[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH05190173A - Hydrogen storage electrode - Google Patents

Hydrogen storage electrode

Info

Publication number
JPH05190173A
JPH05190173A JP4038894A JP3889492A JPH05190173A JP H05190173 A JPH05190173 A JP H05190173A JP 4038894 A JP4038894 A JP 4038894A JP 3889492 A JP3889492 A JP 3889492A JP H05190173 A JPH05190173 A JP H05190173A
Authority
JP
Japan
Prior art keywords
hydrogen storage
cell
internal pressure
electrode
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4038894A
Other languages
Japanese (ja)
Inventor
Atsushi Furukawa
淳 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP4038894A priority Critical patent/JPH05190173A/en
Publication of JPH05190173A publication Critical patent/JPH05190173A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a hydrogen storage electrode for forming a sealed battery which has the drastically less cell internal pressure generated in electric charge and can be manufactured relatively at low cost. CONSTITUTION:An electrode is made of the hydrogen storage alloy which is represented by a general formula MmNiaCobAlc (3.0<=a<=3.5, 0.7<=b<=1.3, 0.3<=c<=0.6, 4.0<=a+b+c<=5.2), and an La content in Mm of 80wt.% or more.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、密閉アルカリ蓄電池な
どの負極として用いる水素吸蔵電極に関する゜
FIELD OF THE INVENTION The present invention relates to a hydrogen storage electrode used as a negative electrode of a sealed alkaline storage battery or the like.

【0002】[0002]

【従来の技術】従来、各種の電気、電子機器の電源とし
て、ニッケル−カドミウム蓄電池が最も広く使用されて
いる。この電池は、性能的に優れているが、高エネルギ
ー密度や無公害の観点から、新しいアルカリ蓄電池の開
発が検討され、最近では、水素を可逆的に吸蔵・放出す
る水素吸蔵合金を負極として用いるアルカリ蓄電池が注
目されている。このものは、カドミウム電極と同じ取扱
いで電池を構成でき、而も実際の放電可能な容量密度を
カドミウム電極より大きくできることから、高エネルギ
ー密度で無公害のアルカリ蓄電池として有望である。そ
の負極として用いる水素吸蔵合金は、LaNi、La
Ni4.5Al0.5などのLa合金系のものが知られ
ている。
2. Description of the Related Art Conventionally, nickel-cadmium storage batteries have been most widely used as power sources for various electric and electronic devices. Although this battery is excellent in performance, the development of a new alkaline storage battery has been studied from the viewpoint of high energy density and pollution-free, and recently, a hydrogen storage alloy that reversibly stores and releases hydrogen is used as a negative electrode. Attention is paid to alkaline storage batteries. This battery is promising as a non-polluting alkaline storage battery with a high energy density, since a battery can be constructed in the same manner as a cadmium electrode and the actual dischargeable capacity density can be made larger than that of a cadmium electrode. The hydrogen storage alloy used as the negative electrode is LaNi 5 , La.
La alloy-based materials such as Ni 4.5 Al 0.5 are known.

【0003】[0003]

【発明が解決しようとする課題】しかし乍ら、上記の水
素吸蔵合金を密閉アルカリ蓄電池の負極として用いると
きは、高容量が得られる利点はあるが、充電の際に電池
の内圧が極めて高くなり、安全弁を介しての電解液の漏
出による電池寿命の短縮をもたらす傾向が大きい。
However, when the above hydrogen storage alloy is used as the negative electrode of a sealed alkaline storage battery, there is an advantage that a high capacity can be obtained, but the internal pressure of the battery becomes extremely high during charging. However, there is a large tendency to shorten the battery life due to leakage of the electrolytic solution through the safety valve.

【0004】[0004]

【課題を解決するための手段】本発明は、上記従来の課
題を解決し、比較的安価に製造でき、且つ電池の内圧を
著しく低下し得られる密閉アルカリ蓄電池用の水素吸蔵
電極を提供するもので、その解決手段は、一般式MmN
CoAlで表され、但し、3.0≦a<3.
5、0.7≦b≦1.3、0.3≦c≦0.6、4.0
≦a+b+c≦5.2であり、且つMm中のランタン含
有量が80重量%以上である水素吸蔵合金から成る。
The present invention solves the above-mentioned conventional problems and provides a hydrogen storage electrode for a sealed alkaline storage battery which can be manufactured at a relatively low cost and which can significantly reduce the internal pressure of the battery. Then, the solution is the general formula MmN
i a Co b Al c , provided that 3.0 ≦ a <3.
5, 0.7 ≦ b ≦ 1.3, 0.3 ≦ c ≦ 0.6, 4.0
The hydrogen storage alloy is ≦ a + b + c ≦ 5.2, and the lanthanum content in Mm is 80% by weight or more.

