[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH08204244A - Superconductive unit - Google Patents

Superconductive unit

Info

Publication number
JPH08204244A
JPH08204244A JP7010599A JP1059995A JPH08204244A JP H08204244 A JPH08204244 A JP H08204244A JP 7010599 A JP7010599 A JP 7010599A JP 1059995 A JP1059995 A JP 1059995A JP H08204244 A JPH08204244 A JP H08204244A
Authority
JP
Japan
Prior art keywords
electrode
bonding
superconducting
alloy
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7010599A
Other languages
Japanese (ja)
Inventor
Toshinori Kogashiwa
俊典 小柏
Takatoshi Arikawa
孝俊 有川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Denshi Kogyo KK
Original Assignee
Tanaka Denshi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Denshi Kogyo KK filed Critical Tanaka Denshi Kogyo KK
Priority to JP7010599A priority Critical patent/JPH08204244A/en
Publication of JPH08204244A publication Critical patent/JPH08204244A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE: To obtain a highly reliable superconductive unit comprising an Nb electrode of superconducting integrated circuit connected, through wireless bonding, with the wiring on a board while sustaining superconductive contact by suppressing the aging at a joint upon exposure to an environment of severe temperature cycle. CONSTITUTION: The Nb electrode face A is connected with the wiring face B of a board through a connection member 5 comprising a Pb alloy 5a having superconductivity formed continuously between them and a bonding bump 5b formed while being connected with both faces A, B. Consequently, the bonding strength is enhanced between the bonding bump 5b and the Nb electrode 2, the Pb alloy 5a and the wiring 4 on the board. Furthermore, the bonding bump 5b serves as a reinforcing member for the connection member 5 on the Nb electrode face A which is subjected to aging.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超伝導装置に関し、詳し
くはワイヤレスボンディング法、特にフリップチップボ
ンディング法又はテープキャリアボンディング法によ
り、超伝導集積回路のNb電極と、基板上の配線とを接
続する場合、超伝導接続を維持しながら接続部の信頼性
を向上させた超伝導装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting device, and more specifically, it connects a Nb electrode of a superconducting integrated circuit and a wiring on a substrate by a wireless bonding method, particularly a flip chip bonding method or a tape carrier bonding method. In this case, the present invention relates to a superconducting device in which the reliability of the connection is improved while maintaining the superconducting connection.

【0002】[0002]

【従来の技術】従来から、超伝導装置における超伝導集
積回路の電極と、基板上の配線(基板配線)とを、超伝
導性を有するバンプ材料を用いてワイヤレスボンディン
グ法により接続する方式が知られている。ここで、超伝
導集積回路の電極をNb層で形成することは、形成プロ
セスが容易であることから好まれている。さらに前記超
伝導集積回路のNb電極と基板配線とを接続する場合、
超伝導コンタクトを維持するために、超伝導集積回路の
Nb電極の上面にAu,Pd等の薄膜を形成して使用さ
れている。
2. Description of the Related Art Conventionally, there is known a method of connecting electrodes of a superconducting integrated circuit in a superconducting device and wiring on a substrate (substrate wiring) by a wireless bonding method using a bump material having superconductivity. Has been. Here, forming the electrode of the superconducting integrated circuit with the Nb layer is preferred because the forming process is easy. Further, when connecting the Nb electrode of the superconducting integrated circuit and the substrate wiring,
In order to maintain the superconducting contact, a thin film of Au, Pd or the like is formed on the upper surface of the Nb electrode of the superconducting integrated circuit and used.

【0003】またこの様な超伝導装置は、超伝導性を発
現させるための極低温から常温までの過酷な温度サイク
ル(4.2K〜273K)の環境に晒されるため、接続
部の信頼性が特に重要である。このため本願発明者等
は、超伝導集積回路のNb電極上に所定厚さのAu極薄
膜やPd極薄膜を形成することによって接合強度を向上
させ、信頼性の高い超伝導装置を提供することを先に提
案した(特開平3−12941号(特公平6−5686
0号)、特開平5−102538号)。しかし乍ら近
年、極低温から常温までの過酷な温度サイクルの環境に
晒されても、接続部における信頼性がさらに優れた超伝
導装置、すなわち、接続部における経時劣化が極めて小
さい超伝導装置が求められている。
Further, since such a superconducting device is exposed to a severe temperature cycle (4.2K to 273K) from super-low temperature to normal temperature for exhibiting superconductivity, the reliability of the connecting portion is high. Especially important. Therefore, the inventors of the present application provide a highly reliable superconducting device by improving the bonding strength by forming an Au ultrathin film or Pd ultrathin film having a predetermined thickness on the Nb electrode of the superconducting integrated circuit. Was previously proposed (Japanese Patent Laid-Open No. 3-12941 (Japanese Patent Publication No. 6-5686).
0), JP-A-5-102538). However, in recent years, a superconducting device with even higher reliability at the connection part, that is, a superconducting device with extremely little deterioration with time in the connection part, even when exposed to a severe temperature cycle environment from extremely low temperature to room temperature, has been developed. It has been demanded.

【0004】[0004]

【発明が解決しようとする課題】本発明は上述した事情
に鑑みてなされたもので、超伝導集積回路のNb電極
と、基板上の配線とを、超伝導性を有する接続材料(バ
ンプ材料)を用いてワイヤレスボンディング法により、
超伝導コンタクトを維持しながら接続した超伝導装置に
おいて、過酷な温度サイクルの環境に晒された場合に、
単に極薄膜形成によって超伝導コンタクトの維持に対応
する手段に比べ、接続部の信頼性の面でさらに優れた超
伝導装置、言い換えれば、接続部における経時劣化が極
めて小さい超伝導装置を提供せんとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and is a connection material (bump material) having superconductivity between the Nb electrode of the superconducting integrated circuit and the wiring on the substrate. By the wireless bonding method using
In a superconducting device connected while maintaining superconducting contacts, when exposed to a severe temperature cycle environment,
To provide a superconducting device that is even more excellent in terms of reliability of the connection part, in other words, a superconducting device that has extremely small deterioration over time in the connection part, as compared to a means that supports maintenance of the superconducting contact simply by forming an ultrathin film. To do.

【0005】[0005]

【課題を解決するための手段】以上の目的を達成するた
めに、本発明の超伝導装置は、請求項1においては、超
伝導集積回路のNb電極面と、基板上の配線面(基板配
線面)とを接続する接続部材が、前記Nb電極面と基板
配線面との間に連続して形成された超伝導性を有するP
b合金と、少なくとも前記Nb電極面に接続して形成さ
れた接合用バンプからなることを特徴とする。該請求項
1においては、上記Pb合金及び接合用バンプが超伝導
集積回路のNb電極に直接接続して形成されている場合
と、超伝導集積回路のNb電極上面にAu又はPdから
なる極薄膜を形成し該極薄膜を介してPb合金及び接合
用バンプが前記Nb電極に接続して形成されている場合
との双方を包含するものである。
In order to achieve the above object, the superconducting device of the present invention is characterized in that, in claim 1, the Nb electrode surface of the superconducting integrated circuit and the wiring surface on the substrate (substrate wiring). A connecting member for connecting with the surface) is formed continuously between the Nb electrode surface and the substrate wiring surface and has superconductivity.
It is characterized by comprising a b alloy and a bonding bump formed by connecting at least the Nb electrode surface. In claim 1, the case where the Pb alloy and the bonding bump are directly connected to the Nb electrode of the superconducting integrated circuit, and the ultrathin film made of Au or Pd on the upper surface of the Nb electrode of the superconducting integrated circuit. And the case where the Pb alloy and the bonding bump are formed by being connected to the Nb electrode via the ultrathin film.

