pipe is designed to be wet by adding it to the boiler water system at the outlet of the furnace peripheral wall and further providing a heat transfer surface that functions as an evaporator on the downstream side. there were. FIG. 7 is a diagram showing the furnace characteristics of such a conventional case. However, in this case, even if the static characteristic is wet, as shown in the figure, the dynamic characteristic shows a characteristic that there is a hysteresis between "load increase" and "load decrease" due to the heat storage capacity of the metal. . Especially in the case of "load reduction", a large degree of superheat may occur as shown in the figure. Further, FIG. 8 is different from the case of FIG. 7 in the case of the boiler in which the heat transfer surface composed of the evaporator is not provided in the rear flue, and statically the enthalpy level of the fluid at the furnace peripheral wall evaporation pipe outlet is Although it is higher (dry) than the case of FIG. 7, the characteristic that the dynamic increase in superheat degree is slightly small due to the small metal weight of the evaporator is shown.
【0008】このように過熱度の上昇に伴って温度アン
バランスが発生すると、火炉壁面内に大きな熱応力が生
ずるから、負荷変化に伴う熱応力の繰り返しにより、火
炉耐圧部はその寿命を消費し、ひいては損傷によりボイ
ラの運転に支障を来す恐れもある。When a temperature imbalance occurs due to an increase in the degree of superheat as described above, a large thermal stress is generated in the wall surface of the furnace. Therefore, the thermal resistance of the furnace consumes its life due to the repeated thermal stress caused by the load change. As a result, damage may hinder the operation of the boiler.
【0009】[0009]
【課題を解決するための手段】本発明者は、前記従来の
課題を解決するために、次のような超臨界圧変圧貫流ボ
イラを提案するものである。 〔1〕周壁が伝熱管により構成された火炉と、同火炉内
下部に燃料および燃焼用空気を投入して燃焼させるバー
ナとを備え、上記火炉内で発生した燃焼ガスが火炉周壁
に熱吸収されつつ上昇し上記火炉の上部から後部煙道へ
流れる超臨界圧変圧貫流ボイラにおいて、上記火炉周壁
を上下に分割し、上側の周壁を蒸冷壁とするとともに、
下側の周壁を亜臨界圧運転時に常に気液二相流が存在す
る水冷壁としたことを特徴とする超臨界圧変圧貫流ボイ
ラ。 〔2〕上記〔1〕の要件に加えて、上記下側の周壁の伝
熱管出口に設けられた周壁蒸発管出口管寄せが気水分離
器の入口に接続され、同気水分離器の蒸気出口が上記上
側の周壁の伝熱管入口に設けられた蒸冷壁入口管寄せに
接続されるとともに、上記気水分離器のドレン出口が過
熱器の上流および/または中段に設けられた減温器のス
プレイ水入口に接続されたことを特徴とする超臨界圧変
圧貫流ボイラ。 〔3〕周壁が伝熱管により構成された火炉と、同火炉内
上部に燃料および燃焼用空気を投入して燃焼させるバー
ナとを備え、上記火炉内で発生した燃焼ガスが火炉周壁
に熱吸収されつつ下降し上記火炉の下部から後部煙道へ
流れる超臨界圧変圧貫流ボイラにおいて、上記火炉周壁
を上下に分割し、下側の周壁を蒸冷壁とするとともに、
上側の周壁を亜臨界圧運転時に常に気液二相流が存在す
る水冷壁としたことを特徴とする超臨界圧変圧貫流ボイ
ラ。 〔4〕上記〔3〕の要件に加えて、上記上側の周壁の伝
熱管出口に設けられた周壁蒸発管出口管寄せが気水分離
器の入口に接続され、同気水分離器の蒸気出口が上記下
側の周壁の伝熱管入口に設けられた蒸冷壁入口管寄せに
接続されるとともに、上記気水分離器のドレン出口が過
熱器の上流および/または中段に設けられた減温器のス
プレイ水入口に接続されたことを特徴とする超臨界圧変
圧貫流ボイラ。 〔5〕上記〔2〕または上記〔4〕の要件に加えて、上
記気水分離器の蒸気出口が、上記蒸冷壁入口管寄せに直
接ではなく、上記後部煙道に配された横置の低温過熱器
および上記減温器を順次介して、上記蒸冷壁入口管寄せ
に接続されたことを特徴とする超臨界圧変圧貫流ボイ
ラ。In order to solve the above-mentioned conventional problems, the present inventor proposes the following supercritical pressure transformer once-through boiler. [1] A furnace having a peripheral wall composed of a heat transfer tube and a burner for injecting fuel and combustion air into the lower part of the furnace for combustion are provided, and combustion gas generated in the furnace is absorbed by the peripheral wall of the furnace. In the supercritical pressure transformer once-through boiler that flows up from the upper part of the furnace to the rear flue while dividing, the furnace peripheral wall is divided into upper and lower parts, and the upper peripheral wall is a steam cooling wall,
A supercritical pressure transformer once-through boiler, wherein the lower peripheral wall is a water-cooled wall in which gas-liquid two-phase flow always exists during subcritical pressure operation. [2] In addition to the requirement of [1] above, the peripheral wall evaporation pipe outlet header provided at the heat transfer pipe outlet of the lower peripheral wall is connected to the inlet of the steam separator, and the steam of the steam separator is provided. A desuperheater whose outlet is connected to a steam-cooling wall inlet header provided at the heat transfer pipe inlet of the upper peripheral wall, and a drain outlet of the steam separator is provided upstream and / or in the middle of the superheater. A supercritical pressure transformer once-through boiler, which is connected to the spray water inlet of. [3] A furnace having a peripheral wall composed of a heat transfer tube and a burner for injecting fuel and combustion air into the upper part of the furnace for combustion are provided, and combustion gas generated in the furnace is absorbed by the peripheral wall of the furnace. In the supercritical pressure transformer once-through boiler flowing down to the rear flue while descending while the furnace peripheral wall is divided into upper and lower, with the lower peripheral wall as a steam cooling wall,
A supercritical pressure transformer once-through boiler, wherein the upper peripheral wall is a water-cooled wall in which gas-liquid two-phase flow always exists during subcritical pressure operation. [4] In addition to the requirement of [3] above, the peripheral wall evaporation pipe outlet header provided at the heat transfer pipe outlet of the upper peripheral wall is connected to the inlet of the steam separator, and the steam outlet of the steam separator is provided. Is connected to a steam-cooling wall inlet pipe provided at the heat transfer pipe inlet of the lower peripheral wall, and a drain outlet of the steam separator is provided at an upstream and / or middle stage of the superheater. A supercritical pressure transformer once-through boiler, which is connected to the spray water inlet of. [5] In addition to the requirement of [2] or [4], the steam outlet of the steam separator is placed horizontally in the rear flue rather than directly in the steaming wall inlet pipe header. The supercritical pressure transformer once-through boiler, which is connected to the steaming wall inlet pipe header through the low temperature superheater and the desuperheater in sequence.