【0005】[0005]

【作用】上記の構成から成る水素吸蔵合金を用い、常法
により水素吸蔵電極を作製し、これを負極として用いた
密閉アルカリ蓄電池は、理由は明らかでないが、充電に
際して発生するガスの内圧の上昇を小さく抑えることが
できる。
[Function] A sealed alkaline storage battery using a hydrogen storage alloy having the above-mentioned structure and a hydrogen storage electrode prepared by a conventional method and using this as a negative electrode is not clear for the reason, but the internal pressure of gas generated during charging rises. Can be kept small.

【0006】[0006]

【実施例】次に、本発明の特徴を明らかにするべく、そ
の実施例を比較例及び従来例と共に詳述する。市販のM
m(La:87wt.%、Ce:2wt.%、Nd:9
wt.%、その他の希土類金属:2wt.%)、Ni、
Co及びAlを下記表1の組成比で夫々秤量配合し、次
でその夫々をアルゴンアーク溶解炉で加熱溶解して夫々
の組成比から成る合金を作製した。次でこれらの合金に
つき、夫々機械的に100μm以下に粉砕し各種組成の
水素吸蔵合金粉末を製造した。その各水素吸蔵合金粉末
に導電剤としてNi粉を10重量%、結着剤としてのフ
ッ素樹脂粉末を2重量%加え、混合してフツ素樹脂を繊
維化させた後粉砕して、夫々の混合物をニッケル金網上
に1t/cmで加圧成形し各種の水素吸蔵合金電極を
作製した。これら各種の水素吸蔵合金電極を夫々負極と
し、正極として公知のペースト式ニッケル極を組み合わ
せ、アルカリ電解液に30%の水酸化カリウム溶液を用
いて、AAサイズ1000mAhの円筒型密閉セルを作
製した。これらのセルを表1のセルNo.3〜16で示
す。その各セルには充電時のセル内圧を測定する目的
で、圧力センサーを装着した。
EXAMPLES In order to clarify the features of the present invention, the examples will be described in detail together with comparative examples and conventional examples. Commercially available M
m (La: 87 wt.%, Ce: 2 wt.%, Nd: 9
wt. %, Other rare earth metals: 2 wt. %), Ni,
Co and Al were weighed and blended in the composition ratios shown in Table 1 below, and then each was heated and melted in an argon arc melting furnace to prepare alloys having the respective composition ratios. Next, each of these alloys was mechanically pulverized to 100 μm or less to produce a hydrogen storage alloy powder having various compositions. To each of the hydrogen storage alloy powders, 10% by weight of Ni powder as a conductive agent and 2% by weight of fluororesin powder as a binder were added and mixed to form a fluorine resin fiber, which was then crushed to obtain a mixture. Was pressure-molded on a nickel wire mesh at 1 t / cm 2 to prepare various hydrogen storage alloy electrodes. Each of these various hydrogen storage alloy electrodes was used as a negative electrode, a known paste type nickel electrode was combined as a positive electrode, and a 30% potassium hydroxide solution was used as an alkaline electrolyte to prepare a cylindrical closed cell of AA size 1000 mAh. These cells are designated as cell No. 1 in Table 1. 3 to 16 are shown. A pressure sensor was attached to each cell for the purpose of measuring the cell internal pressure during charging.

【0007】更に比較のため、次のように、従来の水素
吸蔵電極を用いたセルを次のように製造した。即ち、純
La、Ni、Alを原料とし、これらを該表1の組成比
で夫々秤量配合し、前記と同様にして2種類の従来の水
素吸蔵合金粉末を製造した。その各水素吸蔵合金粉末を
用い、前記と同様にして、その夫々の水素吸蔵合金電極
を作製した。これら従来の電極を夫々負極として、前記
と同様にしてAAサイズの1000mAhの円筒型密閉
セルを作製した。これらのセルを表1のセルNo.1及
びNo.2で示す。その各セルにも充電時のセル内圧を
測定する目的で、圧力センサーを装着した。
For comparison, a cell using a conventional hydrogen storage electrode was manufactured as follows. That is, pure La, Ni, and Al were used as raw materials, and these were weighed and blended at the composition ratios shown in Table 1, and two kinds of conventional hydrogen storage alloy powders were produced in the same manner as described above. Using each of the hydrogen storage alloy powders, each hydrogen storage alloy electrode was produced in the same manner as described above. Using these conventional electrodes as negative electrodes, an AA size 1000 mAh cylindrical closed cell was prepared in the same manner as described above. These cells are designated as cell No. 1 in Table 1. 1 and No. 1 2 shows. A pressure sensor was attached to each cell for the purpose of measuring the cell internal pressure during charging.