【0006】また請求項2は、上記Pb合金及び接合用
バンプが、超伝導集積回路のNb電極に直接接続して形
成されていることを特徴とする。該請求項2でいう「直
接接続して形成されている」とは、超伝導集積回路のN
b電極上面に極薄膜を形成せずに、上記Pb合金及び接
合用バンプを前記Nb電極上面に直接形成することをい
う。
A second aspect of the present invention is characterized in that the Pb alloy and the bonding bump are directly connected to the Nb electrode of the superconducting integrated circuit. The term "formed by direct connection" as used in claim 2 refers to N of a superconducting integrated circuit.
It means that the Pb alloy and the bonding bumps are directly formed on the upper surface of the Nb electrode without forming an ultrathin film on the upper surface of the b electrode.

【0007】また請求項3は、上記接合用バンプが、超
伝導集積回路のNb電極面と、基板配線面との両面に接
続して形成されていることを特徴とする。
A third aspect of the present invention is characterized in that the bonding bumps are formed by connecting to both the Nb electrode surface of the superconducting integrated circuit and the substrate wiring surface.

【0008】また請求項4は、上記接合用バンプが、A
u,Ag,Pt,Pdのうちの少なくとも1種からなる
ことを特徴とする。
According to a fourth aspect of the present invention, the bonding bump is A
It is characterized by comprising at least one of u, Ag, Pt, and Pd.

【0009】[0009]

【作用】以下、本発明について詳述する。本発明は、ジ
ョセフソン接合を有する超伝導集積回路と基板配線と
を、超伝導性を有するPb合金を用いて、ワイヤレスボ
ンディング法により接続せしめた超伝導装置に関する。
本発明の代表例を図1及び図2に示す。図1において、
1はSiチップからなる超伝導集積回路、2はその超伝
導集積回路1に形成されたNb電極、3は基板、4は該
基板3上に形成された銅板配線4aの上面を超伝導性を
有する下地金属4bでめっきしてなる基板配線、5は超
伝導性を有するPb合金5aと接合用バンプ5bとから
なる接続部材である。該接続部材5は、前記Nb電極2
の上面レベル、すなわちNb電極面(図中に符号Aで示
す面)と、前記基板配線4の上面レベル、すなわち基板
配線面(図中に符号Bで示す面)との間に形成される。
図2は、図1に示す例におけるNb電極2上に極薄膜7
を形成したものであり、該例にあっては前記極薄膜7の
上面レベルがNb電極面Aに相当する。
The present invention will be described in detail below. The present invention relates to a superconducting device in which a superconducting integrated circuit having a Josephson junction and substrate wiring are connected by a wireless bonding method using a Pb alloy having superconductivity.
A representative example of the present invention is shown in FIGS. In FIG.
Reference numeral 1 is a superconducting integrated circuit made of a Si chip, 2 is an Nb electrode formed on the superconducting integrated circuit 1, 3 is a substrate, 4 is a superconducting upper surface of a copper plate wiring 4a formed on the substrate 3. Substrate wirings 5 plated with the underlying metal 4b are a connecting member composed of a Pb alloy 5a having superconductivity and a bonding bump 5b. The connecting member 5 is the Nb electrode 2
Of the Nb electrode surface (the surface indicated by symbol A in the figure) and the upper surface level of the substrate wiring 4, that is, the substrate wiring surface (the surface indicated by symbol B in the figure).
FIG. 2 shows an extremely thin film 7 on the Nb electrode 2 in the example shown in FIG.
In this example, the upper surface level of the ultrathin film 7 corresponds to the Nb electrode surface A.

【0010】本発明において、超伝導集積回路1の電極
2はNbで形成する。該電極2をNbで形成することは
形成プロセスが容易であるため、好ましく用いられる。
本発明においては図2に示す様に、該Nb電極2上に極
薄膜7を形成して用いることも出来る。該極薄膜7を形
成する際、その厚さは200nm以下とする。200n
mを超えると超伝導コンタクトが出来なくなるため好ま
しくない。また極薄膜7の材質としては、Au又はPd
が好ましく用いられる。これらの極薄膜は蒸着法又はス
パッタ法によってNb電極2上に形成される。尚、図1
に示す様に超伝導集積回路1のNb電極2上に極薄膜7
を形成せずに、Pb合金5a及び接合用バンプ5bを該
Nb電極2に直接接続した場合と、図2に示す様に該N
b電極2上に極薄膜7を形成し、該極薄膜7を介してP
b合金5a及び接合用バンプ5bをNb電極2に間接的
に接続した場合とでは、本発明が目的とする接続部の信
頼性向上に関しては同等の効果が得られるが、極薄膜7
を形成することによりコストアップが考えれる図2の例
に比べれば、図1に示す構造のもの(請求項2に係るも
の)がより好ましく用いられる。
In the present invention, the electrode 2 of the superconducting integrated circuit 1 is made of Nb. Forming the electrode 2 with Nb is preferably used because the forming process is easy.
In the present invention, as shown in FIG. 2, an ultrathin film 7 may be formed on the Nb electrode 2 and used. When the ultrathin film 7 is formed, its thickness is 200 nm or less. 200n
If it exceeds m, superconducting contact cannot be made, which is not preferable. The material of the ultrathin film 7 is Au or Pd.
Is preferably used. These ultra-thin films are formed on the Nb electrode 2 by vapor deposition or sputtering. FIG.
As shown in, an ultrathin film 7 is formed on the Nb electrode 2 of the superconducting integrated circuit 1.
Without forming the Pb alloy 5a and the bonding bump 5b directly to the Nb electrode 2 and as shown in FIG.
An extremely thin film 7 is formed on the b-electrode 2, and P is formed through the extremely thin film 7.
In the case where the b alloy 5a and the bonding bump 5b are indirectly connected to the Nb electrode 2, the same effect can be obtained with respect to the improvement of the reliability of the connection portion which is an object of the present invention, but the ultrathin film 7
As compared with the example of FIG. 2 in which the cost can be increased by forming the structure, the structure of FIG. 1 (according to claim 2) is more preferably used.

【0011】本発明でいう基板配線とは、プラスチック
製又はセラミックス製の基板3に超伝導性を有する配線
を備えたものをいう。好ましくは図示する様に、銅板配
線4aに超伝導性を有する下地金属4bをめっきして基
板配線4として使用する。該下地金属4bとしてPb−
Sn等のめっきが好ましく使用出来る。
The substrate wiring referred to in the present invention means a substrate 3 made of plastic or ceramics provided with wiring having superconductivity. Preferably, as shown in the figure, the copper plate wiring 4a is plated with a base metal 4b having superconductivity to be used as the substrate wiring 4. Pb-as the base metal 4b
Plating of Sn or the like can be preferably used.

【0012】本発明でいう接続部材とは、超伝導性を有
するPb合金5aと、接合用バンプ5bとからなるもの
をいう。超伝導性を有するPb合金とは、液体ヘリウム
温度(4.2K)で超伝導状態を発現出来るPb合金を
いう。Pb合金の加工性を考慮してPbにCu,Ga,
Ge,Se,Ag,In,Sn,Sb,Te,Au,T
l,Bi,Pd,Ptを含有したPb合金が好ましく用
いられる。該超伝導性を有するPb合金5aは、超伝導
集積回路1のNb電極2の上面レベル、すなわちNb電
極面Aと、基板配線4の上面レベル、すなわち基板配線
面Bとの間に連続して形成し超伝導性コンタクトを確保
することが必要である。接合用バンプを形成する材料と
しては、Au,Ag,Pt,Pdのうちの少なくとも1
種が好ましく用いられる。これらの材料を用いると、接
合用バンプ5bとNb電極2、接合用バンプ5bと下地
金属4b、接合用バンプ5bと超伝導性を有するPb合
金5aとの接合力が夫々確実に向上し、超伝導性を有す
るPb合金5aと接合用バンプ5bからなる接続部材5
の接合力が向上する。
The term "connecting member" as used in the present invention refers to a member comprising a Pb alloy 5a having superconductivity and a bonding bump 5b. The Pb alloy having superconductivity is a Pb alloy capable of exhibiting a superconducting state at a liquid helium temperature (4.2K). Considering the workability of Pb alloy, Cu, Ga,
Ge, Se, Ag, In, Sn, Sb, Te, Au, T
Pb alloy containing 1, Bi, Pd, Pt is preferably used. The Pb alloy 5a having superconductivity is continuously formed between the upper surface level of the Nb electrode 2 of the superconducting integrated circuit 1, that is, the Nb electrode surface A and the upper surface level of the substrate wiring 4, that is, the substrate wiring surface B. It is necessary to form and secure the superconducting contact. At least one of Au, Ag, Pt, and Pd is used as the material for forming the bonding bump.
Seeds are preferably used. When these materials are used, the bonding force between the bonding bump 5b and the Nb electrode 2, the bonding bump 5b and the base metal 4b, and the bonding bump 5b and the superconducting Pb alloy 5a is surely improved. Connection member 5 including Pb alloy 5a having conductivity and bump 5b for bonding
The joining force of is improved.

【0013】本発明において接合用バンプは、少なくと
も超伝導集積回路1のNb電極面Aに接続して形成され
ることが必要である。接合用バンプ5bの接続箇所(接
続方式)として、図3(a)〜(c)が例示出来る。図
3(a)は、接合用バンプ5bが、超伝導集積回路1の
Nb電極面Aと基板配線面Bとの両面に接続して形成さ
れ、且つNb電極面Aと基板配線面Bの間は連続して形
成された状態である。図3(b)は、接合用バンプ5b
が、超伝導集積回路1のNb電極面Aと基板配線面Bの
両面に接続して形成されているものの、Nb電極面Aと
基板配線面Bの間は連続して形成されていない状態であ
る。尚、この接続方式は図1及び図2に示すものと同じ
である。図3(c)は、接合用バンプ5bが超伝導集積
回路1のNb電極面Aのみに接続して形成された状態で
ある。図3(a)〜(c)に示す夫々の接続方式のう
ち、(a),(b)に示される様に、Nb電極面Aと基
板配線面Bの両面に接続して接合用バンプ5bが形成さ
れるものの方が、超伝導装置が温度サイクルの環境に晒
された場合の経時劣化が小さいため、より好ましく採用
される。
In the present invention, the bonding bumps must be formed so as to be connected to at least the Nb electrode surface A of the superconducting integrated circuit 1. 3A to 3C can be exemplified as the connection points (connection method) of the bonding bumps 5b. In FIG. 3A, the bonding bumps 5b are formed by connecting to both surfaces of the Nb electrode surface A and the substrate wiring surface B of the superconducting integrated circuit 1, and between the Nb electrode surface A and the substrate wiring surface B. Is a continuously formed state. FIG. 3B shows a bump 5b for joining.
However, although it is formed by connecting both sides of the Nb electrode surface A and the substrate wiring surface B of the superconducting integrated circuit 1, the Nb electrode surface A and the substrate wiring surface B are not continuously formed. is there. The connection method is the same as that shown in FIGS. FIG. 3C shows a state in which the bonding bumps 5 b are formed by connecting only to the Nb electrode surface A of the superconducting integrated circuit 1. Of the connection methods shown in FIGS. 3A to 3C, as shown in FIGS. 3A and 3B, the bonding bumps 5b are connected to both the Nb electrode surface A and the substrate wiring surface B. Is preferably formed because the superconducting device is less deteriorated with time when exposed to a temperature cycle environment.

【0014】尚、図3(a)〜(c)においては、Pb
合金5a及び接合用バンプ5bが超伝導集積回路1のN
b電極2に直接接続して形成されている場合について示
したが、本発明の請求項1においては、Nb電極2上面
にAu又はPdからなる極薄膜7を形成し該極薄膜7を
介してPb合金5a及び接合用バンプ5bがNb電極2
に接続して形成されている構造をも包含し、当該構造は
図3(b)に係る接続方式についてのみ図2に示し、図
3(a),(c)に係る接続方式については便宜上省略
する。
In FIGS. 3A to 3C, Pb
The alloy 5a and the bonding bump 5b are N of the superconducting integrated circuit 1.
Although the case where it is formed by being directly connected to the b electrode 2 has been shown, in the claim 1 of the present invention, the ultrathin film 7 made of Au or Pd is formed on the upper surface of the Nb electrode 2 and the ultrathin film 7 is interposed therebetween. The Pb alloy 5a and the bonding bump 5b are the Nb electrode 2
2 also includes a structure formed by connecting to each other, the structure is shown in FIG. 2 only for the connection method according to FIG. 3B, and the connection method according to FIGS. 3A and 3C is omitted for convenience. To do.

【0015】超伝導集積回路1のNb電極面A及び基板
配線面Bを接続部材5で接続する方法、すなわち、前記
接続部材5の形成方法の一例として、Nb電極面A,基
板配線面Bに接合用バンプ5b、Pb合金5aを順次予
備形成した後、該接合用バンプ5b、Pb合金5aが予
備形成されたNb電極面A,基板配線面Bを接合する所
謂フリップチップ接合することが挙げられる。上記Pb
合金5a及び接合用バンプ5bを予備形成する方法とし
て、図4(a)〜(c)が例示出来る。
As a method of connecting the Nb electrode surface A and the substrate wiring surface B of the superconducting integrated circuit 1 with the connecting member 5, that is, an example of the method of forming the connecting member 5, the Nb electrode surface A and the substrate wiring surface B are connected. A so-called flip-chip bonding may be performed in which the bonding bumps 5b and the Pb alloy 5a are sequentially preliminarily formed, and then the Nb electrode surface A and the board wiring surface B on which the bonding bumps 5b and Pb alloy 5a are preformed are bonded. . Above Pb
As a method of preforming the alloy 5a and the bonding bump 5b, FIGS. 4A to 4C can be exemplified.

【0016】図4(a)は、超伝導集積回路1のNb電
極面Aにワイヤボンディング法を用いて接合用バンプ5
bを予備形成しただけで、超伝導性を有するPb合金5
aは形成しない状態を示す。基板配線面Bにおいても同
様にして、接合用バンプ5bを予備形成出来る。図4
(b)は、超伝導集積回路1のNb電極面Aにワイヤボ
ンディング法を用いて接合用バンプ5bを予備形成し、
その後、超伝導性を有するPb合金浴にディップして、
前記予備形成された接合用バンプ5bを覆って超伝導性
を有するPb合金5aを予備形成する状態を示す。基板
配線面Bにおいても同様にして、接合用バンプ5b及び
Pb合金5aを形成出来る。図4(c)は、超伝導集積
回路1のNb電極面Aにワイヤボンディング法を用いて
接合用バンプ5bを予備形成し、さらにワイヤボンディ
ング法を用いて、超伝導性を有するPb合金で前記予備
形成された接合用バンプ5bを覆って、超伝導性を有す
るPb合金5aを予備形成する状態を示す。基板配線面
Bにおいても同様にして、接合用バンプ5b及びPb合
金5aを形成出来る。
FIG. 4A shows a bonding bump 5 on the Nb electrode surface A of the superconducting integrated circuit 1 by using a wire bonding method.
Pb alloy 5 with superconductivity only by preforming b
“A” indicates a state in which no film is formed. Similarly, on the board wiring surface B, the bonding bumps 5b can be preliminarily formed. FIG.
(B) shows that the bonding bumps 5b are preliminarily formed on the Nb electrode surface A of the superconducting integrated circuit 1 by the wire bonding method,
After that, dip it in a superconducting Pb alloy bath,
A state in which the Pb alloy 5a having superconductivity is preformed so as to cover the preformed bonding bump 5b is shown. The bonding bumps 5b and the Pb alloy 5a can be similarly formed on the board wiring surface B as well. FIG. 4C shows that the bonding bumps 5b are preliminarily formed on the Nb electrode surface A of the superconducting integrated circuit 1 by using the wire bonding method, and further, by using the wire bonding method, the Pb alloy having superconductivity is used. A state is shown in which the Pb alloy 5a having superconductivity is preformed so as to cover the preformed bonding bump 5b. The bonding bumps 5b and the Pb alloy 5a can be similarly formed on the board wiring surface B as well.

【0017】本発明において、Nb電極面A,基板配線
面Bを接続する際には、これら両面A,Bの少なくとも
一方において、図4(b)又は(c)に示す方法を用い
ることが好ましい。すなわち、超伝導性を有するPb合
金5aがNb電極面Aと基板配線面Bの間に連続して形
成され、接合用バンプ5bがNb電極面Aと基板配線面
Bの少なくとも一方の面に接続して形成されるようにす
るため、Nb電極面Aと基板配線面Bの少なくとも一方
の面が図4(b)又は(c)の構成をなし、他方の面が
図4(a)〜(c)のいずれかの構成をなした組み合わ
せによる方法が好ましく採用される。最も好ましい組み
合わせはNb電極面A,基板配線面Bの両面共に図4
(b)、又は図4(c)の構成とすることである。この
ようにして予備形成されたPb合金5aと接合用バンプ
5bの組み合わせを持つNb電極面Aと基板配線面B
を、熱圧着又はリフロー処理によってフリップチップ接
合して本発明の超伝導装置を得る。
In the present invention, when connecting the Nb electrode surface A and the substrate wiring surface B, it is preferable to use the method shown in FIG. 4 (b) or (c) on at least one of the both surfaces A, B. . That is, the Pb alloy 5a having superconductivity is continuously formed between the Nb electrode surface A and the substrate wiring surface B, and the bonding bumps 5b are connected to at least one of the Nb electrode surface A and the substrate wiring surface B. 4 (b) or (c), at least one of the Nb electrode surface A and the substrate wiring surface B has the structure of FIG. A method using a combination having any of the configurations of c) is preferably adopted. The most preferable combination is for both the Nb electrode surface A and the board wiring surface B as shown in FIG.
(B) or the configuration of FIG. 4 (c). The Nb electrode surface A and the board wiring surface B having the combination of the Pb alloy 5a and the bonding bump 5b preformed in this way
Are subjected to flip chip bonding by thermocompression bonding or reflow processing to obtain the superconducting device of the present invention.

【0018】尚、図4(b),図4(c)に示す方法を
採用する場合、予備形成されるPb合金5aと接合用バ
ンプ5bの高さの差を夫々適宜に調整することにより、
図3(a)又は図3(b)に示す接続部材5を区分して
形成することが出来る。予備形成されるPb合金5aと
接合用バンプ5bの高さの差が小さいほど、図3(a)
に示す接続部材5が形成し易くなる。また、図3(c)
に示す接続部材5を形成する場合は、基板配線面Bに接
合用バンプ5bを形成せずに図4(a)〜(c)に示す
方法を適宜組み合わせるようにすることは云うまでもな
い。
When the method shown in FIGS. 4 (b) and 4 (c) is adopted, the difference in height between the preformed Pb alloy 5a and the bonding bump 5b is appropriately adjusted,
The connection member 5 shown in FIG. 3A or FIG. 3B can be formed separately. The smaller the height difference between the preformed Pb alloy 5a and the bonding bump 5b, the more the difference in the height of FIG.
It becomes easy to form the connecting member 5 shown in FIG. In addition, FIG.
Needless to say, when the connecting member 5 shown in FIG. 4 is formed, the methods shown in FIGS. 4A to 4C are appropriately combined without forming the bonding bump 5b on the substrate wiring surface B.

【0019】また図4(a)〜(c)では、Pb合金5
a及び接合用バンプ5bをNb電極2に直接接続して形
成する場合について示したが、Nb電極2上面にAu又
はPdからなる極薄膜7を有する場合においても、上記
夫々の方法と同様にしてPb合金5a,接合用バンプ5
bを予備形成して接続部材5を形成することは云うまで
もない。
Further, in FIGS. 4A to 4C, the Pb alloy 5 is used.
Although the case where the a and the bonding bump 5b are directly connected to the Nb electrode 2 is shown, the same method as described above is applied to the case where the ultrathin film 7 made of Au or Pd is provided on the upper surface of the Nb electrode 2. Pb alloy 5a, bonding bump 5
It goes without saying that the connecting member 5 is formed by preforming b.

【0020】而して、本発明では上述した様に、Nb電
極面Aと基板配線面Bを接続する接続部材5が、Nb電
極面Aと基板配線面Bの間に連続して形成された超伝導
性を有するPb合金5aと、少なくともNb電極面Aに
接続して形成された接合用バンプ5bとからなる構成を
採用することにより、得られた超伝導装置が温度サイク
ルの環境に晒された場合の経時劣化が小さくなる理由は
明らかではないが、従来の如く超伝導性を有するPb合
金を直接Nb電極上の極薄膜上に形成して超伝導コンタ
クトをとる場合に比べ、少なくともNb電極面Aに接合
用バンプ5bを接続して形成していることで、該接合用
バンプ5bが、経時劣化の弱点であるNb電極面Aにお
いて、接続部材5の補強材としての役目を充分に果して
いると考えられる。すなわち、少なくともNb電極面A
に接合用バンプ5bを接続して形成することで、少なく
とも、接合用バンプ5bとNb電極2並びに接合用バン
プ5bとPb合金5aとの接合力が夫々向上し、超伝導
性を有するPb合金5aと接合用バンプ5bとからなる
接続部材5の接合力が従来より向上するものと推定され
る。また、接合用バンプ5bが、Nb電極面Aと、基板
配線面Bとの両面に接続して形成された場合は、接合用
バンプ5bとNb電極2、接合用バンプ5bと基板配線
4、接合用バンプ5bと超伝導性を有するPb合金5a
との接合力が夫々向上し、接続部材5の接合力がさらに
向上するものと推定される。さらに、接合用バンプ5b
が、Nb電極面Aと基板配線面Bとの両面に接続して形
成され、且つNb電極面Aと基板配線面Bの間は連続し
て形成された場合は、接合用バンプ5bとNb電極2、
接合用バンプ5bと基板配線4、接合用バンプ5bと超
伝導性を有するPb合金5aとの接合力が夫々大幅に向
上し、接続部材5の接合力が大幅に向上するものと推定
される。
Thus, in the present invention, as described above, the connecting member 5 for connecting the Nb electrode surface A and the board wiring surface B is continuously formed between the Nb electrode surface A and the board wiring surface B. By adopting a configuration including the Pb alloy 5a having superconductivity and the bonding bump 5b formed by connecting at least the Nb electrode surface A, the obtained superconducting device is exposed to a temperature cycle environment. It is not clear why the deterioration with time is small when compared with the conventional method, but at least compared with the conventional case where a superconducting Pb alloy is directly formed on an ultrathin film on the Nb electrode to form a superconducting contact. By forming the bonding bumps 5b by connecting to the surface A, the bonding bumps 5b sufficiently serve as a reinforcing material for the connecting member 5 on the Nb electrode surface A, which is a weak point of deterioration over time. Thought to be That is, at least the Nb electrode surface A
By forming the bonding bumps 5b by connecting to the bonding bumps 5b, the bonding strength between the bonding bumps 5b and the Nb electrode 2 and the bonding bumps 5b and the Pb alloy 5a is improved, and the Pb alloy 5a having superconductivity is formed. It is presumed that the joining force of the connecting member 5 including the joining bumps 5b and the joining bumps 5b is improved as compared with the conventional case. When the bonding bumps 5b are formed by connecting to both the Nb electrode surface A and the substrate wiring surface B, the bonding bumps 5b and the Nb electrodes 2, the bonding bumps 5b and the substrate wiring 4, the bonding Bump 5b and Pb alloy 5a having superconductivity
It is presumed that the joining force of the connection member 5 and the joining force of the connecting member 5 are further improved. Further, the bonding bump 5b
Is formed by connecting both sides of the Nb electrode surface A and the board wiring surface B, and is continuously formed between the Nb electrode surface A and the board wiring surface B, the bonding bumps 5b and the Nb electrode are formed. 2,
It is presumed that the bonding force between the bonding bumps 5b and the substrate wiring 4 and between the bonding bumps 5b and the Pb alloy 5a having superconductivity is significantly improved, and the bonding force of the connection member 5 is significantly improved.

【0021】[0021]

【実施例】以下、銅板配線4aに超伝導性を有する下地
金属4bをめっきして基板配線4とした本発明の実施例
を説明する。 (実施例1)本実施例においては、表1及び表2の接続
条件の項中に記載されるように、接続部材5の材質とし
て、超伝導性を有するPb合金5aにPb−In−Ag
を用い、接合用バンプ5bにAuを用いた。また接合用
バンプ5bの接続方式としては図3(a)〜(c)に示
す各区分中の(b)に示すもの、すなわち、接続される
面がNb電極面A(表中にはA面で記す)と基板配線面
B(表中にはB面で記す)の両面であり、且つそれら両
面(A面,B面)の間の連続性は不連続とした。さらに
Nb電極面A,基板配線面Bに夫々予備形成された接続
部材(Pb合金5a,接合用バンプ5b)をフリップチ
ップ接合する際に熱圧着を用い、且つ、Nb電極2上に
は極薄膜7を形成しないものとした。
EXAMPLE An example of the present invention in which the substrate wiring 4 is formed by plating the copper plate wiring 4a with the base metal 4b having superconductivity will be described below. (Example 1) In this example, as described in the connection conditions of Tables 1 and 2, as a material of the connecting member 5, Pb alloy 5a having superconductivity and Pb-In-Ag were used.
Au was used for the bonding bumps 5b. The connection method of the bonding bumps 5b is shown in (b) of each section shown in FIGS. 3 (a) to 3 (c), that is, the surface to be connected is the Nb electrode surface A (A surface in the table). And the substrate wiring surface B (indicated by B in the table), and the continuity between these two surfaces (A and B) was discontinuous. Further, thermocompression bonding is used when flip-chip bonding the connecting members (Pb alloy 5a, bonding bumps 5b) preformed on the Nb electrode surface A and the substrate wiring surface B, respectively, and an extremely thin film is formed on the Nb electrode 2. 7 was not formed.

【0022】このような接続条件を採用した本実施例の
超伝導装置の製造方法を図5を参照して説明すれば、図
5(a)において、1はSiチップからなる超伝導集積
回路、2はNb層からなる電極、3はセラミックス製の
基板、4はその基板3上に形成した銅板配線4aに超伝
導性を有する下地金属4bをめっきしてなる基板配線で
ある。まず、超伝導集積回路1のNb電極2の上面レベ
ル、すなわちNb電極面Aに、Auからなる接合用バン
プ5bを予備形成する。該接合用バンプ5bは、ワイヤ
ボンダーのキャピラリー(図示せず)に挿通されたAu
線の先端を電気トーチで加熱することによりボール状と
し、該ボールをNb電極2上に圧着させた状態でキャピ
ラリーによりワイヤを引き上げてボールをワイヤ根元部
から切断する、所謂ボールボンディング法によりNb電
極2上に形成した。さらに、Pb−In−Agからなる
超伝導性を有するPb合金を用いて、前記同様ボールボ
ンディング法により、前記接合用バンプ5bより寸法が
大きな超伝導性を有するPb合金5aを、前記接合用バ
ンプ5bを覆ってNb電極面Aに予備形成した。次に、
基板配線4における下地金属4bの上面レベル、すなわ
ち基板配線面Bにおいても、前記と同様にして、接合用
バンプ5bと、超伝導性を有するPb合金5aとを予備
形成した。その後、図5(a)に示す構造のものを熱圧
着によりフリップチップ接合することにより、図5
(b)に示すように、超伝導性を有するPb合金5aが
超伝導集積回路1のNb電極面Aと基板配線面Bとの間
に連続して形成され、接合用バンプ5bが前記Nb電極
面Aと基板配線面Bの両方に接続され、且つ各接合用バ
ンプ5b,5bは連続していない接続部材5が形成さ
れ、これにより、該接続部材5によって超伝導集積回路
1と基板配線4とが超伝導接続を維持しながら高い信頼
性をもって接続された本実施例の超伝導装置が得られ
た。
A method of manufacturing the superconducting device of this embodiment adopting such connection conditions will be described with reference to FIG. 5. In FIG. 5A, reference numeral 1 is a superconducting integrated circuit made of a Si chip, Reference numeral 2 is an electrode made of an Nb layer, 3 is a substrate made of ceramics, and 4 is a substrate wiring formed by plating a copper plate wiring 4a formed on the substrate 3 with a base metal 4b having superconductivity. First, the bonding bump 5b made of Au is preliminarily formed on the upper surface level of the Nb electrode 2 of the superconducting integrated circuit 1, that is, on the Nb electrode surface A. The bonding bumps 5b are inserted in a capillary (not shown) of the wire bonder.
A ball is formed by heating the tip of the wire with an electric torch, and the ball is pressed onto the Nb electrode 2 to pull up the wire by a capillary to cut the ball from the root of the wire. Formed on 2. Further, by using a Pb alloy having a superconductivity made of Pb-In-Ag, the Pb alloy 5a having a superconductivity having a size larger than that of the bonding bump 5b is formed by the ball bonding method as described above. 5b was covered and pre-formed on the Nb electrode surface A. next,
The bonding bumps 5b and the superconducting Pb alloy 5a were also preliminarily formed on the upper surface level of the base metal 4b in the substrate wiring 4, that is, on the substrate wiring surface B in the same manner as described above. After that, the structure shown in FIG. 5A is flip-chip bonded by thermocompression bonding to obtain the structure shown in FIG.
As shown in (b), the Pb alloy 5a having superconductivity is continuously formed between the Nb electrode surface A of the superconducting integrated circuit 1 and the substrate wiring surface B, and the bonding bumps 5b are the Nb electrodes. A connecting member 5 is formed which is connected to both the surface A and the board wiring surface B and in which the respective bonding bumps 5b and 5b are not continuous, whereby the superconducting integrated circuit 1 and the board wiring 4 are formed by the connecting member 5. The superconducting device of the present example was obtained in which and were connected with high reliability while maintaining the superconducting connection.

【0023】本実施例による超伝導装置の熱サイクル試
験(4.2K〜273Kの温度)を行い、4.2Kの温
度で超伝導コンタクトがとれなくなるまでの回数を測定
した。上記接続条件と測定結果を表1及び表2に示す。
A thermal cycle test (at a temperature of 4.2K to 273K) of the superconducting device according to this example was conducted, and the number of times at which the superconducting contact could not be removed was measured at a temperature of 4.2K. The above connection conditions and measurement results are shown in Tables 1 and 2.

【0024】(実施例2〜9)接続部材5の材質、接合
用バンプ5bの接続方式、フリップチップ接合する際に
用いた熱圧着,リフロー処理の区別などを表1及び表2
の接続条件の項中記載の様にしたこと以外は実施例1と
同様にしてフリップチップ接合し、超伝導装置を作製し
た。得られた超伝導装置について実施例1と同様に熱サ
イクル試験を行った。測定結果を表2に示す。
(Examples 2 to 9) Tables 1 and 2 show the material of the connecting member 5, the connection method of the bonding bumps 5b, the distinction between the thermocompression bonding used in the flip chip bonding and the reflow treatment.
A superconducting device was produced by flip-chip bonding in the same manner as in Example 1 except that the connection conditions were as described above. A thermal cycle test was conducted on the obtained superconducting device in the same manner as in Example 1. The measurement results are shown in Table 2.

【0025】(実施例10,11)超伝導集積回路1の
Nb電極2上に100nm厚さのAu又はPbからなる
極薄膜7を形成したこと以外は実施例3と同様にしてフ
リップチップ接合し、超伝導装置を作製した。得られた
超伝導装置について実施例1と同様に熱サイクル試験を
行った。接続条件と測定結果を表1及び表2に示す。
(Examples 10 and 11) Flip-chip bonding was performed in the same manner as in Example 3 except that an ultrathin film 7 of Au or Pb having a thickness of 100 nm was formed on the Nb electrode 2 of the superconducting integrated circuit 1. , A superconducting device was produced. A thermal cycle test was conducted on the obtained superconducting device in the same manner as in Example 1. The connection conditions and measurement results are shown in Tables 1 and 2.

【0026】(比較例1,2)超伝導集積回路のNb電
極上に100nm厚さのAu又はPbからなる極薄膜を
形成し、該極薄膜を備えたNb電極と、基板配線とを、
超伝導性を有するPb合金(Pb−In−Ag)のみか
らなる接続材料により、熱圧着を用いてフリップチップ
接合して超伝導装置を作製した。得られた超伝導装置に
ついて実施例1と同様に熱サイクル試験を行った。測定
結果を表2に示す。
Comparative Examples 1 and 2 An extremely thin film of Au or Pb having a thickness of 100 nm is formed on the Nb electrode of a superconducting integrated circuit, and the Nb electrode having the extremely thin film and the substrate wiring are
A superconducting device was manufactured by flip-chip bonding using thermocompression bonding with a connecting material composed only of Pb alloy (Pb-In-Ag) having superconductivity. A thermal cycle test was conducted on the obtained superconducting device in the same manner as in Example 1. The measurement results are shown in Table 2.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】以上の結果から、超伝導集積回路のNb電
極面と、基板上の配線面とを接続する接続部材が、前記
Nb電極面と基板配線面の間に連続して形成された超伝
導性を有するPb合金と、少なくとも前記Nb電極面に
接続して形成された接合用バンプからなる本発明の実施
例1〜11は、超伝導コンタクト不良発生迄の熱サイク
ル数がいずれも130回以上であり、超伝導接続を維持
しながら高い信頼性をもって接続された超伝導装置であ
ることが分かる。
From the above results, the connecting member connecting the Nb electrode surface of the superconducting integrated circuit and the wiring surface on the substrate is formed continuously between the Nb electrode surface and the substrate wiring surface. In Examples 1 to 11 of the present invention, which are composed of a Pb alloy having a conductivity and a bonding bump formed by connecting to at least the Nb electrode surface, the number of thermal cycles until occurrence of a superconducting contact defect is 130 times or more. It can be seen that the superconducting device is connected with high reliability while maintaining the superconducting connection.

【0030】またPb合金及び接合用バンプが、超伝導
集積回路のNb電極に直接接続して形成されている実施
例3と、Nb電極上のAu又はPd極薄膜を介して前記
Nb電極に接続して形成されている実施例10,11と
を比べた場合、超伝導コンタクト不良発生迄の熱サイク
ル数はいずれも180回以上であり、本発明が目的とす
る接続部の信頼性向上に関しては双方共に十分満足して
いることが分かる。尚、Nb電極上の極薄膜の有無につ
いての対比は、上記の如く接合用バンプの接続方式が図
3に示す(a)〜(c)の各区分中(b)の場合のみ示
したが、図3(a),(c)に示す接続方式においても
同様の傾向にあることが確認できた。
Example 3 in which the Pb alloy and the bonding bump are directly connected to the Nb electrode of the superconducting integrated circuit, and the Nb electrode is connected via the Au or Pd ultrathin film on the Nb electrode. When compared with Examples 10 and 11 formed as described above, the number of thermal cycles until the occurrence of a superconducting contact failure is 180 times or more, and regarding the improvement of the reliability of the connecting portion, which is an object of the present invention, It turns out that both are satisfied enough. Incidentally, the comparison of the presence or absence of the ultrathin film on the Nb electrode is shown only when the connection method of the bonding bumps is (b) in each of the sections (a) to (c) shown in FIG. It was confirmed that the same tendency was observed in the connection methods shown in FIGS. 3 (a) and 3 (c).

【0031】さらに、接合用バンプが、超伝導集積回路
のNb電極面と、基板配線面との両面に接続して形成さ
れている実施例1〜3、5〜11は、超伝導コンタクト
不良発生迄の熱サイクル数はいずれも170回以上であ
り、接合用バンプが超伝導集積回路のNb電極面と基板
配線面のどちらか一方に接続して形成されている場合
(実施例4)に比べ、接続部の信頼性向上に関しより効
果的であることが分かる。
Furthermore, in Examples 1 to 3 and 5 to 11 in which the bonding bumps were formed by connecting to both the Nb electrode surface of the superconducting integrated circuit and the substrate wiring surface, the superconducting contact failure occurred. The number of heat cycles up to each is 170 times or more, and compared with the case where the bonding bumps are formed by being connected to either one of the Nb electrode surface and the substrate wiring surface of the superconducting integrated circuit (Example 4). It can be seen that it is more effective in improving the reliability of the connection portion.

【0032】さらにまた、接合用バンプが超伝導集積回
路のNb電極面と基板配線面との両面に接続して形成さ
れ、且つNb電極面と基板配線面の間は連続して形成さ
れた場合(実施例2)は、超伝導コンタクト不良発生迄
の熱サイクル数は200回であり、接合用バンプがNb
電極面と基板配線面Bの両面に接続して形成されている
ものの、Nb電極面と基板配線面の間は連続して形成さ
れていない場合(実施例1、3、5〜11)に比べ、接
続部の信頼性向上に関しさらに効果的であることが分か
る。
Furthermore, when the bonding bumps are formed by connecting to both the Nb electrode surface and the substrate wiring surface of the superconducting integrated circuit, and the Nb electrode surface and the substrate wiring surface are continuously formed. In (Example 2), the number of thermal cycles until the occurrence of a superconducting contact failure is 200, and the bonding bump is Nb.
Although it is formed by connecting to both surfaces of the electrode surface and the board wiring surface B, compared to the case where it is not formed continuously between the Nb electrode surface and the board wiring surface (Examples 1, 3, 5 to 11) It can be seen that it is more effective in improving the reliability of the connection portion.

【0033】これに対し、超伝導集積回路のNb電極上
に形成した極薄膜によって超伝導コンタクトの維持に対
応する比較例1,2にあっては、超伝導コンタクト不良
発生迄の熱サイクル数は夫々60回、100回であり、
前記極薄膜を形成せずに超伝導コンタクトの維持に対応
する旧来の超伝導装置に比べれば接続部の信頼性が向上
しているものの、本発明の課題に対しては不十分である
ことが分かる。
On the other hand, in Comparative Examples 1 and 2 in which the superconducting contact is maintained by the ultrathin film formed on the Nb electrode of the superconducting integrated circuit, the number of heat cycles until the superconducting contact failure occurs. 60 times and 100 times respectively,
Although the reliability of the connection portion is improved as compared with the conventional superconducting device that corresponds to the maintenance of superconducting contacts without forming the ultrathin film, it may be insufficient for the problem of the present invention. I understand.

【0034】[0034]

【発明の効果】以上説明したように本発明は、請求項1
においては、Nb電極面と基板配線面との間に連続して
形成された超伝導性を有するPb合金と、少なくとも前
記Nb電極面に接続して形成された接合用バンプからな
る接続部材によって、超伝導集積回路のNb電極面と基
板上の配線面とを接続した新規な構成を採用したので、
従来の如く超伝導性を有するPb合金を直接Nb電極上
の極薄膜上に形成して超伝導コンタクトをとる場合に比
べ、前記接合用バンプが、経時劣化の弱点であるNb電
極面において接続部材の補強材としての役目を果す。よ
って、超伝導性を発現させるための極低温から常温まで
の過酷な温度サイクル(4.2K〜273K)の環境に
晒された場合の接続部の経時劣化が従来に比べてさらに
小さく、極めて信頼性の高い超伝導装置を提供すること
ができた。
As described above, the present invention provides claim 1.
In the above, by a connecting member including a Pb alloy having superconductivity formed continuously between the Nb electrode surface and the substrate wiring surface and a bonding bump formed by connecting at least the Nb electrode surface, Since a new structure in which the Nb electrode surface of the superconducting integrated circuit and the wiring surface on the substrate are connected is adopted,
Compared to the conventional case where a Pb alloy having superconductivity is directly formed on an ultrathin film on an Nb electrode to form a superconducting contact, the bonding bump has a connecting member on the Nb electrode surface, which is a weak point of deterioration over time. Plays the role of a reinforcing material. Therefore, when exposed to a severe temperature cycle (4.2K to 273K) environment from super-low temperature to normal temperature for expressing superconductivity, deterioration of the connecting portion with time is smaller than that of the conventional one, and is extremely reliable. It was possible to provide a highly conductive superconducting device.

【0035】また請求項2の様に、上記Pb合金及び接
合用バンプが超伝導集積回路のNb電極に直接接続して
形成された場合は、Nb電極上に極薄膜を形成すること
なく接続部の経時劣化を従来に比べてさらに小さくする
ことができ、上記Pb合金及び接合用バンプがNb電極
上の極薄膜を介してNb電極に接続して形成されている
場合に比べ、より低コストで上述の効果が得られる利点
がある。
When the Pb alloy and the bonding bump are directly connected to the Nb electrode of the superconducting integrated circuit as in claim 2, the connecting portion is formed without forming an ultrathin film on the Nb electrode. The deterioration with time can be further reduced as compared with the conventional one, and the cost is lower than that in the case where the Pb alloy and the bonding bump are formed by being connected to the Nb electrode through the ultrathin film on the Nb electrode. There is an advantage that the above effects can be obtained.

【0036】さらに請求項3の様に、上記接合用バンプ
が、超伝導集積回路のNb電極面と、基板配線面との両
面に接続して形成された場合は、接合用バンプとNb電
極、接合用バンプと基板配線、接合用バンプと超伝導性
を有するPb合金との接合力が夫々向上し、よって、接
合用バンプが超伝導集積回路のNb電極面と基板配線面
のどちらか一方に接続して形成されている場合に比べ、
超伝導性を有するPb合金と接合用バンプからなる接続
部材の接合力がより向上し、極めて信頼性の高い超伝導
装置を提供できる。
Further, when the bonding bumps are formed by being connected to both the Nb electrode surface of the superconducting integrated circuit and the substrate wiring surface, the bonding bumps and the Nb electrode may be formed. The bonding force between the bonding bump and the substrate wiring, and the bonding bump and the superconducting Pb alloy are respectively improved, so that the bonding bump is provided on either the Nb electrode surface or the substrate wiring surface of the superconducting integrated circuit. Compared with the case where it is formed by connecting,
The joining force of the connecting member including the Pb alloy having superconductivity and the joining bump is further improved, and a superconducting device having extremely high reliability can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る超伝導装置の一実施例を示す要部
拡大断面図。
FIG. 1 is an enlarged sectional view of an essential part showing an embodiment of a superconducting device according to the present invention.

【図2】本発明に係る超伝導装置の他の実施例を示す要
部拡大断面図。
FIG. 2 is an enlarged sectional view of an essential part showing another embodiment of the superconducting device according to the present invention.

【図3】接合用バンプの接続方式の区分を示す要部拡大
断面図。
FIG. 3 is an enlarged cross-sectional view of a main part showing a section of a connection method of bonding bumps.

【図4】超伝導性を有するPb合金及び接合用バンプを
Nb電極面に予備形成する方法の区分を示す要部拡大断
面図。
FIG. 4 is an enlarged sectional view of an essential part showing a section of a method of preforming a Pb alloy having superconductivity and a bonding bump on an Nb electrode surface.

【図5】超伝導性を有するPb合金及び接合用バンプを
予備形成したNb電極面と基板配線面をフリップチップ
接合する状態を示す要部拡大断面図。
FIG. 5 is an enlarged sectional view of an essential part showing a state in which a Nb electrode surface on which a Pb alloy having superconductivity and a bonding bump are preformed and a substrate wiring surface are flip-chip bonded together.

【符号の説明】[Explanation of symbols]

1:超伝導集積回路 2:Nb電極 3:基板 4:基板配線 4a:銅板配線 4b:下地金属 5:接続部材 5a:超伝導性を有するPb合金 5b:接合用バンプ 7:Nb電極上の極薄膜 A:Nb電極面 B:基板配線面 1: Superconducting integrated circuit 2: Nb electrode 3: Substrate 4: Substrate wiring 4a: Copper plate wiring 4b: Base metal 5: Connection member 5a: Pb alloy having superconductivity 5b: Bonding bump 7: Nb electrode pole Thin film A: Nb electrode surface B: Substrate wiring surface

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 超伝導集積回路のNb電極面と、基板上
の配線面とを接続する接続部材が、前記Nb電極面と基
板配線面との間に連続して形成された超伝導性を有する
Pb合金と、少なくとも前記Nb電極面に接続して形成
された接合用バンプからなることを特徴とする超伝導装
置。
1. A connecting member for connecting an Nb electrode surface of a superconducting integrated circuit and a wiring surface on a substrate has a superconductivity formed continuously between the Nb electrode surface and the substrate wiring surface. A superconducting device comprising a Pb alloy and a bonding bump formed so as to be connected to at least the Nb electrode surface.
【請求項2】 上記Pb合金及び接合用バンプが、超伝
導集積回路のNb電極に直接接続して形成されているこ
とを特徴とする請求項1記載の超伝導装置。
2. The superconducting device according to claim 1, wherein the Pb alloy and the bonding bump are formed by being directly connected to the Nb electrode of the superconducting integrated circuit.
【請求項3】 上記接合用バンプが、超伝導集積回路の
Nb電極面と、基板配線面との両面に接続して形成され
ていることを特徴とする請求項1又は請求項2記載の超
伝導装置。
3. The super bump according to claim 1, wherein the bonding bumps are formed by being connected to both the Nb electrode surface of the superconducting integrated circuit and the substrate wiring surface. Transmission device.
【請求項4】 上記接合用バンプが、Au,Ag,P
t,Pdのうちの少なくとも1種からなることを特徴と
する請求項1又は請求項2又は請求項3記載の超伝導装
置。
4. The bonding bump is made of Au, Ag, P
The superconducting device according to claim 1, 2 or 3, wherein the superconducting device comprises at least one of t and Pd.
JP7010599A 1995-01-26 1995-01-26 Superconductive unit Pending JPH08204244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7010599A JPH08204244A (en) 1995-01-26 1995-01-26 Superconductive unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7010599A JPH08204244A (en) 1995-01-26 1995-01-26 Superconductive unit

Publications (1)

Publication Number Publication Date
JPH08204244A true JPH08204244A (en) 1996-08-09

Family

ID=11754716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7010599A Pending JPH08204244A (en) 1995-01-26 1995-01-26 Superconductive unit

Country Status (1)

Country Link
JP (1) JPH08204244A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2403173A (en) * 2003-06-25 2004-12-29 King S College London Soldering refractory metal surfaces
JP2006190777A (en) * 2005-01-05 2006-07-20 Pioneer Electronic Corp Bump forming method
WO2019063112A1 (en) * 2017-09-29 2019-04-04 International Business Machines Corporation Under-bump metallization structure comprising superconducting material
US10727391B2 (en) 2017-09-29 2020-07-28 International Business Machines Corporation Bump bonded cryogenic chip carrier
JP2022501808A (en) * 2018-09-20 2022-01-06 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Hybrid underbump metallized component
EP4191693A4 (en) * 2021-10-08 2023-11-15 Tencent Technology (Shenzhen) Company Limited Quantum bit assembly, quantum bit assembly preparation method, chip, and device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2403173A (en) * 2003-06-25 2004-12-29 King S College London Soldering refractory metal surfaces
JP2006190777A (en) * 2005-01-05 2006-07-20 Pioneer Electronic Corp Bump forming method
US10727391B2 (en) 2017-09-29 2020-07-28 International Business Machines Corporation Bump bonded cryogenic chip carrier
US10608158B2 (en) 2017-09-29 2020-03-31 International Business Machines Corporation Two-component bump metallization
US10629797B2 (en) 2017-09-29 2020-04-21 International Business Machines Corporation Two-component bump metallization
CN111164749A (en) * 2017-09-29 2020-05-15 国际商业机器公司 Under bump metallization structure comprising superconducting material
WO2019063112A1 (en) * 2017-09-29 2019-04-04 International Business Machines Corporation Under-bump metallization structure comprising superconducting material
US10734567B2 (en) 2017-09-29 2020-08-04 International Business Machines Corporation Bump bonded cryogenic chip carrier
JP2020535641A (en) * 2017-09-29 2020-12-03 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation How to form a structure containing an under-bump metallization structure, a system containing a device, and a device
CN111164749B (en) * 2017-09-29 2024-03-26 国际商业机器公司 Underbump metallization structure comprising superconducting material
JP2022501808A (en) * 2018-09-20 2022-01-06 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Hybrid underbump metallized component
US11749605B2 (en) 2018-09-20 2023-09-05 International Business Machines Corporation Hybrid under-bump metallization component
EP4191693A4 (en) * 2021-10-08 2023-11-15 Tencent Technology (Shenzhen) Company Limited Quantum bit assembly, quantum bit assembly preparation method, chip, and device
US11917927B2 (en) 2021-10-08 2024-02-27 Tencent Technology (Shenzhen) Company Limited Qubit assembly, qubit assembly preparation method, chip, and device

Similar Documents

Publication Publication Date Title
TWI390642B (en) Stable gold bump solder connections
US6583514B2 (en) Semiconductor device with a binary alloy bonding layer
US7501337B2 (en) Dual metal stud bumping for flip chip applications
US5134460A (en) Aluminum bump, reworkable bump, and titanium nitride structure for tab bonding
JP3300839B2 (en) Semiconductor device and method of manufacturing and using same
US6164523A (en) Electronic component and method of manufacture
KR101607790B1 (en) Semiconductor device manufacturing method and semiconductor device
US4985310A (en) Multilayered metallurgical structure for an electronic component
WO2013038594A1 (en) Mounting structure and manufacturing method for same
JPH09129647A (en) Semiconductor element
US7325716B2 (en) Dense intermetallic compound layer
JPH08204244A (en) Superconductive unit
JP4011214B2 (en) Semiconductor device and joining method using solder
JP2001060760A (en) Circuit electrode and formation process thereof
JPS5936425B2 (en) Lead frame structure with intermediate layer
EP0336869B1 (en) A multilayered metallurgical structure for an electronic component
JPS59107586A (en) Superconductive flip chip bonding method
JPS61181136A (en) Die bonding
JPS6260836B2 (en)
JP3893438B2 (en) Semiconductor mounting substrate, semiconductor device, and semiconductor device manufacturing method
JPH0845938A (en) Semiconductor device and its manufacture
JP3032789B2 (en) Superconducting device
KR100460075B1 (en) Method of forming diffusion barrier layer of semiconductor package
JP2010161252A (en) Semiconductor device and method of manufacturing the same
JPH0656860B2 (en) Superconducting device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040611