JPH05329335A - Treatment of aqueous sugar solution using reverse osmosis membrane module - Google Patents
Treatment of aqueous sugar solution using reverse osmosis membrane moduleInfo
- Publication number
- JPH05329335A JPH05329335A JP16401992A JP16401992A JPH05329335A JP H05329335 A JPH05329335 A JP H05329335A JP 16401992 A JP16401992 A JP 16401992A JP 16401992 A JP16401992 A JP 16401992A JP H05329335 A JPH05329335 A JP H05329335A
- Authority
- JP
- Japan
- Prior art keywords
- reverse osmosis
- osmosis membrane
- membrane module
- tank
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Saccharide Compounds (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、食品,薬品分野におい
て、単糖,少糖もしくは多糖類の水溶液を分離精製する
場合に、その前処理としての粗分離に使用する糖類水溶
液の逆浸透膜モジュ−ルによる処理方法に関するもので
ある。BACKGROUND OF THE INVENTION The present invention relates to a reverse osmosis membrane of an aqueous saccharide solution used for rough separation as a pretreatment when an aqueous solution of a monosaccharide, an oligosaccharide or a polysaccharide is separated and purified in the fields of food and medicine. The present invention relates to a module processing method.
【0002】[0002]
【従来の技術】単糖,少糖もしくは多糖を分離精製する
には、分子量及び特性が非常に近接しているために、液
体クロマトグラフィ−を使用しなければならない。しか
し、液体クロマトグラフィ−においては、高分離能とす
るにつれ、設備コストが高価となり、また、運転圧力が
高くなり、しかも処理速度も遅くなって、製品劣化が発
生し易くなる。従って、予め、粗分離したうえで、最終
的に液体クロマトグラフィ−で処理することが有利であ
り、この粗分離に、逆浸透膜モジュ−ルによる分離処理
を使用することが考えられる。2. Description of the Prior Art In order to separate and purify monosaccharides, oligosaccharides or polysaccharides, liquid chromatography must be used because of the close proximity of molecular weight and characteristics. However, in liquid chromatography, the higher the resolution, the higher the equipment cost, the higher the operating pressure, the slower the processing speed, and the more easily product deterioration occurs. Therefore, it is advantageous to carry out a crude separation in advance and finally to carry out a liquid chromatography treatment, and it is conceivable to use a separation treatment with a reverse osmosis membrane module for this crude separation.
【0003】[0003]
【発明が解決しようとする課題】この逆浸透膜モジュ−
ルにより溶質を分離するには、分離しようとする溶質に
対する阻止率(真の阻止率)に優位差がなければならな
いが、単糖,少糖もしくは多糖に属する分子において
は、分子量が非常に近接しているために、その阻止率の
優位差がかなり小である。[Problems to be Solved by the Invention] This reverse osmosis membrane module
In order to separate solutes by solubilization, there must be a significant difference in the inhibition rate (true inhibition rate) for the solute to be separated, but the molecular weights of monosaccharides, oligosaccharides or polysaccharides are very close. Therefore, the difference in the blocking rate is quite small.
【0004】逆浸透膜モジュ−ルによる濃縮,分離には
回分法と連続法とがあるが、回分法においては、連続法
に較べ、処理液量/膜面積が大、運転操作が容易等の利
点を有する。Concentration and separation by the reverse osmosis membrane module include a batch method and a continuous method. In the batch method, the amount of treated liquid / membrane area is large and the operation is easy as compared with the continuous method. Have advantages.
【0005】しかしながら、回分法による場合は、溶媒
量が一循環ごとに減少していき、被処理液の分離しょう
とする溶質の濃度が時間の経過と共に短時間で増大し、
濃度分極が急速に進行し、分離しようとする溶質に対す
る阻止率(真の阻止率)の優位差が短時間で実質上零と
なり、分離が行われるのは、阻止率にある程度の優位差
がある初期だけとなる。従って、単糖,少糖もしくは多
糖の水溶液を、従来の回分法により逆浸透膜モジュ−ル
で分離処理しても、有効な粗分離を行うことができな
い。However, in the case of the batch method, the amount of the solvent decreases with each cycle, and the concentration of the solute to be separated from the liquid to be treated increases in a short time with the passage of time.