【0008】上記のこれらセルNo.1〜16につき、
夫々1C(1A)の電流で定格容量の450%(4.5
時間)充電したときのセル内圧を測定した。その測定結
果は、該表1に示す通りであった。
These cell Nos. For 1 to 16,
450% (4.5%) of the rated capacity at 1C (1A) current, respectively.
Time) The cell internal pressure when charged was measured. The measurement results were as shown in Table 1.

【0009】[0009]

【表1】 [Table 1]

【0010】セル内圧は、実用上の見地から、最大20
Kgf/cmまでに抑えることができることが望まし
い。この点から、これらセルNo.1〜No.16の夫
々のセル内圧を比較検討すると、該表1に明らかなよう
に、従来のセルNo.1及びNo.2は、そのセル内圧
は共に20Kgf/cmをはるかに越え極めて高く、
実用上、非常に問題がある。また、セルNo.11〜N
o.16は、従来のセルよりも内圧の低下が見られる
が、21Kgf/cm以上であり、実用上、尚不充分
である。これに対し、セルNo.3〜No.10は、い
ずれもその内圧は20Kgf/cm以下であり、実用
上問題がない。これらセルNo.3〜No.10に用い
た水素吸蔵電極として用いた水素吸蔵合金は、セルN
o.11〜No.16と対比し明らかなように、次のよ
うな合金組成条件に入る。即ち、MmNiCoAl
の一般式において、3.0≦a<3.5、0.7≦b
≦1.3、0.3≦c≦0.6、の夫々の範囲にあり、
且つABのX、即ち4.0≦a+b+c≦5.2の条
件に該当し、かゝる合金組成によりセル内圧を20Kg
f/cm以下に抑えることが確認された。
From the practical point of view, the cell internal pressure is 20 at maximum.
It is desirable to be able to suppress it to Kgf / cm 2 . From this point, these cell Nos. 1-No. When the cell internal pressures of the respective 16 cells are compared and examined, as is clear from Table 1, the conventional cell number. 1 and No. 1 No. 2, the cell internal pressure was extremely high, exceeding 20 Kgf / cm 2 , and
It is very problematic in practical use. In addition, the cell No. 11-N
o. In No. 16, the internal pressure is lower than that of the conventional cell, but it is 21 Kgf / cm 2 or more, which is still insufficient in practical use. On the other hand, cell No. 3 to No. No. 10 has an internal pressure of 20 Kgf / cm 2 or less, and there is no practical problem. These cell No. 3 to No. The hydrogen storage alloy used as the hydrogen storage electrode used in No. 10 is the cell N
o. 11-No. As is clear from comparison with No. 16, the following alloy composition conditions are entered. That is, MmNi a Co b Al
In the general formula of c , 3.0 ≦ a <3.5, 0.7 ≦ b
≦ 1.3, 0.3 ≦ c ≦ 0.6, respectively,
Also, it corresponds to X of ABX, that is, the condition of 4.0 ≦ a + b + c ≦ 5.2, and the cell internal pressure is 20 Kg due to such alloy composition
It was confirmed that it was suppressed to f / cm 2 or less.

【0011】次に、上記の合金組成において、ミッシュ
メタルを構成する各種の希土類金属のうち、Laの含有
率を変えた場合のセル内圧に及ぼす影響を検討するべ
く、次のような比較試験を行った。
Next, in the above alloy composition, the following comparative test was conducted in order to examine the influence on the cell internal pressure when the content ratio of La is changed among various rare earth metals constituting the misch metal. went.

【0012】次に、上記実施例の水素吸蔵電極を構成す
る水素吸蔵合金を構成するミッシュメタルMm中のラン
タル(La)の含有量の変化とこれによるセルの内圧に
対する影響を調べるべく、先ず、次のようにLaの含有
量の異なるMmNi3.49Co1.00Al0.50
から成る組成の水素吸蔵合金を作製した。
Next, in order to examine the change in the content of lanthanum (La) in the misch metal Mm forming the hydrogen storage alloy forming the hydrogen storage electrode of the above-mentioned embodiment and the influence thereof on the internal pressure of the cell, first, MmNi 3.49 Co 1.00 Al 0.50 having different La contents as follows.
A hydrogen storage alloy having a composition of was prepared.

