JPH08233208A - Ultracritical variable pressure once-through type axial boiler - Google Patents
Ultracritical variable pressure once-through type axial boilerInfo
- Publication number
- JPH08233208A JPH08233208A JP4304195A JP4304195A JPH08233208A JP H08233208 A JPH08233208 A JP H08233208A JP 4304195 A JP4304195 A JP 4304195A JP 4304195 A JP4304195 A JP 4304195A JP H08233208 A JPH08233208 A JP H08233208A
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- peripheral wall
- orifice
- pipe
- circumferential wall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は事業用又は産業用の超臨
界圧変圧貫流ボイラに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a commercial or industrial supercritical pressure transformer once-through boiler.
【0002】[0002]
【従来の技術】従来の超臨界圧変圧貫流ボイラの構成例
を図9に示している。図9において、後部煙道12に位
置する節炭器を出た給水は、火炉入口連絡管1を介して
火炉14の下部にある火炉入口分配管寄せ18に入り、
火炉分配管17を通って火炉周壁蒸発管入口管寄せ4に
入り、ほぼ鉛直に配置された火炉周壁を構成する周壁蒸
発管2を上昇し火炉最上部に至る。2. Description of the Related Art An example of the structure of a conventional supercritical pressure variable pressure once-through boiler is shown in FIG. In FIG. 9, the feed water exiting the economizer located at the rear flue 12 enters the furnace inlet distribution pipe 18 at the bottom of the furnace 14 via the furnace inlet connecting pipe 1,
Through the furnace distribution pipe 17, it enters the furnace peripheral wall evaporation pipe inlet pipe header 4, and the peripheral wall evaporation pipe 2 constituting the furnace peripheral wall arranged almost vertically rises to reach the uppermost part of the furnace.
【0003】この場合、火炉周壁の壁面内の熱負荷分布
に対応して各周壁蒸発管2を通過する缶水の流量を制御
するオリフィス20を上記火炉周壁蒸発管入口管寄せ4
の出口の直上部の蒸発管に設置している。In this case, the orifice 20 for controlling the flow rate of the can water passing through each peripheral wall evaporation pipe 2 is provided with the inlet 4 of the furnace peripheral wall evaporation pipe corresponding to the heat load distribution in the wall surface of the peripheral wall of the furnace.
It is installed in the evaporation pipe just above the exit of the.
【0004】このように、流量を調整された各周壁蒸発
管2の缶水は、燃料及び燃焼用空気を投入し燃焼させる
バーナ及び空気噴出口をもつ燃焼設備を備えた火炉14
を構成する火炉壁で加熱されつつ上昇し、火炉周壁蒸発
管出口管寄せ5より、火炉出口連絡管6を経て気水分離
器7に流入するが、亜臨界圧領域での運転においてはこ
こで蒸気とドレンが分離されることとなる。気水分離器
7での分離蒸気は、過熱器入口連絡管13を経由して過
熱器9に流入する。As described above, the can water of each peripheral wall evaporation pipe 2 whose flow rate has been adjusted has a burner 14 provided with a burner and an air ejection port for injecting and burning fuel and combustion air.
Rises while being heated by the furnace wall constituting the furnace, and flows from the furnace peripheral wall evaporation pipe outlet header 5 into the steam / water separator 7 through the furnace outlet connecting pipe 6, but in the operation in the subcritical pressure region, The steam and drain will be separated. The separated steam in the steam separator 7 flows into the superheater 9 via the superheater inlet communication pipe 13.
【0005】一方、気水分離器7で分離されたドレンは
ドレン排出管8を通じて循環ポンプ11により節炭器入
口に戻される。当然であるがこの場合、気水分離器7の
ドレンレベルが一定レベル以下とならぬようにドレンレ
ベル調整弁10により制御されるようになっている。On the other hand, the drain separated by the steam separator 7 is returned to the economizer inlet by the circulation pump 11 through the drain discharge pipe 8. As a matter of course, in this case, the drain level adjusting valve 10 controls so that the drain level of the steam separator 7 does not become a certain level or less.
【0006】[0006]
【発明が解決しようとする課題】前項に述べたような従
来の超臨界圧変圧貫流ボイラにおいては、火炉周壁蒸発
管出口部の管群間で温度アンバランスが発生する問題が
あり、これに伴う熱応力による火炉耐圧部の障害が危惧
されており、早期にこの温度アンバランスを防止する対
応策の確立が迫られているのが現状である。In the conventional supercritical pressure variable pressure once-through boiler as described in the preceding paragraph, there is a problem that temperature imbalance occurs between the tube groups at the outlet of the evaporating tube of the furnace peripheral wall. There is a concern that the pressure-resistant part of the furnace will be damaged by thermal stress, and there is an urgent need to establish countermeasures to prevent this temperature imbalance at an early stage.
【0007】火炉周壁のメタル温度のアンバランスは、
炉内の燃焼状況によって壁面内の熱吸収量に偏差が発生
した場合に、これが各蒸発管の出口流体温度のアンバラ
ンスとなって現れるものであり、これに対する設計上の
対策としては、前項で説明したように、火炉周壁蒸発管
入口に設けるオリフィスにより熱吸収偏差に応じて給水
量を調整することで、出口流体温度のアンバランスを抑
える方式が採られていた。The unbalance of the metal temperature of the peripheral wall of the furnace is
When the amount of heat absorption in the wall surface varies due to the combustion condition in the furnace, this appears as an imbalance in the outlet fluid temperature of each evaporation tube. As described above, a method has been adopted in which the unbalance of the outlet fluid temperature is suppressed by adjusting the amount of water supply according to the heat absorption deviation by the orifice provided at the inlet of the furnace peripheral wall evaporation pipe.