The concentration polarization progresses rapidly, and the difference in the blocking rate (true blocking rate) for the solute to be separated becomes substantially zero in a short time, and the separation is performed with a certain difference in the blocking rate. It will only be in the early stages. Therefore, even if an aqueous solution of a monosaccharide, an oligosaccharide or a polysaccharide is separated by a conventional batch method by a reverse osmosis membrane module, effective rough separation cannot be performed.
【0006】本発明の目的は、逆浸透膜モジュ−ルを使
用して単糖,少糖もしくは多糖を粗分離する場合、真の
阻止率に充分に近い優位差のある阻止率で充分な分離率
で分離できる、糖類溶液の逆浸透膜モジュ−ルによる処
理方法を提供することにある。An object of the present invention is to perform a sufficient separation at a blocking rate having a predominant difference sufficiently close to the true blocking rate when roughly separating a monosaccharide, an oligosaccharide or a polysaccharide using a reverse osmosis membrane module. It is an object of the present invention to provide a method for treating a saccharide solution with a reverse osmosis membrane module, which can be separated at a rate.
【0007】[0007]
【課題を解決するための手段】本発明の糖類溶液の逆浸
透膜モジュ−ルによる処理方法は、糖類溶液を逆浸透膜
モジュ−ルによって回分処理する方法において、透過液
槽並びに濃縮液槽をそれぞれ設け、各槽の出口にそれぞ
れ逆浸透膜モジュ−ルを連通し、各逆浸透膜モジュ−ル
の透過液出口を透過液槽に、各逆浸透膜モジュ−ルの非
透過液出口を濃縮液槽にそれぞれ連通し、透過液槽並び
に濃縮液槽にそれぞれ、被処理液を投入し、これらの液
を回分法により処理することを特徴とする構成であり、
透過液槽内の液を別に設けた逆浸透膜モジュ−ルにより
回分法で濃縮することもできる。A method of treating a saccharide solution with a reverse osmosis membrane module of the present invention is a method of batch-treating a saccharide solution with a reverse osmosis membrane module. The reverse osmosis membrane module is connected to the outlet of each tank, and the permeate outlet of each reverse osmosis membrane module is placed in the permeate tank, and the non-permeate outlet of each reverse osmosis membrane module is concentrated. The constitution is characterized in that the liquid to be treated is introduced into the permeate liquid tank and the concentrated liquid tank, respectively, by communicating with the liquid tank, and these liquids are processed by the batch method.
The liquid in the permeate tank can also be concentrated by a batch method using a reverse osmosis membrane module provided separately.
【0008】[0008]
【作用】一の逆浸透膜モジュ−ルでの原液室から透過室
に溶媒が透過しても、他の逆浸透膜モジュ−ルからその
透過溶媒量を補償し得る量の溶媒が一の逆浸透膜モジュ
−ルの原液側に送られてくるから、分離しようとする溶
質の濃度増大の速度が低速となり、阻止率の優位差を長
期間にわたってよく保持でき、真の阻止率の優位差に基
づく高分離率の溶質分離が可能となる。[Effect] Even if the solvent permeates from the stock solution chamber to the permeation chamber in one reverse osmosis membrane module, the amount of solvent which can compensate the permeation solvent amount from the other reverse osmosis membrane module is one reverse osmosis membrane module. Since it is sent to the undiluted solution side of the osmotic membrane module, the rate of increase in the concentration of the solute to be separated becomes slow, and the superiority of the rejection rate can be well maintained over a long period of time, which leads to the true superiority of the rejection rate. Based on this, solute separation with high separation rate becomes possible.