【0010】[0010]
【作用】前記第1および第3の解決手段においては、火
炉周壁を上下に分割し、それら分割された火炉周壁の一
方を蒸冷壁とするとともに、他方の火炉周壁を亜臨界圧
運転時に常に気液二相流が存在する水冷壁としたので、
各水冷壁管の熱吸収量が不均一でも、出口温度は一定
(飽和温度)となる。したがって、従来発生していた火
炉壁メタル温度のアンバランスは一切生じず、負荷変化
に伴なう熱応力の繰返しによる火炉耐圧部の寿命消費が
なくなる。In the first and third means for solving the problems, the peripheral wall of the furnace is divided into upper and lower parts, one of the divided peripheral walls of the furnace is used as a steam cooling wall, and the other peripheral wall of the furnace is always operated during subcritical pressure operation. Since it is a water-cooled wall where gas-liquid two-phase flow exists,
Even if the heat absorption amount of each water cooling wall tube is not uniform, the outlet temperature is constant (saturation temperature). Therefore, the unbalance of the furnace wall metal temperature that has been conventionally generated does not occur at all, and the life of the furnace pressure-resistant portion is not consumed due to the repeated thermal stress caused by the load change.
【0011】また前記第2および第4の解決手段におい
ては、水冷壁の蒸発管出口管寄せが気水分離器の入口に
接続され、同気水分離器の蒸気出口が蒸冷壁の伝熱管入
口に設けられた蒸冷壁入口管寄せに接続されるととも
に、上記気水分離器のドレン出口が過熱器の上流および
/または中段に設けられた減温器のスプレイ水入口に接
続されているので、水冷壁で発生した蒸気と水の混合流
体は気水分離器で蒸気と水に分離され、分離された蒸気
はほぼ均一に蒸冷壁に導入される。また分離された水は
減温器のスプレイ水として無駄なく利用される。Further, in the second and fourth solving means, the evaporating pipe outlet head of the water cooling wall is connected to the inlet of the steam separator, and the steam outlet of the steam separator is the heat transfer pipe of the steaming wall. The drain outlet of the steam separator is connected to the steam cooling wall inlet header provided at the inlet, and is connected to the spray water inlet of the desuperheater provided upstream and / or in the middle of the superheater. Therefore, the mixed fluid of steam and water generated on the water cooling wall is separated into steam and water by the steam separator, and the separated steam is introduced into the steam cooling wall almost uniformly. The separated water is used as spray water for the desuperheater without waste.
【0012】更に前記第5の解決手段においては、上記
気水分離器の蒸気出口が、上記蒸冷壁入口管寄せに直接
ではなく、上記後部煙道に配された横置の低温過熱器お
よび上記減温器を順次介して、上記蒸冷壁入口管寄せに
接続されているので、燃焼ガスからの熱回収が効果的に
なされ、プラント効率が向上する。Further, in the fifth solution means, the steam outlet of the steam separator is not directly connected to the inlet of the steam cooling wall inlet, but is a horizontal low temperature superheater arranged in the rear flue and Since it is connected to the steam cooling wall inlet pipe header through the desuperheater in sequence, heat is effectively recovered from the combustion gas, and the plant efficiency is improved.
【0013】[0013]
【実施例】図1は本発明の第1実施例に係る超臨界圧変
圧貫流ボイラの構成を示す系統図である。このボイラは
ほぼ鉛直に立つ火炉構造で、下部に燃料と燃焼用空気を
投入して燃焼させるバーナ、空気噴出口等より成る燃焼
設備を備え、火炉下部(11)で発生した燃焼ガスは火
炉周壁に熱吸収されつつ上昇し、火炉上部(10)から
後部煙道(20)へ流れる配置のボイラである。本実施
例では、火炉上部(10)の周壁は蒸気冷却管で構成す
る蒸冷壁(13)、火炉下部(11)の周壁は蒸発管で
構成する水冷壁(3)となっている。FIG. 1 is a system diagram showing the structure of a supercritical pressure transformer once-through boiler according to a first embodiment of the present invention. This boiler has a furnace structure that stands almost vertically, and is equipped with combustion equipment consisting of a burner for injecting fuel and combustion air for combustion in the lower part, an air jet, etc., and the combustion gas generated in the lower part of the furnace (11) is the peripheral wall of the furnace. The boiler is arranged so as to rise while being absorbed by the heat and flow from the furnace upper part (10) to the rear flue (20). In the present embodiment, the peripheral wall of the furnace upper part (10) is a steam cooling wall (13) composed of a steam cooling pipe, and the peripheral wall of the furnace lower part (11) is a water cooling wall (3) composed of an evaporation pipe.
【0014】給水と蒸気の流れについて言えば、後部煙
道(20)に設置された図示しない節炭器の出口から、
火炉入口連絡管(1)を経て火炉下部の水冷壁入口管寄
せ(4)に入った給水は、水冷壁(2)に入って火炉内
の燃焼ガスから熱吸収しつつ上昇し、水冷壁(2)上端
で水冷壁出口管寄せ(5)に集められ、火炉出口連絡管
(6)を経て気水分離器(7)に至る。気水分離器
(7)により分離された蒸気は、蒸冷壁入口連絡管
(8)を経て火炉上部の蒸冷壁入口管寄せ(14)から
蒸冷壁(13)へ流れ、そこで過熱された後、蒸冷壁出
口管寄せ(15)に集められ、過熱器入口連絡管(2
1)により減温器(12)を経て過熱器(17)に向か
う。気水分離器(7)で発生したドレンのうち約半量
は、最初の過熱器(17)の直前の過熱器入口連絡管
(21)に設けられている減温器(12)のスプレイ水
として、ドレン排出管(9)を経て投入され、残り約半
量は次の過熱器(2次)入口に設けられる減温器(2段
目)のスプレイ水として投入されるようになっている。
起動時には、このドレンは循環ポンプ(19)により節
炭器入口給水管に戻される。なお、気水分離器(7)の
ドレンレベルを保つために、ドレンレベル調整弁(1
8)が上記スプレイ水の分岐点前のドレン排出管(9)
に設けられている。As for the flow of water and steam, from the outlet of a economizer (not shown) installed in the rear flue (20),
The feed water that has entered the water cooling wall inlet header (4) at the lower part of the furnace via the furnace inlet connecting pipe (1) enters the water cooling wall (2) and rises while absorbing heat from the combustion gas in the furnace, 2) At the upper end, it is collected in the water cooling wall outlet pipe header (5), and reaches the steam separator (7) through the furnace outlet communication pipe (6). The steam separated by the steam separator (7) flows from the steam cooling wall inlet connecting pipe (8) to the steam cooling wall inlet pipe (14) at the upper part of the furnace to the steam cooling wall (13), where it is superheated. After that, it is collected in the steam cooling wall outlet pipe header (15), and the superheater inlet connecting pipe (2
By 1), it goes through the desuperheater (12) to the superheater (17). About half of the drain generated in the steam separator (7) is used as spray water for the desuperheater (12) provided in the superheater inlet communication pipe (21) immediately before the first superheater (17). , The drainage pipe (9), and about half of the remaining amount is used as spray water for the desuperheater (second stage) provided at the inlet of the next superheater (secondary).
At the time of startup, this drain is returned to the economizer inlet water supply pipe by the circulation pump (19). In order to maintain the drain level of the steam separator (7), the drain level adjusting valve (1
8) is a drain discharge pipe (9) before the branch point of the spray water
It is provided in.
【0015】次に本実施例の火炉特性を従来のボイラと
比較検討する。特に、変圧貫流ボイラで温度アンバラン
スの発生しやすい部分負荷として、 30%負荷における
ケーススタディを行なった結果について説明する。そし
てこの 30%負荷時の各ケースの静特性値を表1に示
す。Next, the furnace characteristics of this embodiment will be compared and examined with those of the conventional boiler. In particular, the results of a case study at a 30% load as a partial load in which a temperature unbalance is likely to occur in a transformer once-through boiler will be described. Table 1 shows the static characteristic values of each case at this 30% load.
【0016】[0016]
【表1】 [Table 1]
【0017】従来型ボイラにおいては、火炉周壁出口の
エンタルピレベルを 670 kcal/kgとし、約 10℃の過
熱度をもって設計されているが、本実施例では気水を図
5中のc点のエンタルピレベルで火炉周壁蒸発管出口管
寄せを経て気水分離器に導くことを考える。In the conventional boiler, the enthalpy level at the furnace peripheral wall outlet is set to 670 kcal / kg, and the design is made with a superheat of about 10 ° C. In this embodiment, steam and water are enthalpy at point c in FIG. At the level, it is considered to guide it to the steam-water separator through the evaporating tube outlet of the furnace wall.
【0018】検討ケースは、図4において従来ボイラの
周壁蒸発管出口の高さをHとした時に、高さ 0.7Hを周
壁蒸発管出口とした場合であって、この場合の周壁蒸発
管出口流体エンタルピは 570 kcal/kg である。この時
気水分離器においては、蒸発量 365 t/h のうち 99t/
h のドレンが発生する。一方気水分離器で分離された蒸
気は、火炉上部蒸冷壁へ導かれ、そのあと過熱器に向か
う。この時点で蒸冷壁出口における飽和蒸気温度である
310 ℃から 470 ℃へと過熱されている。この検討ケ
ースでは、気水分離器で発生したドレンの半分を過熱器
入口で投入し、残りの半量を1次過熱器出口に投入する
2段階スプレイとした。スプレイ前後の温度は1段目で
470 ℃から 355 ℃、2段目で 470 ℃から 380 ℃
であり、更に過熱器で加熱されて、最終過熱器出口にお
いては 570 ℃の定格温度となるまで過熱されることが
判った。The examination case is a case where the height of the peripheral wall evaporation pipe outlet of the conventional boiler is H in FIG. 4 and the height 0.7H is used as the peripheral wall evaporation pipe outlet. In this case, the peripheral wall evaporation pipe outlet fluid is The enthalpy is 570 kcal / kg. At this time, in the steam separator, of the evaporation amount of 365 t / h, 99 t /
Drain of h occurs. On the other hand, the steam separated by the steam separator is guided to the upper wall of the furnace, and then goes to the superheater. At this point, it is the saturated vapor temperature at the steam outlet
Overheated from 310 ℃ to 470 ℃. In this study case, a two-stage spray was used in which half of the drainage generated in the steam separator was charged at the superheater inlet and the remaining half was charged at the primary superheater outlet. The temperature before and after spraying is the first step
470 ℃ to 35 ℃ ℃ 2nd stage 470 ℃ to 380 ℃
Further, it was found that it was further heated by the superheater and was superheated at the outlet of the final superheater until the rated temperature of 5700C was reached.
【0019】上記検討ケースよりも更に火炉下部水冷壁
部を小さく、例えば高さを0.5H程度とした場合につい
て試算すると、その場合は気水分離器における発生ドレ
ン量が蒸発量の約半分を占め、火炉上部蒸冷壁を通過す
る蒸気量が上記検討ケースに比して少ないため、火炉上
部蒸冷壁あるいは1次過熱器出口において、 540 ℃ま
で過熱されてしまう。これは最終過熱器と同じレベルの
温度であり、チューブの材質選定面での問題が生ずるこ
とや、スプレイとして投入するドレン量の比率が高いこ
となど、技術的にも困難が増すので、このような流体エ
ンタルピレベルまで火炉周壁蒸発管出口を下げるより
は、上記検討ケース(すなわち0.7)程度のレベルとす
るのが妥当と考えられる。When a trial calculation is made for a case where the water cooling wall at the lower part of the furnace is smaller than that of the above-mentioned study case, for example, the height is set to about 0.5H, in that case, the amount of drain generated in the steam separator is about half of the evaporation amount. In fact, the amount of steam passing through the furnace upper steaming wall is smaller than that in the case studied above, so that the furnace upper steaming wall or the outlet of the primary superheater is overheated to 540 ° C. This is the same level of temperature as the final superheater, which causes technical problems such as problems in tube material selection and a high ratio of drain amount to be injected as a spray. It is considered appropriate to set the level at the above-mentioned study case (that is, 0.7) rather than lowering the furnace peripheral wall evaporation pipe outlet to a certain fluid enthalpy level.
【0020】図2は本発明の第2実施例の超臨界圧変圧
貫流ボイラの構成を示す系統図である。本実施例も前記
第1実施例と同様にほぼ鉛直に立つ火炉構造であるが、
バーナ、空気噴出口等より成る燃焼設備を火炉の上部に
備えており、火炉上部で発生した燃焼ガスは火炉周壁に
熱吸収されつつ下降し、火炉下部から後部煙道(20)
へ流れるようになっている。そして上下に分割された火
炉周壁の下部(11)を構成する比較的熱負荷の低い周
壁を蒸冷壁(13)とするとともに、火炉上部(10)
を、出口の流体エンタルピレベルを十分低いウエットな
状態に常に維持できる水冷壁(3)としている。給水、
蒸気の流れ系統については、基本的には図1に示す第1
実施例と同様であり、火炉の上下の水冷壁部と蒸冷壁部
との位置関係に伴う相違がある以外は、系統としてもボ
イラ特性面でも同等であるので説明を省略する。FIG. 2 is a system diagram showing the structure of a supercritical pressure transformer once-through boiler according to a second embodiment of the present invention. This embodiment also has a furnace structure that stands almost vertically as in the first embodiment.
Combustion equipment consisting of burners, air jets, etc. is installed in the upper part of the furnace, and combustion gas generated in the upper part of the furnace descends while being absorbed by the peripheral wall of the furnace, and from the lower part of the furnace to the rear flue (20).
It is designed to flow to. The peripheral wall having a relatively low heat load constituting the lower part (11) of the furnace peripheral wall divided into upper and lower parts is used as a steam cooling wall (13), and the upper part of the furnace (10)
Is a water cooling wall (3) that can always maintain the fluid enthalpy level at the outlet in a sufficiently low wet state. water supply,
The steam flow system is basically the first shown in FIG.
Same as the embodiment, except that there is a difference in the positional relationship between the water cooling wall and the steam cooling wall above and below the furnace.
【0021】本実施例と前記第1実施例とは、上記のと
おり単に配置上あるいはガス流れ上の差異があるだけで
伝熱的には同一であるから、その作用も全く同一であ
る。したがって、火炉周壁出口流体のエンタルピレベル
を常にウエットに維持できるよう、負荷低下時の動特性
をも考慮した火炉出口の流体温度レベルを適正に設定
し、火炉周壁の水冷壁伝熱面積を決定して、残りの熱負
荷の比較的低い火炉周壁は蒸気冷却壁で構成するととも
に、火炉周壁蒸発管出口に気水分離器を設け、発生する
ドレンを過熱器の中段へ1次ないし2次スプレイとして
投入すれば、水冷壁管に熱吸収量の差が多少生じても、
出口部温度は一定の飽和温度となる。その結果、従来発
生している火炉壁メタル温度アンバランスは一切生じな
くなるので、負荷変化に伴なう熱応力の繰り返しによる
火炉耐圧部の寿命消費がなくなり、更に疲労によるボイ
ラの損傷事故等が防止される。Since the present embodiment and the first embodiment are the same in terms of heat transfer except for the difference in arrangement or gas flow as described above, their operations are also exactly the same. Therefore, in order to always maintain the enthalpy level of the fluid at the outlet of the furnace wall at a wet level, the fluid temperature level at the outlet of the furnace is set appropriately considering the dynamic characteristics when the load decreases, and the heat transfer area of the water cooling wall of the furnace wall is determined. The remaining peripheral wall of the furnace, which has a relatively low heat load, is composed of a steam cooling wall, and a steam-water separator is installed at the outlet of the furnace peripheral wall evaporation pipe, and the generated drainage is used as a primary or secondary spray to the middle stage of the superheater. If put in, even if there is some difference in heat absorption amount in the water cooling wall pipe,
The outlet temperature becomes a constant saturation temperature. As a result, the furnace wall metal temperature unbalance that has occurred in the past does not occur at all, so the life of the furnace pressure resistant part due to repeated thermal stress due to load changes is eliminated, and further damage to the boiler due to fatigue is prevented. To be done.
【0022】図3は本発明の第3実施例を示すボイラ系
統図である。本実施例においても、前記第1実施例と同
様火炉下部(11)の水冷壁(3)の気水混合物が水冷
壁出口管寄せ(5)、火炉出口連絡管(6)を経て気水
分離器(7)に入る。その後本実施例では、分離蒸気が
蒸冷壁(13)に直接入らず、低温過熱器入口連絡管
(24)を経て、後部煙道(20)に設置された横置の
低温過熱器(23)に入り、そこで過熱された後、蒸冷
壁入口連絡管(8)、減温器(26)を経て蒸冷壁入口
管寄せ(14)に入る。蒸冷壁(13)で過熱された蒸
気はその出口管寄せより過熱器入口連絡管(21)を経
て過熱器(17)に入るが、その途中に減温器(12)
が設けられている。そして前記気水分離器(7)の分離
ドレンが、上記減温器(12),(26)にスプレイ水
として分配注入されるようになっている。FIG. 3 is a boiler system diagram showing a third embodiment of the present invention. Also in this embodiment, the steam-water mixture of the water-cooling wall (3) in the lower part (11) of the furnace is separated from the steam-water outlet through the water-cooling wall outlet pipe (5) and the furnace outlet connecting pipe (6) as in the first embodiment. Enter the vessel (7). After that, in this embodiment, the separated steam does not enter the steam cooling wall (13) directly, but passes through the low-temperature superheater inlet communication pipe (24) and is installed in the rear flue (20) in the horizontal low-temperature superheater (23). ), And after being superheated there, it enters the steam cooling wall inlet pipe header (14) through the steam cooling wall inlet connecting pipe (8) and the temperature reducer (26). The steam superheated by the steam cooling wall (13) enters the superheater (17) through the superheater inlet communication pipe (21) from its outlet pipe, and the desuperheater (12) is in the middle thereof.
Is provided. The separation drain of the steam separator (7) is distributed and injected as spray water into the temperature reducers (12) and (26).
【0023】この実施例においては、運転・燃焼状態の
変化による火炉下部(11)の水冷壁出口流体のエピタ
ルピレベル(湿り度)が変動した場合に、蒸冷壁(1
3)を通過する蒸気流量が変化することによる蒸冷壁
(13)のメタル温度の過上昇を防止することができ
る。すなわちガスの低温部においた低温過熱器(23)
によってガスの高温部に置いた蒸冷壁(13)を保護す
るのである。なお、この場合、低温過熱器(23)はガ
ス温度が低い後部煙道(20)に設置されているので、
蒸気量が多少変動してもトラブルが発生しないような設
計とすることができる。In this embodiment, when the epitarpi level (wetness) of the water-cooled wall outlet fluid in the lower part of the furnace (11) changes due to changes in the operation / combustion state, the steam-cooled wall (1
It is possible to prevent the metal temperature of the steam cooling wall (13) from excessively rising due to a change in the flow rate of steam passing through 3). That is, the low temperature superheater (23) placed in the low temperature part of the gas
Protects the steaming wall (13) placed in the high temperature part of the gas. In this case, since the low temperature superheater (23) is installed in the rear flue (20) where the gas temperature is low,
It is possible to design so that trouble does not occur even if the amount of steam changes a little.
【0024】更に本発明の第4実施例として、前記第2
実施例の気水分離器(7)で分離された蒸気を火炉下部
の蒸冷壁(13)に直接には導入せず、後部煙道内の低
温過熱器および減温器を経由した後、蒸冷壁(13)に
導入するようにしたボイラも可能である。この場合も前
記第3実施例と同様の作用効果を得ることができる。Further, as a fourth embodiment of the present invention, the second
The steam separated by the steam-water separator (7) of the example is not directly introduced into the steam cooling wall (13) at the lower part of the furnace, but is passed through the low temperature superheater and desuperheater in the rear flue and then steamed. A boiler adapted to be installed in the cold wall (13) is also possible. In this case as well, it is possible to obtain the same effect as that of the third embodiment.
【0025】以上に述べた第1ないし第4実施例のよう
な構成とし、火炉出口流体の流体エンタルピレベルをウ
エットとなるように設定すれば、水冷壁出口部でのメタ
ル温度アンバランスを無くすことができる。ここで「負
荷下げ」の場合のように、動特性や火炉の熱容量による
ヒステリシス特性によって大きな過熱度が生じ、この過
熱度の上昇に伴って温度がアンバランスとなり火炉壁面
内に大きな熱応力が発生する恐れがある。このように負
荷変化に伴う熱応力の繰り返しによって火炉耐圧部の寿
命が消費される可能性があるが、この問題点は次のよう
に処理することにより解決される。If the above-mentioned first to fourth embodiments are adopted and the fluid enthalpy level of the furnace outlet fluid is set to be wet, the metal temperature imbalance at the water cooling wall outlet can be eliminated. You can Here, as in the case of "load reduction", a large degree of superheat occurs due to the dynamic characteristics and hysteresis characteristics due to the heat capacity of the furnace, and as the degree of superheat increases, the temperature becomes unbalanced and large thermal stress occurs in the furnace wall surface. There is a risk of As described above, there is a possibility that the life of the pressure-resistant portion of the furnace will be consumed due to the repeated thermal stress due to the load change, but this problem can be solved by the following processing.
【0026】前記のとおり、火炉出口流体エンタルピレ
ベルを検討ケース程度のレベル設定すれば、火炉上部も
しくは火炉下部の蒸冷壁(13)の出口あるいは一次過
熱器出口の温度が材質アップを要する程上昇することは
なく、また蒸気とスプレイ水の比率もそれ程大きくなく
て技術的に可能な範囲内にあるので、これに見合う水冷
壁伝熱面積を決定し、残余の熱負荷の低い火炉周壁を蒸
冷壁(13)として構成配置して、給水と蒸気の系統を
上記諸実施例のように構成する。そうすると、水冷壁
(3)の出口部で多少の熱吸収の差が生じても、温度は
飽和温度で一定となるから、前記従来の問題点、すなわ
ち火炉周壁メタル温度アンバランス等は一切生じなくな
る。As described above, if the furnace enthalpy fluid enthalpy level is set to the level of the study case, the temperature of the outlet of the steaming wall (13) in the upper part of the furnace or the lower part of the furnace or the outlet of the primary superheater rises to the extent that it is necessary to upgrade the material Since the ratio of steam and spray water is not so large and is within the technically possible range, the water cooling wall heat transfer area corresponding to this is determined, and the remaining peripheral wall of the furnace with a low heat load is steamed. The cold water wall (13) is arranged and arranged, and the system of water supply and steam is constructed as in the above-mentioned embodiments. Then, even if there is a slight difference in heat absorption at the outlet of the water cooling wall (3), the temperature becomes constant at the saturation temperature, so that the above-mentioned conventional problem, that is, the imbalance of the furnace peripheral wall metal temperature, etc. does not occur at all. .
【0027】[0027]
【発明の効果】以上に説明して来たように、本発明は火
炉周壁出口流体のエンタルピレベルを常にウエットに維
持できるよう、動特性(負荷降下時)をも考慮した火炉
出口流体温度レベルを設定の上、火炉周壁の水冷壁伝熱
面積を決定し、残りの熱負荷の比較的低い火炉周壁は蒸
気冷却壁で構成するとともに、火炉周壁蒸発管出口に気
水分離器を設け、発生するドレンは過熱器の中段へ1次
ないし2次スプレイとして投入するので、火炉水冷壁で
多少の熱吸収量の差が生じても、出口部温度は飽和温度
で一定となる。したがって従来発生していた火炉壁メタ
ル温度アンバランスは動特性的(負荷降下時)にも生じ
なくなるので、負荷変化に伴なって発生する熱応力の繰
り返しによる火炉耐圧部の寿命消費がなくなり、更に疲
労によるボイラの損傷事故等が防止される。また、気水
分離器で分離される発生ドレンを過熱器中段へスプレイ
水として投入することによる最終過熱器出口の蒸気条件
への影響は無い。As described above, according to the present invention, in order to always maintain the enthalpy level of the fluid at the outlet of the furnace peripheral wall in a wet state, the temperature level of the fluid at the outlet of the furnace considering the dynamic characteristics (during load drop) is also set. After setting, determine the heat transfer area of the water cooling wall of the furnace peripheral wall, and the remaining furnace peripheral wall with a relatively low heat load is composed of the steam cooling wall, and a steam-water separator is provided at the furnace peripheral wall evaporation pipe outlet to generate it. Since the drain is fed to the middle stage of the superheater as a primary or secondary spray, the outlet temperature becomes constant at the saturation temperature even if there is a slight difference in the amount of heat absorption in the water wall of the furnace. Therefore, the unbalanced temperature of the furnace wall metal, which has been generated in the past, does not occur dynamically (when the load drops), so the life of the furnace pressure-resistant part is not consumed due to the repeated thermal stress that accompanies the load change. Boiler damage due to fatigue is prevented. In addition, there is no influence on the steam condition at the final superheater outlet by adding the generated drain separated by the steam separator to the middle stage of the superheater as spray water.
【0028】そして火炉の配置構成として、燃焼設備を
火炉の下部に設ける場合も上部に設ける場合も、発明に
よる効果は全く同一である。As for the arrangement of the furnace, the effect of the invention is exactly the same regardless of whether the combustion equipment is provided in the lower part or in the upper part of the furnace.
【図1】図1は本発明の第1実施例に係る超臨界圧変圧
貫流ボイラの構成を示す系統図である。FIG. 1 is a system diagram showing a configuration of a supercritical pressure variable pressure once-through boiler according to a first embodiment of the present invention.
【図2】図2は本発明の第2実施例に係る超臨界圧変圧
貫流ボイラの構成を示す系統図である。FIG. 2 is a system diagram showing a configuration of a supercritical pressure variable pressure once-through boiler according to a second embodiment of the present invention.
【図3】図3は本発明の第3実施例に係る超臨界圧変圧
貫流ボイラの構成を示す系統図である。FIG. 3 is a system diagram showing a configuration of a supercritical pressure variable pressure once-through boiler according to a third embodiment of the present invention.
【図4】図4は本発明に関するケーススタディの対象と
なるモデルボイラの説明図である。FIG. 4 is an explanatory diagram of a model boiler which is a target of a case study according to the present invention.
【図5】図5は図4のモデルボイラの火炉静特性データ
である。FIG. 5 is furnace static characteristic data of the model boiler of FIG. 4.
【図6】図6は従来の超臨界圧変圧貫流ボイラの構成の
一例を示す系統図である。FIG. 6 is a system diagram showing an example of the configuration of a conventional supercritical pressure variable pressure once-through boiler.
【図7】図7は従来の超臨界圧変圧貫流ボイラの火炉特
性の一例を示す図である。FIG. 7 is a diagram showing an example of furnace characteristics of a conventional supercritical pressure variable pressure once-through boiler.
【図8】図8は従来の超臨界圧変圧貫流ボイラの火炉特
性の他の例を示す図である。FIG. 8 is a diagram showing another example of furnace characteristics of a conventional supercritical pressure variable pressure once-through boiler.
(1) 火炉入口連絡管 (2) 火炉周壁蒸発管 (3) 水冷壁 (4) 火炉周壁蒸発管入口管寄せ(水冷壁入口管寄
せ) (5) 火炉周壁蒸発管出口管寄せ(水冷壁出口管寄
せ) (6) 火炉出口連絡管 (7) 気水分離器 (8) 蒸冷壁入口連絡管 (9) ドレン排出管 (10) 火炉上部 (11) 火炉下部 (12) 減温器 (13) 蒸冷壁 (14) 蒸冷壁入口管寄せ (15) 蒸冷壁出口管寄せ (17) 過熱器 (18) ドレンレベル調整弁 (19) 循環ポンプ (20) 後部煙道 (21) 過熱器入口連絡管 (22) 火炉 (23) 低温過熱器 (24) 低温過熱器入口連絡管 (26) 減温器(1) Furnace inlet connection pipe (2) Furnace peripheral wall evaporation pipe (3) Water cooling wall (4) Furnace peripheral wall evaporation pipe inlet alignment (water cooling wall inlet alignment) (5) Furnace peripheral wall evaporation pipe outlet alignment (water cooling wall outlet) (6) Furnace outlet connecting pipe (7) Steam separator (8) Steaming wall inlet connecting pipe (9) Drain discharge pipe (10) Upper furnace (11) Lower furnace (12) Desuperheater (13) ) Steaming wall (14) Steaming wall inlet pipe header (15) Steaming wall outlet pipe header (17) Superheater (18) Drain level control valve (19) Circulation pump (20) Rear flue (21) Superheater Inlet connecting pipe (22) Furnace (23) Low temperature superheater (24) Low temperature superheater Inlet connecting pipe (26) Desuperheater
───────────────────────────────────────────────────── フロントページの続き (72)発明者 須藤 隆之 長崎市飽の浦町1番1号 三菱重工業株式 会社長崎造船所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takayuki Sudo 1-1 1-1 Atsunouramachi, Nagasaki City Mitsubishi Heavy Industries Ltd. Nagasaki Shipyard Co., Ltd.
Claims (5)
同火炉内下部に燃料および燃焼用空気を投入して燃焼さ
せるバーナとを備え、上記火炉内で発生した燃焼ガスが
火炉周壁に熱吸収されつつ上昇し上記火炉の上部から後
部煙道へ流れる超臨界圧変圧貫流ボイラにおいて、上記
火炉周壁を上下に分割し、上側の周壁を蒸冷壁とすると
ともに、下側の周壁を亜臨界圧運転時に常に気液二相流
が存在する水冷壁としたことを特徴とする超臨界圧変圧
貫流ボイラ。1. A furnace having a peripheral wall formed of a heat transfer tube,
A burner for injecting fuel and combustion air into the lower part of the furnace for combustion is provided, and the combustion gas generated in the furnace rises while being absorbed by the peripheral wall of the furnace and rises from the upper part of the furnace to the rear flue. In a critical pressure once-through boiler, the peripheral wall of the furnace is divided into upper and lower parts, and the upper peripheral wall is a steam cooling wall, and the lower peripheral wall is a water cooling wall in which gas-liquid two-phase flow is always present during subcritical pressure operation. A supercritical pressure variable pressure once-through boiler.
た周壁蒸発管出口管寄せが気水分離器の入口に接続さ
れ、同気水分離器の蒸気出口が上記上側の周壁の伝熱管
入口に設けられた蒸冷壁入口管寄せに接続されるととも
に、上記気水分離器のドレン出口が過熱器の上流および
/または中段に設けられた減温器のスプレイ水入口に接
続されたことを特徴とする請求項1記載の超臨界圧変圧
貫流ボイラ。2. A peripheral wall evaporation pipe outlet head provided at the heat transfer pipe outlet of the lower peripheral wall is connected to an inlet of the steam separator, and a steam outlet of the steam separator is transferred to the upper peripheral wall. The drain outlet of the steam separator was connected to the steam cooling wall inlet header provided at the heat pipe inlet and the spray water inlet of the desuperheater provided upstream and / or in the middle of the superheater. The supercritical pressure transformer once-through boiler according to claim 1, characterized in that.
同火炉内上部に燃料および燃焼用空気を投入して燃焼さ
せるバーナとを備え、上記火炉内で発生した燃焼ガスが
火炉周壁に熱吸収されつつ下降し上記火炉の下部から後
部煙道へ流れる超臨界圧変圧貫流ボイラにおいて、上記
火炉周壁を上下に分割し、下側の周壁を蒸冷壁とすると
ともに、上側の周壁を亜臨界圧運転時に常に気液二相流
が存在する水冷壁としたことを特徴とする超臨界圧変圧
貫流ボイラ。3. A furnace having a peripheral wall composed of a heat transfer tube,
A burner for injecting and burning fuel and combustion air is provided in the upper part of the furnace, and the combustion gas generated in the furnace descends while being absorbed by the peripheral wall of the furnace and flows down from the lower part of the furnace to the rear flue. In a critical pressure transformer once-through boiler, the peripheral wall of the furnace is divided into upper and lower parts, and the lower peripheral wall is a steam cooling wall, and the upper peripheral wall is a water cooling wall in which gas-liquid two-phase flow is always present during subcritical pressure operation. A supercritical pressure variable pressure once-through boiler.
た周壁蒸発管出口管寄せが気水分離器の入口に接続さ
れ、同気水分離器の蒸気出口が上記下側の周壁の伝熱管
入口に設けられた蒸冷壁入口管寄せに接続されるととも
に、上記気水分離器のドレン出口が過熱器の上流および
/または中段に設けられた減温器のスプレイ水入口に接
続されたことを特徴とする請求項3記載の超臨界圧変圧
貫流ボイラ。4. A peripheral wall evaporation pipe outlet header provided at the heat transfer pipe outlet of the upper peripheral wall is connected to an inlet of the steam separator, and a steam outlet of the steam separator is transferred to the lower peripheral wall. The drain outlet of the steam separator was connected to the steam cooling wall inlet header provided at the heat pipe inlet and the spray water inlet of the desuperheater provided upstream and / or in the middle of the superheater. The supercritical pressure transformer once-through boiler according to claim 3, wherein
壁入口管寄せに直接ではなく、上記後部煙道に配された
横置の低温過熱器および上記減温器を順次介して、上記
蒸冷壁入口管寄せに接続されたことを特徴とする請求項
2または請求項4記載の超臨界圧変圧貫流ボイラ。5. The steam outlet of the steam separator is not directly connected to the steam-cooling wall inlet pipe but through the horizontal low-temperature superheater and the desuperheater arranged in the rear flue in order. The supercritical pressure transformer once-through boiler according to claim 2 or 4, wherein the steam-cooling wall inlet pipe header is connected.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13353595A JPH08327006A (en) | 1995-05-31 | 1995-05-31 | Supercritical variable pressure once-through boiler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13353595A JPH08327006A (en) | 1995-05-31 | 1995-05-31 | Supercritical variable pressure once-through boiler |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08327006A true JPH08327006A (en) | 1996-12-10 |
Family
ID=15107086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13353595A Pending JPH08327006A (en) | 1995-05-31 | 1995-05-31 | Supercritical variable pressure once-through boiler |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08327006A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102444886A (en) * | 2011-12-19 | 2012-05-09 | 清华大学 | Low-mass flow rate perpendicular water cooled wall arrangement method |
JP2016529467A (en) * | 2013-08-06 | 2016-09-23 | シーメンス アクティエンゲゼルシャフト | Continuous flow steam generator with two-pass boiler structure |
CN108534118A (en) * | 2018-03-30 | 2018-09-14 | 东方电气集团东方锅炉股份有限公司 | A kind of overcritical or ultra supercritical water wall of monotube boiler structure |
-
1995
- 1995-05-31 JP JP13353595A patent/JPH08327006A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102444886A (en) * | 2011-12-19 | 2012-05-09 | 清华大学 | Low-mass flow rate perpendicular water cooled wall arrangement method |
JP2016529467A (en) * | 2013-08-06 | 2016-09-23 | シーメンス アクティエンゲゼルシャフト | Continuous flow steam generator with two-pass boiler structure |
US9671105B2 (en) | 2013-08-06 | 2017-06-06 | Siemens Aktiengesellschaft | Continuous flow steam generator with a two-pass boiler design |
CN108534118A (en) * | 2018-03-30 | 2018-09-14 | 东方电气集团东方锅炉股份有限公司 | A kind of overcritical or ultra supercritical water wall of monotube boiler structure |
CN108534118B (en) * | 2018-03-30 | 2023-10-31 | 东方电气集团东方锅炉股份有限公司 | Water-cooled wall structure of supercritical or ultra-supercritical once-through boiler |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3789806A (en) | Furnace circuit for variable pressure once-through generator | |
JP4540719B2 (en) | Waste heat boiler | |
US7587996B2 (en) | Circulation system for sliding pressure steam generator | |
EP0025975B1 (en) | Once through sliding pressure steam generator | |
US3635287A (en) | Once-through vapor generator | |
CN107002987B (en) | Direct-current vertical tube type supercritical evaporator coil for HRSG | |
CN107575854A (en) | A kind of double reheat power generation sets monitoring system | |
KR19990082454A (en) | Boiler | |
JPH08327006A (en) | Supercritical variable pressure once-through boiler | |
JPH06137501A (en) | Supercritical variable pressure operating steam generator | |
US4632064A (en) | Boiler | |
US4331105A (en) | Forced-flow once-through boiler for variable supercritical pressure operation | |
US3185136A (en) | Steam generator organization | |
US3081748A (en) | Forced flow fluid heating unit | |
KR840000583B1 (en) | Vapour generator with a partition between two combustion chambers | |
JP2002147701A (en) | Exhaust heat recovery steam generating device | |
US3245385A (en) | Forced flow vapor generating unit | |
US3834358A (en) | Vapor generator | |
JPH1194204A (en) | Boiler | |
US3364904A (en) | Vapour generator for ship propulsion unit | |
US2995119A (en) | Apparatus for shut-down of a forced flow vapor generating unit | |
JPH08233208A (en) | Ultracritical variable pressure once-through type axial boiler | |
JP2002081610A (en) | Boiler | |
JP2000130701A (en) | Boiler structure | |
JPH0445301A (en) | Natural circulation waste heat recovery heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20000905 |