【0008】しかし、この従来方式の火炉入口部に於け
るオリフィスによる給水の流量制御は次の(1),
(2)のような問題点があり、このような問題点の為
に、従来方式の火炉入口部におけるオリフィスによる給
水の流量制御は、その設置目的に対して充分なものとな
っていない可能性がある。However, the flow rate control of the feed water by the orifice at the inlet of the furnace of this conventional system is as follows (1),
There are problems such as (2). Due to such problems, the flow rate control of the feed water by the orifice at the furnace inlet of the conventional method may not be sufficient for the purpose of installation. There is.
【0009】(1)火炉入口部はサブクール状態として
設計されているので、火炉上部に比べ比容積vが小さい
ため流速が遅く、そのため、流速の二乗に比例するオリ
フィスの圧損特性上、効果が発揮され難い。(1) Since the inlet of the furnace is designed as a subcooled state, the specific volume v is smaller than that of the upper part of the furnace, so that the flow velocity is slow, and therefore the effect is exerted on the pressure loss characteristic of the orifice proportional to the square of the flow velocity. Hard to be done.
【0010】(2)更に、低負荷となると、給水流量が
減りその流速が減少するので、ますます上記の傾向が大
きくなる。だからといって、低負荷においても流量制御
が出来るようにオリフィスで圧損を持たせると、高負荷
時にはオリフィスでの圧損が効きすぎて、流量が極端に
絞られる蒸発管が出現するので、火炉の信頼性を損なう
こととなる。(2) Further, when the load is low, the feed water flow rate decreases and the flow velocity decreases, so that the above tendency becomes more and more significant. However, if pressure loss is provided at the orifice so that flow rate control can be performed even at low load, pressure loss at the orifice will be too effective at high load, and an evaporation tube with extremely narrowed flow rate will appear. It will damage.
【0011】周壁蒸発管の過熱度の上昇に伴う温度アン
バランスの発生は、火炉壁面内に大きな熱応力を生ずる
ことから、負荷変化に伴う熱応力の繰り返しにより、火
炉耐圧部はその寿命を消費し、ひいては火炉耐圧部の損
傷によりボイラの運転に支障を来すことにもつながるも
のである。The occurrence of temperature imbalance due to the increase in the degree of superheat of the peripheral wall evaporation tube causes a large thermal stress in the furnace wall surface. However, the damage to the pressure-resistant part of the furnace will also hinder the operation of the boiler.
【0012】本発明は、このような問題を解決し、火炉
周壁蒸発管の過熱度の上昇に伴い火炉周壁蒸発管出口部
の管群間に温度アンバランスを生じさせないように構成
した超臨界圧変圧貫流ボイラを提供することを課題とし
ている。The present invention solves such a problem, and the supercritical pressure is constructed so as not to cause a temperature imbalance between the tube groups at the outlet of the furnace peripheral wall evaporation tube as the superheat of the furnace peripheral wall evaporation tube increases. The challenge is to provide a once-through transformer.
【0013】[0013]
【課題を解決するための手段及び作用】本発明は、水冷
蒸発管により周壁を構成された火炉を有し、その火炉内
に燃料及び燃焼用空気を投入し燃焼させるバーナ及び空
気噴出口を有する燃焼設備を備え、同火炉内で発生した
燃焼ガスは火炉周壁に熱吸収されつつ火炉上部より後部
煙道側へ流れる方式の超臨界圧変圧貫流ボイラにおける
前記した課題を解決するため、部分負荷時に火炉周壁蒸
発管内の流体が二相流となる火炉周壁管中間部に炉壁面
内の熱負荷分布に対応して缶水の通過流量を調節するオ
リフィスを設置する。The present invention has a furnace having a peripheral wall constituted by a water-cooled evaporation pipe, and has a burner and an air jet for injecting and burning fuel and combustion air into the furnace. In order to solve the above-mentioned problems in a supercritical pressure once-through boiler of a type that is equipped with combustion equipment, the combustion gas generated in the furnace flows from the upper part of the furnace to the rear flue side while being absorbed by the peripheral wall of the furnace An orifice is installed in the middle part of the furnace peripheral wall tube where the fluid in the furnace peripheral wall evaporating tube becomes a two-phase flow, and which adjusts the flow rate of the can water corresponding to the heat load distribution in the furnace wall surface.
【0014】このように、本発明による超臨界圧変圧貫
流ボイラでは、流量制御の機能向上の為、従来のような
火炉入口部にオリフィスを設ける代わりに火炉中間部に
オリフィスを設ける。以下、本発明により、超臨界圧変
圧貫流ボイラにおける火炉周壁中間部にオリフィスを設
けることの有効性並びにその検証結果について説明す
る。まず火炉中間部にオリフィスを設けることの有効性
について説明する。As described above, in the supercritical pressure variable pressure once-through boiler according to the present invention, in order to improve the function of flow rate control, an orifice is provided in the middle portion of the furnace instead of the conventional orifice at the furnace inlet. Hereinafter, according to the present invention, the effectiveness of providing an orifice in the middle portion of the furnace peripheral wall in the supercritical pressure variable pressure once-through boiler and the verification result thereof will be described. First, the effectiveness of providing an orifice in the middle of the furnace will be described.
【0015】(1)下部火炉においては、熱吸収量Qが
壁内で差があっても図5のエンタルピ/圧力チャートに
示すa〜bの領域では温度は一定(飽和温度)であり、
下部火炉出口の温度を均一化する目的で火炉入口にオリ
フィスを設置する必要性は低い。(1) In the lower furnace, the temperature is constant (saturation temperature) in the regions a to b shown in the enthalpy / pressure chart of FIG. 5, even if the heat absorption amount Q is different in the wall.
It is not necessary to install an orifice at the furnace inlet in order to make the temperature at the lower furnace outlet uniform.
【0016】(2)一方、上部火炉は、その後流側に蒸
発器からなる伝熱面等が設置されていなければ、上部火
炉の出口では常に過熱状態であり、また、煙道蒸発器が
あったとしても動的には十分過熱状態となり得ることか
ら、熱吸収量Qの分布が付き、有意な差があれば、上部
火炉の出口では確実に温度差となって表われるので、給
水流量Gの調整が必要である。(2) On the other hand, the upper furnace is always overheated at the outlet of the upper furnace unless a heat transfer surface composed of an evaporator is installed on the downstream side of the upper furnace, and there is a flue evaporator. Even if it does, it can be dynamically overheated, so there is a distribution of the heat absorption amount Q, and if there is a significant difference, it will definitely appear as a temperature difference at the outlet of the upper furnace, so the feed water flow rate G Need to be adjusted.
【0017】(3)また、下部火炉域においては、図7
に示すように静圧損失が支配的であることにより、熱吸
収量Qの偏差に対して、より信頼性が高い特性をもって
いる。即ち、熱吸収量Qの高い部分であっても、静圧損
失(ΔPstatic)の減少が支配的であり、全圧力損失
(ΔPtotal ) が減少することで、その部分の流量が増
加することになるのである。これは自己調整能力がある
ということであり、この点でも下部火炉出口の温度を均
一化する目的でオリフィスを設置する必要性は低い。(3) Further, in the lower furnace area, as shown in FIG.
Since the static pressure loss is dominant as shown in (3), it has a more reliable characteristic with respect to the deviation of the heat absorption amount Q. That is, even in a portion where the heat absorption amount Q is high, the decrease in static pressure loss (ΔP static ) is dominant, and the total pressure loss (ΔP total ) decreases, so that the flow rate in that portion increases. It becomes. This means that it has a self-adjusting ability, and in this respect also, it is not necessary to install an orifice for the purpose of equalizing the temperature of the lower furnace outlet.
【0018】(4)一方、上部火炉域に於いては、図8
に示すように逆に摩擦損失が支配的であることにより、
熱吸収量Qの偏差に対する信頼性が低い特性をもってい
る。即ち、熱吸収量に分布が付いた場合、熱負荷の高い
蒸発管は摩擦損失(ΔPfric)の増加が支配的であり、
全圧力損失(ΔPtotal ) が増加して流れ難くなり、益
々ΔT(温度差)を増やす方向に進むので、実缶での熱
吸収分布に対応した上部火炉の流量Gの制御が必要とい
うことになる。(4) On the other hand, in the upper furnace area, as shown in FIG.
On the contrary, the friction loss is dominant as shown in
It has a characteristic of low reliability with respect to the deviation of the heat absorption amount Q. That is, when the heat absorption amount has a distribution, the increase of the friction loss (ΔP fric ) is dominant in the evaporation pipe having a high heat load,
Since the total pressure loss (ΔP total ) increases and it becomes difficult to flow, and the flow continues to increase ΔT (temperature difference), it is necessary to control the flow rate G of the upper furnace corresponding to the heat absorption distribution in the actual can. Become.
【0019】(5)従来のオリフィス設置位置での問題
点として説明した諸点及び上記(1)〜(4)を勘案す
れば、流量Gの調整の為には火炉入口よりも乾き度(St
eamQuality)の高い火炉中間部でのオリフィス制御が有
効であると言える。(5) Considering the points described as the problems at the conventional orifice installation position and the above (1) to (4), in order to adjust the flow rate G, the dryness (St
It can be said that the orifice control in the middle part of the furnace with high eam quality is effective.
【0020】次に上記に関する検証結果について説明す
る。変圧貫流ボイラは、負荷により蒸気圧力が変化す
る。従って、負荷が低ければ蒸気圧力も低く、蒸気の比
熱が圧力の高い領域に比べ小さいため、同じエンタルピ
差の熱吸収量Qに対して過熱域では温度差としては大き
くなる。これは図5のエンタルピ/圧力チャートと表1
に示す通りである。Next, the verification result regarding the above will be described. The steam pressure of the once-through type boiler changes depending on the load. Therefore, when the load is low, the steam pressure is low, and the specific heat of steam is smaller than that in the high pressure region, so that the temperature difference becomes large in the overheating region for the heat absorption amount Q having the same enthalpy difference. This is the enthalpy / pressure chart and table 1 in Figure 5.
As shown in.
【0021】[0021]
【表1】 [Table 1]
【0022】それ故、低負荷で精度良く流量制御が出来
れば、高負荷では少し制御が緩くなっても熱応力的な問
題が少ないと言える。図6は負荷変化に伴う流量分配特
性を示すグラフであり、低負荷(30%ECR)時に火
炉熱負荷の分布に応じた缶水の流量分配を行った場合
に、高負荷(75%ECR)ではこの流量分配特性がど
の様に変化するかを示したものである。Therefore, if the flow rate can be controlled accurately with a low load, it can be said that there is little problem with thermal stress even with a slight control under a high load. FIG. 6 is a graph showing the flow distribution characteristics according to the load change, and when the flow distribution of the can water according to the distribution of the furnace heat load at the time of low load (30% ECR) is performed, the high load (75% ECR) is obtained. Then, it is shown how this flow distribution characteristic changes.
【0023】図6において、火炉下部にオリフィスを設
置した場合(一点鎖線)は、火炉中間部にオリフィスを
設置した場合(点線)に比し、負荷の変化(30%EC
R→75%ECR)に対する流量分配の変化の割合が大
きい。しかも流量の少ないチューブは高負荷ではより流
量が絞られることになる。In FIG. 6, when the orifice is installed in the lower part of the furnace (dashed line), the load change (30% EC) is larger than when the orifice is installed in the middle part of the furnace (dotted line).
The rate of change in flow distribution is large for R → 75% ECR). Moreover, a tube with a small flow rate will have a smaller flow rate under high load.
【0024】これは、Δh=Q/G(Δh:エンタルピ
差,Q:熱吸収量,G=チューブ当たりの流量)の関係
より、熱吸収量Q一定でチューブ当たりの流量が減少す
れば、Δhが増加することにより、温度差を助長する可
能性がある。From the relationship of Δh = Q / G (Δh: enthalpy difference, Q: heat absorption amount, G = flow rate per tube), if the heat absorption rate Q is constant and the flow rate per tube decreases, Δh May increase the temperature difference.
【0025】オリフィスを火炉下部に設置した場合と、
火炉中間部に設置した場合とで負荷変化による流量分配
特性に差の出る理由としては、次に示すような要因に基
づく(表2,3に火炉下部と火炉中間部にそれぞれオリ
フィスを設置した場合の、負荷変化に伴う各状態量の比
率を示している)。When the orifice is installed in the lower part of the furnace,
The reason why there is a difference in the flow distribution characteristics due to load changes when installed in the middle of the furnace is based on the following factors (in Tables 2 and 3 when orifices are installed in the lower part of the furnace and in the middle part of the furnace , The ratio of each state quantity with load change is shown).
【0026】即ち、オリフィスでの圧力損失は管内流速
の2乗に比例するが、火炉中間部では管内流速Vの変化
が殆ど無くγの変化のみであるのに対して、火炉下部に
おいては、管内流速Vの比が大きく2乗で影響し、缶水
流量の変化に応じてオリフィスの影響度が変化すること
となるため、負荷の変化(即ち、缶水流量の変化)に対
する流量分配の変動が大きい結果となる。That is, the pressure loss at the orifice is proportional to the square of the flow velocity in the tube, but in the middle part of the furnace there is almost no change in the flow velocity V in the tube and only in the lower part of the furnace, Since the ratio of the flow velocities V is greatly influenced by the square, and the degree of influence of the orifice changes in accordance with the change of the can water flow rate, the fluctuation of the flow rate distribution with respect to the change of the load (that is, the change of the can water flow rate). Great results.
【0027】以上により、火炉中間部にオリフィスを設
置する方が、火炉下部にオリフィスを設置する場合に比
し、各負荷の缶水流量の変化に対してオリフィスの影響
度が変化しにくく、設定した流量分配目標値を維持し易
い。As described above, setting the orifice in the middle of the furnace is less likely to change the degree of influence of the orifice with respect to the change in the can water flow rate of each load than in the case of installing the orifice in the lower part of the furnace. It is easy to maintain the specified flow rate distribution target value.
【0028】[0028]
【表2】 [Table 2]
【0029】[0029]
【表3】 [Table 3]
【0030】なお、以上の説明からいえば、本発明によ
って設けられるオリフィスは火炉出口部に設ける事が流
量制御上最も効果があるが、通常、火炉壁は熱負荷が高
く蒸発管内面からスケールが剥がれ易く、オリフィス上
流の剥がれたスケールがオリフィスの穴を塞ぐ可能性も
あり、火炉の信頼性を損なうものとなる。From the above description, it is most effective in controlling the flow rate that the orifice provided by the present invention is provided at the exit of the furnace, but normally the furnace wall has a high heat load and the scale from the inner surface of the evaporator tube is large. It is easy to peel off, and the peeled scale on the upstream side of the orifice may block the hole of the orifice, which impairs the reliability of the furnace.
【0031】そこで本発明に基づいてオリフィスを設け
る場合、火炉中間部に、断面が大きく従って流速の小さ
い、スケールトラブルに関しての一種のバッファーの役
割を果たす管寄せを設けて、その直後流である直上部に
オリフィスを配置した構成を採ること、或いはそれに加
え更に、オリフィス穴径を塞ぐようなスケールをオリフ
ィスの手前で防ぐ為に、オリフィス径よりも小さい径の
穴をあけた多孔板ストレーナをこの火炉周壁中間管寄せ
の中央部に備えた構成を採ることでオリフィスの位置を
火炉中間部とすることのリスクを無くす事が出来る。Therefore, in the case of providing an orifice according to the present invention, in the middle part of the furnace, a pipe head is provided which plays a role of a kind of buffer for scale troubles having a large cross section and therefore a small flow velocity, and the flow immediately after that. This furnace is equipped with a perforated plate strainer having a hole smaller than the orifice diameter in order to prevent the scale from closing the orifice hole diameter in front of the orifice by adopting a configuration in which an orifice is arranged in the upper part. By adopting a configuration provided in the central portion of the peripheral wall intermediate pipe, it is possible to eliminate the risk of making the position of the orifice the intermediate portion of the furnace.