【0013】即ち、上記のセルNo.3に用いた水素吸
蔵合金MmNi3.49Co1.00Al0.50(M
m中のLa含有量87wt.%)の他に、市販のLa:
45wt.%、Ce:4wt.%、Nd:36wt.
%、Pr:12wt.%、その他の希土類金属:3w
t.%から成るMm、La:25wt.%、Ce:49
wt.%、Nd:17wt.%、Pr:6wt.%、そ
の他の希土類金属:3wt.%から成るMm、その他M
m中の含有量が上記と異なる市販の各種Mm、更に又、
適宜のMmに純Laを所定量配合してMm中のLaを5
0wt.%、55wt.%、60wt.%、65wt.
%、70wt.%、75wt.%、80wt.%、85
wt.%、90wt.%、95wt.%などに調製した
各種Mmを用意し、その夫々のMmにNi、Co、Al
を一定の組成比で秤量配合し、溶解炉で加熱溶解して、
La含有量の異なるMmNi3.49Co1.00Al
0.50から成る各種の合金を作製し、その各合金を1
00μm以下に粉砕して夫々の水素吸蔵合金粉末を製造
した。
That is, the above cell No. Hydrogen storage alloy MmNi 3.49 Co 1.00 Al 0.50 (M
La content in m of 87 wt. %), Commercially available La:
45 wt. %, Ce: 4 wt. %, Nd: 36 wt.
%, Pr: 12 wt. %, Other rare earth metals: 3w
t. % Of Mm, La: 25 wt. %, Ce: 49
wt. %, Nd: 17 wt. %, Pr: 6 wt. %, Other rare earth metals: 3 wt. % Consisting of Mm and other M
Various commercially available Mm whose content in m is different from the above, and also
A proper amount of pure La is mixed with Mm to make La in Mm 5
0 wt. %, 55 wt. %, 60 wt. %, 65 wt.
%, 70 wt. %, 75 wt. %, 80 wt. %, 85
wt. %, 90 wt. %, 95 wt. %, Prepared various Mm and prepared Ni, Co, Al for each Mm.
Weighed and blended with a constant composition ratio, heated and melted in a melting furnace,
MmNi 3.49 Co 1.00 Al with different La contents
Various alloys consisting of 0.50 were made, and each alloy was
Each hydrogen storage alloy powder was manufactured by pulverizing to a particle size of less than 00 μm.

【0014】これら合金粉末を用いて上記と同様にして
夫々の水素吸蔵電極を作製し、その夫々の電極を負極と
して上記と同様に密閉セルを夫々作製し、上記と同様に
充電を行い、その夫々のセル内圧を測定した。その結果
は、図1に示す通りであった。
Using these alloy powders, hydrogen storage electrodes were prepared in the same manner as described above, closed cells were prepared in the same manner as described above using the respective electrodes as negative electrodes, and charged in the same manner as described above. The internal pressure of each cell was measured. The result was as shown in FIG.

【0015】図1から明らかなように、セル内圧を20
Kgf/cm2以下に抑えるには、Mm中のLaの含有
率は80wt.%以上であることが分った。尚、図1か
ら分るように、Mm中のLaの含有量が100%に近付
くほど、セル内圧の低下が認められた。従って、Mmに
代え、La含有量100%に相当する純Laを原料と
し、これに上記の組成比でNi、Co、Alを秤量配合
し、LaNi3.49Co1.00Al0.50合金を
作製し、これを負極としたセルは、そのセル内圧の低下
に最大の効果があるが、該Laは高価であるため、合金
の製造コストが増大し、不利である。これに対し、Mm
は、La含有量約80wt%〜90wt.%のものが市
販されて居り、安価に入手できるので、水素吸蔵電極が
安価に製造でき有利である。
As is apparent from FIG. 1, the cell internal pressure is set to 20
In order to suppress it to Kgf / cm 2 or less, the content ratio of La in Mm is 80 wt. It was found to be over%. As can be seen from FIG. 1, as the La content in Mm approaches 100%, the decrease in cell internal pressure was observed. Therefore, in place of Mm, pure La corresponding to La content of 100% is used as a raw material, and Ni, Co, and Al are weighed and mixed in the above composition ratio, and LaNi 3.49 Co 1.00 Al 0.50 alloy A cell having the above-mentioned electrode as a negative electrode has the greatest effect in reducing the internal pressure of the cell, but since the La is expensive, the manufacturing cost of the alloy increases, which is disadvantageous. On the other hand, Mm
Has a La content of about 80 wt% to 90 wt. % Hydrogen peroxide is commercially available and can be obtained at low cost, which is advantageous because the hydrogen storage electrode can be manufactured at low cost.