【0009】[0009]
【実施例】以下、本発明の実施例を図面により説明す
る。図1は本発明の実施例において使用する処理装置の
一例を示している。図1において、1aは濃縮液槽、1
bは透過液槽である。2a並びに2bは各槽1a,1b
に対して設置した逆浸透膜モジュ−ル(分離しようとす
る溶質に対する阻止率が100〜0%の間にある、所謂
ル−ズ逆浸透膜モジュ−ル)であり、各逆浸透膜モジュ
−ル2a,2bの入口に各槽1a,1bの液出口を連通
し、各逆浸透膜モジュ−ル2a,2bの非透過液出口を
濃縮槽1aに連通し、各逆浸透膜モジュ−ル2a,2b
の透過液出口を透過液槽1bに連通してある。3a,3
bはポンプである。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an example of a processing apparatus used in an embodiment of the present invention. In FIG. 1, 1a is a concentrated liquid tank, 1
b is a permeate tank. 2a and 2b are tanks 1a and 1b
The reverse osmosis membrane module (so-called loose reverse osmosis membrane module having a blocking rate for the solute to be separated between 100 and 0%) installed for each reverse osmosis membrane module. The liquid outlets of the tanks 1a and 1b communicate with the inlets of the tanks 2a and 2b, the non-permeate liquid outlets of the reverse osmosis membrane modules 2a and 2b communicate with the concentrating tank 1a, and the reverse osmosis membrane modules 2a. , 2b
The permeated liquid outlet is communicated with the permeated liquid tank 1b. 3a, 3
b is a pump.
【0010】この装置を使用して本発明により少糖,単
糖若しくは多糖類の水溶液を分離処理するには、各槽1
a,1bにほぼ同量の処理液を投入し、この処理液をポ
ンプ3a,3bの駆動に回分法により分離処理してい
く。In order to separate an aqueous solution of oligosaccharides, monosaccharides or polysaccharides according to the present invention by using this apparatus, each tank 1
Almost the same amount of the treatment liquid is introduced into a and 1b, and the treatment liquid is separated by the batch method while driving the pumps 3a and 3b.
【0011】分離対象である単糖としては、例えば、ア
ルド−ス,ケト−ス等があり、少糖としては、例えば、
スクロ−ス,ラクト−ス,マルト−ス,セロビオ−ス,
ラフィノ−ス,スタキオ−ス,グルコ−ス,マンノ−ス
等があり、多糖としては、例えば、グルカン等がある。The monosaccharides to be separated include, for example, aldoses and ketoses, and the oligosaccharides include, for example,
Sucrose, lactose, maltose, cellobiose,
There are raffinose, stachyose, glucose, mannose and the like, and examples of the polysaccharide include glucan and the like.
【0012】また、ル−ズ逆浸透膜モジュ−ルには、N
aCL阻止率が10〜70%で,操作圧力0〜60kg/cm2
のものが使用される。Further, in the ROSE reverse osmosis membrane module, N
aCL blocking rate is 10 ~ 70%, operating pressure is 0 ~ 60kg / cm 2
Stuff used.
【0013】本発明の方法においては、各槽における溶
媒量を一定に保持し得、溶媒量減少による溶質濃度の増
大を排除でき、その溶質濃度の増大に起因する阻止率の
変化をよく防止できる。従って、分離しようとする溶質
に対する真の阻止率を、処理期間中、変動なくよく保持
でき、全処理期間中、真の阻止率の優位差を充分に維持
し得るから、従来の回分法による場合に較べ、高性能の
分離が可能となる。In the method of the present invention, the amount of solvent in each tank can be kept constant, the increase in solute concentration due to the decrease in solvent amount can be eliminated, and the change in the inhibition rate due to the increase in solute concentration can be well prevented. .. Therefore, the true rejection rate for the solute to be separated can be well maintained during the treatment period without any change, and the difference in the true rejection rate can be sufficiently maintained during the entire treatment period. Compared to, high-performance separation is possible.
【0014】現に、図1に示す装置を使用し、各逆浸透
膜モジュ−ル2a,2bにNaCL阻止率が50%の逆浸
透膜モジュ−ル(日東電工社製NTR-7450-S2)を使用
し、濃縮液槽1a,透過液槽1bのそれぞれに、1wt%
ラフィノ−スと1wt%スクロ−スとを含有する水溶液1
00Lを投入し、圧力10kg/cm2,各ポンプ3a,3b
の流量5L/minで15分間処理し、透過液槽1bの組成
を測定したところ、ラフィノ−ス0.644wt%,スク
ロ−ス0.803wt%であり、その差は、0.159wt
%であった。Actually, using the apparatus shown in FIG. 1, reverse osmosis membrane modules (NTR-7450-S2 manufactured by Nitto Denko Corporation) having a NaCL inhibition rate of 50% are provided in the respective reverse osmosis membrane modules 2a and 2b. 1 wt% for each of the concentrated liquid tank 1a and the permeated liquid tank 1b.
Aqueous solution containing raffinose and 1 wt% sucrose 1
Input 00L, pressure 10kg / cm 2 , each pump 3a, 3b
Was treated for 15 minutes at a flow rate of 5 L / min and the composition of the permeate tank 1b was measured to be 0.644 wt% raffinose and 0.803 wt% sucrose, with a difference of 0.159 wt%.
%Met.
【0015】これに対し、上記と同一処理液を上記と同
一の逆浸透膜モジュ−ルを使用し、従来の回分法(非透
過液を濃縮液槽に戻し、透過液を透過液槽に蓄積する方
法)により、上記と同一圧力、同一ポンプ流量で同一時
間処理し、透過液の組成を測定したところ、ラフィノ−
ス0.797wt%,スクロ−ス0.867wt%であり、
その差は0.07wt%に過ぎなかった。On the other hand, using the same reverse osmosis membrane module as above for the same treatment liquid as above, the conventional batch method (returning the non-permeate to the concentrate tank and accumulating the permeate to the permeate tank) is carried out. Method, the same pressure and pump flow rate as above were applied for the same time, and the composition of the permeate was measured.
0.797% by weight and 0.867% by weight,
The difference was only 0.07 wt%.
【0016】本発明は図2に示すように、濃縮液槽1a
の出口に連通する逆浸透膜モジュ−ルに、2段の直列接
続モジュ-ル21a−22aを使用して実施することも
できる。この実施例について、図1に示す実施例の場合
と同様にして分離テストを行い、透過液の組成を測定し
たところ、ラフィノ−ス0.602wt%,スクロ−ス
0.859wt%であった。The present invention, as shown in FIG. 2, is a concentrated liquid tank 1a.
The reverse osmosis membrane module that communicates with the outlet of the above can also be implemented by using the two-stage series-connected modules 21a-22a. This example was subjected to a separation test in the same manner as in the example shown in FIG. 1 and the composition of the permeate was measured to find that it was 0.602 wt% raffinose and 0.859 wt% sucrose.
【0017】また、本発明は図3に示すように、濃縮液
槽1aの出口に連通する逆浸透膜モジュ−ルに、2台の
並列接続モジュ-ル201a−202aを使用して実施
することもできる。この実施例について、図1に示す実
施例の場合と同様にして分離テストを行い、透過液の組
成を測定したところ、ラフィノ−ス0.608wt%,ス
クロ−ス0.791wt%であった。Further, as shown in FIG. 3, the present invention is carried out by using two parallel connection modules 201a-202a for the reverse osmosis membrane module communicating with the outlet of the concentrated liquid tank 1a. You can also This example was subjected to a separation test in the same manner as in the example shown in FIG. 1 and the composition of the permeate was measured to find that it was 0.608 wt% raffinose and 0.791 wt% sucrose.
【0018】更に、透過液槽の出口に連通する逆浸透膜
モジュ−ルを多段直列あるいは複数台並列とすること、
更にまた、濃縮液槽の出口あるいは透過液槽の出口に連
通する逆浸透膜モジュ−ルを複数台直列とし、これら直
列接続の各逆浸透膜モジュ−ルに対しそれぞれポンプを
設置し、かつそれらの逆浸透膜モジュ−ル間に濃縮液槽
を設置することもできる。Further, the reverse osmosis membrane modules communicating with the outlet of the permeate tank are arranged in multiple stages in series or in parallel.
Furthermore, a plurality of reverse osmosis membrane modules communicating with the outlet of the concentrate tank or the outlet of the permeate tank are connected in series, and a pump is installed for each reverse osmosis membrane module connected in series, and It is also possible to install a concentrate tank between the reverse osmosis membrane modules.
【0019】例えば、図4に示すように、透過液槽1a
の出口にポンプ31aを介して連通する逆浸透膜モジュ
−ルに2段直列21a−22aのものを使用し、逆浸透
膜モジュ−ル21aの透過側を一旦、濃縮液槽11aに
連通し、この濃縮液槽11aの出口をポンプ31aを介
して2段目の逆浸透膜モジュ−ル22aを連通すること
ができる。For example, as shown in FIG. 4, the permeated liquid tank 1a
The reverse osmosis membrane module that communicates to the outlet of the reverse osmosis membrane module via the two-stage series 21a-22a is used, and the permeate side of the reverse osmosis membrane module 21a is once communicated with the concentrated liquid tank 11a. The outlet of the concentrated liquid tank 11a can communicate with the second-stage reverse osmosis membrane module 22a via the pump 31a.
【0020】この図4に示す装置を使用し、濃縮液槽1
a,11a並びに透過液槽1bのそれぞれに上記した水
溶液を100Lづつ投入し、各ポンプ31a,32a,
3bの流量、圧力を上記と同様、それぞれ5L/min,1
0kg/cm2とし、上記と同様15分間処理し、透過液槽1
bの液の組成を測定したところ、ラフィノ−ス0.61
0wt%,スクロ−ス0.832wt%であった。Using the apparatus shown in FIG. 4, the concentrated liquid tank 1
100 L of the above-mentioned aqueous solution is put into each of a, 11a and the permeated liquid tank 1b, and each pump 31a, 32a,
The flow rate and pressure of 3b are 5L / min and 1 respectively as in the above.
Permeate tank 1 with 0 kg / cm 2 and treatment for 15 minutes as above
When the composition of the liquid b was measured, Raffinose 0.61
The amount was 0 wt% and the scroll was 0.832 wt%.
【0021】本発明においては、透過液槽の液を別に設
けた逆浸透膜モジュ−ルにより回分法により濃縮処理す
ることができる。例えば、図5に示すように、図1に示
す装置に対し、透過液槽1bに回分濃縮用の逆浸透膜モ
ジュ−ル2cを別に設置することができる。この場合、
回分法による溶媒の減少を、透過液槽1bにたえず送ら
れてくる溶媒で充分に補償できるので、分離性能をよく
保持して濃縮できる。現に、濃縮用逆浸透膜モジュ−ル
2cに、NaCL阻止率が50%の逆浸透膜モジュ−ル
(日東電工社製NTR-7450-S2)を使用し、この逆浸透膜
モジュ−ル2cのポンプ3cの流量を5L/minとし、他
は図1の実施例の場合と同様にして分離テストを行い、
透過液槽1bの液の組成を測定したところ、ラフィノ−
ス0.935wt%,スクロ−ス1.13wt%であった。In the present invention, the liquid in the permeate tank can be concentrated by a batch method using a reverse osmosis membrane module provided separately. For example, as shown in FIG. 5, a reverse osmosis membrane module 2c for batch concentration can be separately installed in the permeate tank 1b in the apparatus shown in FIG. in this case,
The decrease of the solvent by the batch method can be sufficiently compensated by the solvent constantly sent to the permeate tank 1b, so that the separation performance can be well maintained and the concentration can be performed. Actually, a reverse osmosis membrane module 2c for concentration is a reverse osmosis membrane module (NTR-7450-S2 manufactured by Nitto Denko Corporation) with a NaCL inhibition rate of 50%. A flow rate of the pump 3c was set to 5 L / min, and a separation test was performed in the same manner as in the embodiment of FIG.
When the composition of the liquid in the permeated liquid tank 1b was measured, Raffino-
The amounts were 0.935 wt% and 1.13 wt%, respectively.
【0022】[0022]
【発明の効果】本発明の糖類溶液の逆浸透膜モジュ−ル
による処理方法によれば、上述した通り、少糖,単糖若
しくは多糖類を従来の回分法に較べ優れた分離率で分離
でき、液体クロマトグラフィ−による前処理として有用
であり、液体クロマトグラフィ−による最終精製の分離
コストを低減できる。また、液体クロマトグラフィ−に
よる処理時間を短くでき、高圧に曝する時間を短縮でき
るので、製品劣化をよく防止できる。As described above, according to the method for treating a saccharide solution with a reverse osmosis membrane module of the present invention, an oligosaccharide, a monosaccharide or a polysaccharide can be separated with an excellent separation rate as compared with the conventional batch method. , Which is useful as a pretreatment by liquid chromatography and can reduce the separation cost of the final purification by liquid chromatography. Further, since the treatment time by liquid chromatography can be shortened and the exposure time to high pressure can be shortened, product deterioration can be well prevented.
【図1】本発明において使用する処理装置の一例を示す
説明図である。FIG. 1 is an explanatory diagram showing an example of a processing device used in the present invention.
【図2】本発明において使用する処理装置の上記とは別
の例を示す説明図である。FIG. 2 is an explanatory diagram showing another example of the processing apparatus used in the present invention.
【図3】本発明において使用する処理装置の上記とは別
の例を示す説明図である。FIG. 3 is an explanatory diagram showing another example of the processing apparatus used in the present invention.
【図4】本発明において使用する処理装置の上記とは別
の例を示す説明図である。FIG. 4 is an explanatory diagram showing another example of the processing apparatus used in the present invention.
【図5】本発明において使用する処理装置の上記とは別
の例を示す説明図である。FIG. 5 is an explanatory diagram showing another example of the processing apparatus used in the present invention.
1a 濃縮液槽 1b 透過液槽 2a 逆浸透膜モジュ−ル 21a 逆浸透膜モジュ−ル 22a 逆浸透膜モジュ−ル 201a 逆浸透膜モジュ−ル 202a 逆浸透膜モジュ−ル 2b 逆浸透膜モジュ−ル 2a 逆浸透膜モジュ−ル 21b 逆浸透膜モジュ−ル 22b 逆浸透膜モジュ−ル 2c 逆浸透膜モジュ−ル 1a Concentrated liquid tank 1b Permeated liquid tank 2a Reverse osmosis membrane module 21a Reverse osmosis membrane module 22a Reverse osmosis membrane module 201a Reverse osmosis membrane module 202a Reverse osmosis membrane module 2b Reverse osmosis membrane module 2a Reverse Osmosis Membrane Module 21b Reverse Osmosis Membrane Module 22b Reverse Osmosis Membrane Module 2c Reverse Osmosis Membrane Module
Claims (2)
回分処理する方法において、透過液槽並びに濃縮液槽を
それぞれ設け、各槽の出口にそれぞれ逆浸透膜モジュ−
ルを連通し、各逆浸透膜モジュ−ルの透過液出口を透過
液槽に、各逆浸透膜モジュ−ルの非透過液出口を濃縮液
槽にそれぞれ連通し、透過液槽並びに濃縮液槽にそれぞ
れ被処理液を投入し、これらの液を回分法により処理す
ることを特徴とする糖類水溶液の逆浸透膜モジュ−ルに
よる処理方法。1. A method of batch treating an aqueous saccharide solution with a reverse osmosis membrane module, wherein a permeate tank and a concentrate tank are respectively provided, and the reverse osmosis membrane module is provided at the outlet of each tank.
The reverse osmosis membrane module, the permeate outlet of each reverse osmosis membrane module to the permeate tank, and the non-permeate outlet of each reverse osmosis membrane module to the concentrate tank. A method for treating an aqueous saccharide solution by a reverse osmosis membrane module, which comprises pouring a liquid to be treated into each of the above and treating these liquids by a batch method.
ジュ−ルにより回分法で濃縮する請求項1記載の糖類水
溶液の逆浸透膜モジュ−ルによる処理方法。2. The method for treating an aqueous saccharide solution with a reverse osmosis membrane module according to claim 1, wherein the liquid in the permeate tank is concentrated by a batch method with a reverse osmosis membrane module provided separately.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16401992A JPH05329335A (en) | 1992-05-30 | 1992-05-30 | Treatment of aqueous sugar solution using reverse osmosis membrane module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16401992A JPH05329335A (en) | 1992-05-30 | 1992-05-30 | Treatment of aqueous sugar solution using reverse osmosis membrane module |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05329335A true JPH05329335A (en) | 1993-12-14 |
Family
ID=15785247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16401992A Pending JPH05329335A (en) | 1992-05-30 | 1992-05-30 | Treatment of aqueous sugar solution using reverse osmosis membrane module |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05329335A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003219900A (en) * | 2002-01-30 | 2003-08-05 | Kobe Steel Ltd | Method of producing cellulose hydrolyzate from material containing cellulose |
CN101818216A (en) * | 2010-04-26 | 2010-09-01 | 安徽丰原发酵技术工程研究有限公司 | Method for refining corncob acid hydrolysis solution |
-
1992
- 1992-05-30 JP JP16401992A patent/JPH05329335A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003219900A (en) * | 2002-01-30 | 2003-08-05 | Kobe Steel Ltd | Method of producing cellulose hydrolyzate from material containing cellulose |
CN101818216A (en) * | 2010-04-26 | 2010-09-01 | 安徽丰原发酵技术工程研究有限公司 | Method for refining corncob acid hydrolysis solution |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2155132A1 (en) | Process and apparatus for thickening of solid liquid mixtures by means of membrane technology | |
US10500544B2 (en) | Advancements in osmotically driven membrane systems including multi-stage purification | |
US5098575A (en) | Method and apparatus for processing liquid solutions of suspensions particularly useful in the desalination of saline water | |
Li et al. | Enhancement of ultrafiltration by gas sparging with flat sheet membrane modules | |
US4956458A (en) | Purification of polydextrose by reverse osmosis | |
JP3447741B2 (en) | Liquid filtration method and microfiltration device using MF module | |
US4111812A (en) | Recovering surfactant | |
WO1992010948A3 (en) | Process and system for selectively removing sugar from beverages | |
GB1361674A (en) | Process for the purification and clarification of sugar juices | |
JP2002001068A (en) | Method and apparatus for membrane separation | |
JPH05329335A (en) | Treatment of aqueous sugar solution using reverse osmosis membrane module | |
CA2328176A1 (en) | Method for purifying alkali metal silicate solutions | |
JPH06343833A (en) | Treatment of organic aqueous solusion | |
Hinkova et al. | Membrane filtration in the sugar industry | |
AU2018377865B2 (en) | Filter device | |
CA1155112A (en) | Process for the purification of glucosaminoglucans | |
EP0313226A1 (en) | Membrane separation process | |
JP2504728B2 (en) | High concentration method of tomato juice | |
JPH01304101A (en) | Preparation of conjugated polysaccharide | |
JP2814468B2 (en) | High concentration method of carrot juice | |
Short et al. | Crossflow microfiltration in the food industry | |
JPH05336937A (en) | Method for highly concentrating fruit juice | |
Nuortila-Jokinen et al. | The effect of ultra- and nanofiltration on the removal of disturbing substances in the paper machine water circulation system | |
SU1126308A1 (en) | Method of cleaning biologic solutions by diafiltering | |
KR960010676A (en) | Method for preparing alkyl glycosides with low glycosidation degree |