【0032】[0032]
【実施例】以下、本発明による超臨界圧変圧貫流ボイラ
について図1〜図4に示した一実施例に基づいて具体的
に説明する。なお、以下の実施例において、図9に示し
た従来の装置と同じ構成の部分には説明を簡潔にするた
め同じ符号を付してある。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A supercritical pressure variable pressure once-through boiler according to the present invention will be specifically described below based on an embodiment shown in FIGS. In the following embodiments, the same components as those of the conventional device shown in FIG. 9 are designated by the same reference numerals for the sake of simplicity.
【0033】図1〜図4に示すように、本実施例のボイ
ラは、下方に燃料及び燃焼用空気を投入し燃焼させるバ
ーナ及び空気噴出口等よりなる燃焼設備を備えるほぼ鉛
直に立つ火炉14構造で、その高さの中間部に火炉14
の周壁蒸発管2を上部火炉周壁蒸発管15と下部火炉周
壁蒸発管16に分かつ火炉周壁中間管寄せ21を設置し
ている。As shown in FIGS. 1 to 4, the boiler according to the present embodiment has a substantially vertical furnace 14 equipped with combustion equipment including a burner for injecting fuel and combustion air for combustion and an air jet and the like. The structure of the furnace 14
The peripheral wall evaporation pipe 2 is divided into an upper furnace peripheral wall evaporation pipe 15 and a lower furnace peripheral wall evaporation pipe 16, and a furnace peripheral wall intermediate header 21 is installed.
【0034】この火炉周壁中間管寄せ21は火炉14壁
各面にそれぞれ1本づつ合計4本設ける。火炉周壁中間
管寄せ21内の中央全面には水平に多孔板ストレーナ2
2を取り付けてある。この管寄せ21から上部火炉周壁
蒸発管15として出ていく管寄せ直上部(直後流)の蒸
発管個々に適正な穴径のオリフィス20を装着してあ
る。This furnace peripheral wall intermediate pipe header 21 is provided on each surface of the furnace 14 one at a time, four in total. The perforated plate strainer 2 is horizontally provided on the entire central surface of the middle wall 21 of the peripheral wall of the furnace.
2 is attached. An orifice 20 having an appropriate hole diameter is attached to each evaporation pipe immediately above the pipe draw (immediate flow) that emerges as the upper furnace peripheral wall evaporation pipe 15 from the pipe draw 21.
【0035】このような火炉14を有するボイラの給
水、蒸気系統について言えば、後部煙道12に設置され
る節炭器の出口より火炉入口連絡管1を介して火炉入口
分配管寄せ18に入った給水は、更に火炉分配管17を
介して火炉周壁蒸発管入口管寄せ4に入り、これから下
流が火炉14の周壁を構成する。As for the water supply and steam system of the boiler having the furnace 14, the furnace inlet distribution pipe 18 is introduced from the outlet of the economizer installed in the rear flue 12 through the furnace inlet connecting pipe 1. The supplied water further enters the furnace peripheral wall evaporation pipe inlet pipe drawer 4 via the furnace distribution pipe 17, and the downstream side thereof forms the peripheral wall of the furnace 14.
【0036】火炉14を熱吸収しつつ下部火炉周壁蒸発
管16より、火炉周壁中間管寄せ21を経て上部火炉周
壁蒸発管15に入り火炉14最上部の火炉周壁蒸発管出
口管寄せ5に出た缶水は火炉出口連絡管6を通って気水
分離器7に入る。While absorbing the heat of the furnace 14, it enters the upper furnace peripheral wall evaporating tube 15 from the lower furnace peripheral wall evaporating tube 16 through the furnace peripheral wall intermediate conduit 21 and exits to the furnace peripheral wall evaporating tube outlet 5 at the top of the furnace 14. The canned water enters the steam separator 7 through the furnace outlet communication pipe 6.
【0037】臨界圧以下であれば、この気水分離器7で
蒸気とドレンに分離され、蒸気は過熱器入口連絡管13
を介して過熱器へと流れ、ドレンはドレン排出管8を通
じて循環ポンプ11により節炭器入口に戻される。この
場合、気水分離器7のドレンレベルが一定レベル以下と
ならぬようドレンレベル調整弁10により制御されるよ
うになっている。If it is below the critical pressure, it is separated into steam and drain by this steam separator 7, and the steam is connected to the superheater inlet communication pipe 13
Through the drain to the superheater, and the drain is returned to the inlet of the economizer by the circulation pump 11 through the drain discharge pipe 8. In this case, the drain level adjusting valve 10 controls the drain level of the steam separator 7 so as not to fall below a certain level.
【0038】図2に示した火炉周壁中間管寄せ21を設
けた周壁蒸発管の系統は図1で説明したが、図2のA−
A断面の概念図を図3に示している。管寄せ21の断面
の中央に図3及び図4に示すような水平な多孔板ストレ
ーナ22を全面にわたって取り付け、その下方から入っ
てくる下部火炉周壁蒸発管16からの管水中のスケール
のうち、上部にあるオリフィス20の穴径に近いものは
このストレーナ22で排除されるようにしている。The system of the peripheral wall evaporation pipe provided with the furnace peripheral wall intermediate pipe header 21 shown in FIG. 2 has been described with reference to FIG.
A conceptual view of the A cross section is shown in FIG. A horizontal perforated plate strainer 22 as shown in FIGS. 3 and 4 is attached over the entire surface in the center of the cross section of the header 21, and the upper part of the scale in the pipe water from the lower furnace peripheral wall evaporation pipe 16 coming in from below The strainer 22 removes the orifice 20 having a diameter close to the diameter of the orifice 20.
【0039】以上のような構成を有する本実施例による
ボイラに特有な機能について以下に説明する。本実施例
のボイラでは従来のボイラのように火炉14入口にオリ
フィス20を設置せず、火炉中間部に、断面が大きく流
速の小さい、そしてその内部に多孔板ストレーナ22を
備える火炉周壁中間管寄せ21を設置し、その直後流で
ある直上部の蒸発管にオリフィス20を設ける。このよ
うに構成したことによる働きであるが、要約してその特
徴を次の3点に集約することが出来る。The functions peculiar to the boiler according to this embodiment having the above structure will be described below. In the boiler of the present embodiment, unlike the conventional boiler, the orifice 20 is not installed at the inlet of the furnace 14, the middle section of the furnace has a large cross section and a small flow velocity, and the perforated plate strainer 22 is provided inside the middle wall of the furnace. 21 is installed, and the orifice 20 is provided in the evaporation pipe immediately above, which is the flow immediately thereafter. The function of this structure is summarized, but its features can be summarized in the following three points.
【0040】(1)火炉周壁中間管寄せ21の下方の下
部火炉ではオリフィス20が無くとも、熱吸収量Qの高
い部分が生じた場合、静圧損失(ΔPstatic)の減少が
支配的であり、その結果、全圧力損失(ΔPtotal ) が
減少し、その熱吸収量Qの高い部分の流量が自ずから増
加する、所謂、自己調整能力が備わっている。(1) In the lower furnace below the intermediate wall 21 of the peripheral wall of the furnace, the reduction of the static pressure loss (ΔP static ) is predominant even if there is a portion with a high heat absorption amount Q even without the orifice 20. As a result, the total pressure loss (ΔP total ) decreases, and the flow rate of the portion where the heat absorption amount Q is high naturally increases, so-called self-adjustment capability is provided.
【0041】(2)これに対して、上部火炉では熱吸収
量Qの高い蒸発管は摩擦損失(ΔP fric)の増加が支配
的であり、全圧力損失(ΔPtotal ) が増加して流量は
減少し温度差ΔTは大きくなる一方であり、ここにオリ
フィス20を設け、上部火炉の熱吸収分布に対応して流
量を制御するので、火炉出口流体のエンタルピレベルの
均一化が可能となる。(2) On the other hand, the upper furnace absorbs heat.
Evaporation tubes with high quantity Q have friction loss (ΔP fric) Dominates
The total pressure loss (ΔPtotal) Increases and the flow rate is
The temperature difference ΔT is gradually decreasing and increasing.
A fis 20 is provided to make the flow corresponding to the heat absorption distribution of the upper furnace.
Control the amount of enthalpy level of the furnace outlet fluid.
Uniformity becomes possible.
【0042】(3)スケールの発生し易い火炉中間部に
おいて、バッファーとしての火炉周壁中間管寄せ21、
更に多孔板ストレーナ22をその内部に備えることで、
スケールトラブルフリーとする事が出来る。(3) In the middle part of the furnace where scale is apt to occur, the middle part of the furnace peripheral wall 21 serving as a buffer,
Furthermore, by providing the perforated plate strainer 22 inside,
It can be scale-free.
【0043】以上、本発明を図示した実施例に基づいて
具体的に説明したが、本発明がこれら実施例に限定され
ず特許請求の範囲に示す本発明の範囲内で、その具体的
構造に種々の変更を加えてよいことはいうまでもない。
例えば、上記実施例ではオリフィス20の上流に多孔板
ストレーナ22つきの火炉周壁中間管寄せ21を設けて
いるが、これは必ずしも必要ない。The present invention has been specifically described above based on the illustrated embodiments, but the present invention is not limited to these embodiments, and within the scope of the present invention as set forth in the claims, the specific structure thereof will be described. It goes without saying that various changes may be made.
For example, in the above-described embodiment, the furnace peripheral wall intermediate header 21 with the perforated plate strainer 22 is provided upstream of the orifice 20, but this is not always necessary.
【0044】[0044]
【発明の効果】以上説明したように、従来方式の火炉入
口部におけるオリフィス設置方式が設置目的に対して充
分なものとなっていない可能性があるのに対して、本発
明によって、部分負荷時に火炉周壁蒸発管内の流体が二
相流となる火炉周壁管中間部に炉壁面内の熱負荷分布に
対応して缶水の通過流量を調節するオリフィスを設置し
た構成にすると、下部火炉は自己調整能力により熱吸収
量Qの分布に対応させ、、流量調整を真に必要とする火
炉周壁中間管寄せの下流、すなわち上部火炉に設置した
ことになり、そこでの熱吸収量Qの分布に対応させて、
火炉出口流体のエンタルピレベルの均一化を計る事が可
能となる。As described above, while the conventional method of installing an orifice at the entrance of a furnace may not be sufficient for the purpose of installation, according to the present invention, when partial load is applied. If the orifice is installed in the middle of the furnace peripheral wall tube where the fluid in the furnace peripheral wall evaporation tube becomes a two-phase flow, the lower furnace is self-adjusting by adjusting the flow rate of the can water according to the heat load distribution in the furnace wall surface. According to the capacity, the distribution of the heat absorption amount Q should be adjusted, and it should be installed downstream of the middle wall of the furnace peripheral wall where the flow rate adjustment is really needed, that is, in the upper furnace. hand,
It is possible to make the enthalpy level of the fluid at the furnace outlet uniform.
【0045】そして、オリフィスの上流に火炉周壁中間
管寄せを設けることによって、オリフィスをこのような
中間部に設置することによる二次的なスケールトラブル
をも防止するので、火炉周壁蒸発管の過熱度の上昇に伴
う温度アンバランスの発生に起因する火炉耐圧部の寿命
の消費、ひいては損傷によるボイラの運転への支障等を
防ぐ効果がある。By providing a furnace peripheral wall intermediate pipe upstream of the orifice, secondary scale troubles caused by installing the orifice in such an intermediate portion can be prevented. Therefore, the degree of superheat of the furnace peripheral wall evaporation pipe can be prevented. This has the effect of preventing the consumption of the life of the pressure-resistant part of the furnace due to the occurrence of temperature imbalance due to the rise in temperature, and eventually the hindrance to the operation of the boiler due to damage.
【図1】本発明の一実施例に係る超臨界圧変圧貫流ボイ
ラの系統図。FIG. 1 is a system diagram of a supercritical pressure transformer once-through boiler according to an embodiment of the present invention.
【図2】本発明の一実施例に係る超臨界圧変圧貫流ボイ
ラにおける火炉周壁中間管寄せの構造説明図。FIG. 2 is a structural explanatory view of a furnace peripheral wall intermediate pipe header in a supercritical pressure variable pressure once-through boiler according to an embodiment of the present invention.
【図3】図2のA−A線に沿う拡大断面図。FIG. 3 is an enlarged cross-sectional view taken along the line AA of FIG.
【図4】火炉周壁中間管寄せを破断して示す斜視図。FIG. 4 is a perspective view showing a furnace peripheral wall intermediate pipe breaker.
【図5】水、蒸気のエンタルピ/圧力チャート[Fig. 5] Water / steam enthalpy / pressure chart
【図6】負荷変化に伴う流量分配特性図。FIG. 6 is a flow rate distribution characteristic diagram according to load changes.
【図7】超臨界圧変圧貫流ボイラの下部火炉域における
圧力損失の状態を示した説明図。FIG. 7 is an explanatory view showing a state of pressure loss in the lower furnace region of the supercritical pressure variable pressure once-through boiler.
【図8】超臨界圧変圧貫流ボイラの上部火炉域における
圧力損失の状態を示した説明図。FIG. 8 is an explanatory diagram showing a state of pressure loss in the upper furnace region of the supercritical pressure variable pressure once-through boiler.
【図9】従来の超臨界圧変圧貫流ボイラの系統図。FIG. 9 is a system diagram of a conventional supercritical pressure transformer once-through boiler.
1 火炉入口連絡管 2 周壁蒸発管 3 火炉周壁蒸発管出口 4 火炉周壁蒸発管入口管寄せ 5 火炉周壁蒸発管出口管寄せ 6 火炉出口連絡管 7 気水分離器 8 ドレン排出管 9 過熱器 10 ドレンレベル調整弁 11 循環ポンプ 12 後部煙道 13 過熱器入口連絡管 14 火炉 15 上部火炉周壁蒸発管 16 下部火炉周壁蒸発管 17 火炉分配管 18 火炉入口分配管寄せ 20 オリフィス 21 火炉周壁中間管寄せ 22 多孔板ストレーナ 1 Furnace inlet connecting pipe 2 Circumferential wall evaporating pipe 3 Furnace peripheral wall evaporating pipe outlet 4 Furnace peripheral wall evaporating pipe inlet pipe bringing 5 Furnace peripheral wall evaporating pipe outlet pipe bringing 6 Furnace outlet connecting pipe 7 Steam water separator 8 Drain discharge pipe 9 Superheater 10 Drain Level control valve 11 Circulation pump 12 Rear flue 13 Superheater inlet connecting pipe 14 Furnace 15 Upper furnace peripheral wall evaporating pipe 16 Lower furnace peripheral wall evaporating pipe 17 Furnace distribution piping 18 Furnace inlet distribution piping 20 Orifice 21 Intermediate furnace peripheral pipe drawing 22 Porous Board strainer
Claims (3)
を有し、その火炉内に燃料及び燃焼用空気を投入し燃焼
させるバーナ及び空気噴出口を有する燃焼設備を備え、
同火炉内で発生した燃焼ガスは火炉周壁に熱吸収されつ
つ火炉上部より後部煙道側へ流れる方式の超臨界圧変圧
貫流ボイラにおいて、部分負荷時に火炉周壁蒸発管内の
流体が二相流となる火炉周壁管中間部に炉壁面内の熱負
荷分布に対応して缶水の通過流量を調節するオリフィス
を設置したことを特徴とする超臨界圧変圧貫流ボイラ。1. A combustion facility having a furnace whose peripheral wall is constituted by a water-cooled evaporation pipe, and having a burner for injecting and burning fuel and combustion air into the furnace, and a combustion facility having an air ejection port,
In the supercritical pressure variable pressure once-through boiler, in which the combustion gas generated in the furnace is absorbed by the peripheral wall of the furnace and flows from the upper part of the furnace toward the rear flue side, the fluid in the evaporative tube of the peripheral wall of the furnace becomes a two-phase flow when partially loaded. A supercritical pressure transformer once-through boiler equipped with an orifice in the middle of the furnace wall that adjusts the flow rate of canned water according to the heat load distribution in the furnace wall.
数の火炉周壁中間管寄せを設け、この管寄せを出た直上
部(直後流)に前記オリフィスを設置したことを特徴と
する請求項1記載の超臨界圧変圧貫流ボイラ。2. A single or a plurality of furnace peripheral wall intermediate pipe headers are provided in the middle portion of the furnace peripheral wall pipes, and the orifice is installed immediately above (directly after) the outlet. 1. A supercritical pressure transformer once-through boiler according to 1.
寄せの内部に前記オリフィスの穴径よりも小さい径の多
数の穴を有する多孔板ストレーナを備えたことを特徴と
する請求項2記載の超臨界圧変圧貫流ボイラ。3. A perforated plate strainer having a plurality of holes each having a diameter smaller than the hole diameter of the orifice is provided inside the single or a plurality of furnace peripheral wall intermediate pipe headers. Supercritical pressure transformer once-through boiler.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07043041A JP3085873B2 (en) | 1995-03-02 | 1995-03-02 | Supercritical pressure once-through boiler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07043041A JP3085873B2 (en) | 1995-03-02 | 1995-03-02 | Supercritical pressure once-through boiler |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08233208A true JPH08233208A (en) | 1996-09-10 |
JP3085873B2 JP3085873B2 (en) | 2000-09-11 |
Family
ID=12652827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07043041A Expired - Fee Related JP3085873B2 (en) | 1995-03-02 | 1995-03-02 | Supercritical pressure once-through boiler |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3085873B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012521529A (en) * | 2009-03-09 | 2012-09-13 | シーメンス アクチエンゲゼルシヤフト | Once-through evaporator |
CN104728823A (en) * | 2015-03-17 | 2015-06-24 | 西安热工研究院有限公司 | Novel supercritical carbon dioxide coal-fired boiler |
CN109764328A (en) * | 2018-12-12 | 2019-05-17 | 华中科技大学 | A kind of supercritical carbon dioxide boiler cooling wall and boiler and its application method |
CN111780097A (en) * | 2020-06-24 | 2020-10-16 | 西安交通大学 | Ultra-supercritical circulating fluidized bed boiler screen type heating surface with intermediate mixing header and boiler |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108304007A (en) * | 2017-12-28 | 2018-07-20 | 太原科技大学 | A kind of chamber type intelligent temperature controlling stove |
-
1995
- 1995-03-02 JP JP07043041A patent/JP3085873B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012521529A (en) * | 2009-03-09 | 2012-09-13 | シーメンス アクチエンゲゼルシヤフト | Once-through evaporator |
CN104728823A (en) * | 2015-03-17 | 2015-06-24 | 西安热工研究院有限公司 | Novel supercritical carbon dioxide coal-fired boiler |
CN109764328A (en) * | 2018-12-12 | 2019-05-17 | 华中科技大学 | A kind of supercritical carbon dioxide boiler cooling wall and boiler and its application method |
CN111780097A (en) * | 2020-06-24 | 2020-10-16 | 西安交通大学 | Ultra-supercritical circulating fluidized bed boiler screen type heating surface with intermediate mixing header and boiler |
Also Published As
Publication number | Publication date |
---|---|
JP3085873B2 (en) | 2000-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4300481A (en) | Shell and tube moisture separator reheater with outlet orificing | |
US5983639A (en) | Method and system for starting up a continuous flow steam generator | |
KR100294729B1 (en) | Boiler | |
JPH08233208A (en) | Ultracritical variable pressure once-through type axial boiler | |
US4632064A (en) | Boiler | |
US4331105A (en) | Forced-flow once-through boiler for variable supercritical pressure operation | |
JPH0942606A (en) | Once-through boiler steam temperature control device | |
JPH06137501A (en) | Supercritical variable pressure operating steam generator | |
US6105538A (en) | Waste heat boiler with variable output | |
JPH10232002A (en) | Boiler | |
JPH08327006A (en) | Supercritical variable pressure once-through boiler | |
JPS5836243B2 (en) | steam generator | |
US2568567A (en) | Attemperator regulating the tem | |
JPS5827206Y2 (en) | Steam boiler with thermal efficiency improvement device | |
JP2000337604A (en) | Desuperheating device | |
JPH11230505A (en) | Boiler | |
JP2625422B2 (en) | Boiler control device | |
JPH06229503A (en) | Waste heat recovery boiler device | |
KR850001999Y1 (en) | Once through sliding pressure steam generator | |
JP2000130701A (en) | Boiler structure | |
JPH06174194A (en) | Lpg evaporator | |
JPS6222902A (en) | Steam generator | |
JP2001324102A (en) | Boiler apparatus and method for controlling the same | |
JPH1114007A (en) | Reheat steam temperature controller of boiler | |
JPH0658503A (en) | Case structure of multi-pipe type once-through boiler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000606 |
|
LAPS | Cancellation because of no payment of annual fees |