【0013】[0013]

【発明の効果】このように本発明によるときは、一般式
MmNiCoAlで表され、但し、3.0≦a<
3.5、0.7≦b≦1.3、0.3≦c≦0.6、
4.0≦a+b+c≦5.2であり、且つMm中のLa
含有量が80wt.%以上である水素吸蔵合金を水素吸
蔵電極とするときは、セル内圧が小さく且つ安価な密閉
電池が得られる効果を有する。
As described above, according to the present invention, it is represented by the general formula MmNi a Co b Al c , where 3.0 ≦ a <
3.5, 0.7 ≦ b ≦ 1.3, 0.3 ≦ c ≦ 0.6,
4.0 ≦ a + b + c ≦ 5.2 and La in Mm
The content is 80 wt. When a hydrogen storage alloy having a hydrogen storage alloy content of not less than 10% is used as the hydrogen storage electrode, it has an effect of obtaining an inexpensive sealed battery having a small cell internal pressure.

【図面の簡単な説明】[Brief description of drawings]

【図1】密閉電池の負極として使用した水素吸蔵合金の
組成元素Mm中のLa含有量とセル内圧との関係を示す
グラフである。
FIG. 1 is a graph showing the relationship between the La content in the composition element Mm of the hydrogen storage alloy used as the negative electrode of a sealed battery and the cell internal pressure.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一般式MmNiCoAlで表さ
れ、但し、3.0≦a<3.5、0.7≦b≦1.3、
0.3≦c≦0.6、4.0≦a+b+c≦5.2であ
り、且つMm中のランタン含有量が80重量%以上であ
る水素吸蔵合金から成る水素吸蔵電極。
1. A compound represented by the general formula MmNi a Co b Al c , provided that 3.0 ≦ a <3.5, 0.7 ≦ b ≦ 1.3,
A hydrogen storage electrode made of a hydrogen storage alloy having 0.3 ≦ c ≦ 0.6, 4.0 ≦ a + b + c ≦ 5.2, and a lanthanum content in Mm of 80% by weight or more.
JP4038894A 1992-01-09 1992-01-09 Hydrogen storage electrode Pending JPH05190173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4038894A JPH05190173A (en) 1992-01-09 1992-01-09 Hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4038894A JPH05190173A (en) 1992-01-09 1992-01-09 Hydrogen storage electrode

Publications (1)

Publication Number Publication Date
JPH05190173A true JPH05190173A (en) 1993-07-30

Family

ID=12537913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4038894A Pending JPH05190173A (en) 1992-01-09 1992-01-09 Hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPH05190173A (en)

Similar Documents

Publication Publication Date Title
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3381264B2 (en) Hydrogen storage alloy electrode
JP2752970B2 (en) Hydrogen storage electrode
JPH0821379B2 (en) Hydrogen storage electrode
JP3133593B2 (en) Hydrogenable material for negative electrode of nickel-hydride battery
JP2595967B2 (en) Hydrogen storage electrode
JPH0685323B2 (en) Hydrogen storage electrode
JPH0953136A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPS62271349A (en) Hydrogen occlusion electrode
JPS62249358A (en) Hydrogen storage electrode
JPH05190173A (en) Hydrogen storage electrode
JPH0650634B2 (en) Hydrogen storage electrode
JP2537084B2 (en) Hydrogen storage alloy electrode
JP2962814B2 (en) Hydrogen storage alloy electrode
JPS61168870A (en) Metal-hydrogen alkaline storage battery
JP2680566B2 (en) Hydrogen storage electrode
JP3322452B2 (en) Rare earth hydrogen storage alloy for alkaline storage batteries
JPH04187733A (en) Hydrogen storage alloy electrode
JPH0675398B2 (en) Sealed alkaline storage battery
JPH0750605B2 (en) Hydrogen storage electrode for alkaline storage battery
JPS6220245A (en) Enclosed type alkaline storage battery
JPH06145849A (en) Hydrogen storage alloy electrode
JP3082341B2 (en) Hydrogen storage electrode
JPH07105230B2 (en) Hydrogen storage electrode for alkaline storage battery
JP3729913B2 (en) Hydrogen storage alloy electrode

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees