[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0650634B2 - Hydrogen storage electrode - Google Patents

Hydrogen storage electrode

Info

Publication number
JPH0650634B2
JPH0650634B2 JP62205683A JP20568387A JPH0650634B2 JP H0650634 B2 JPH0650634 B2 JP H0650634B2 JP 62205683 A JP62205683 A JP 62205683A JP 20568387 A JP20568387 A JP 20568387A JP H0650634 B2 JPH0650634 B2 JP H0650634B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
alloy
electrode
storage electrode
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62205683A
Other languages
Japanese (ja)
Other versions
JPS6448370A (en
Inventor
孝治 蒲生
良夫 森脇
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62205683A priority Critical patent/JPH0650634B2/en
Priority to KR1019880005646A priority patent/KR920010422B1/en
Priority to US07/194,568 priority patent/US4946646A/en
Priority to DE3855987T priority patent/DE3855987T2/en
Priority to DE3855988T priority patent/DE3855988T2/en
Priority to EP92109664A priority patent/EP0504950B1/en
Priority to DE88107839T priority patent/DE3881762T2/en
Priority to DE3855001T priority patent/DE3855001T2/en
Priority to EP88107839A priority patent/EP0293660B1/en
Priority to EP92109665A priority patent/EP0522297B1/en
Priority to EP92109663A priority patent/EP0504949B1/en
Priority to EP19920109661 priority patent/EP0503686A3/en
Publication of JPS6448370A publication Critical patent/JPS6448370A/en
Publication of JPH0650634B2 publication Critical patent/JPH0650634B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリ蓄電池とくに正極にニッケル極、空
気極、酸化銀極などを用いるアルカリ蓄電池などの負極
として、電気化学的に水素の吸蔵・脱蔵が可能な水素吸
蔵電極に関する。
The present invention relates to an electrochemical storage and desorption of hydrogen as an anode of an alkaline storage battery, in particular, an alkaline storage battery using a nickel electrode, an air electrode, a silver oxide electrode or the like as a positive electrode. A hydrogen storage electrode capable of

従来の技術 汎用の蓄電池としては鉛蓄電池、ニッケル−カドミウム
蓄電池などがよく知られているが、これらの蓄電池は重
量または体積当りのエネルギー密度が比較的小さい。そ
こで、昨今、新しく電気化学的に水素を多量に吸蔵・脱
蔵が可能なある種の合金を負極とし、正極にはニッケル
酸化物を用いたエネルギー密度の大きいニッケル−水素
蓄電池が提案されている。このような蓄電池の負極とし
て、比較的良好なものにTi−Ni系,La(またはM
m)−Ni系,Ca−Ni系、およびこれらをベースに
した置換体がある。また、最近、Ti2−xZr
4−yNi,0<x≦1.5,0.6≦y≦3.5な
る特許(USP4,551,400号)が出願されてい
る。
2. Description of the Related Art Lead storage batteries, nickel-cadmium storage batteries, and the like are well known as general-purpose storage batteries, but these storage batteries have relatively low energy density per weight or volume. Therefore, recently, a nickel-hydrogen storage battery having a large energy density, in which a certain alloy capable of electrochemically absorbing and desorbing a large amount of hydrogen electrochemically is used as a negative electrode and nickel oxide is used as a positive electrode, has been proposed. . As a negative electrode of such a storage battery, a relatively good one is Ti-Ni system, La (or M
m) -Ni series, Ca-Ni series, and substitution products based on these. In addition, recently, Ti 2-x Zr x V
A patent (USP 4,551,400) in which 4-y Ni y , 0 <x ≦ 1.5, 0.6 ≦ y ≦ 3.5 is applied.

発明が解決しようとする問題点 しかしながら、Ti−Ni系合金は、電気化学的な充
電、放電によって比較的高い放電容量を有しているもの
の、充放電サイクルを繰返すうちにTiの安定相を形成
するため、電池としての寿命性能に主たる問題点を有
し、またLa(またはMm)−Ni系合金は、電気化学
的な水素吸蔵量が充分でないため比較的放電容量が小さ
く、また温度変化に対する性能の変動が大きいこと、合
金の価格が高いことなどに問題がある。そしてCa−N
i系合金は、充放電サイクルの初期には高い放電容量を
有しているものの、Ti−Ni系と同様に、充放電を繰
返すことによって大幅な性能の低下をきたすという欠点
がある。さらに、Ti2−xZr4−yNi,0
<x≦1.5,0.6≦y≦3.5も、徐々に安定な水
素化物を形成するためサイクル寿命特性に問題を残して
いる。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, although the Ti—Ni alloy has a relatively high discharge capacity due to electrochemical charging and discharging, it forms a stable phase of Ti during repeated charge and discharge cycles. Therefore, there is a main problem in the life performance as a battery, and the La (or Mm) -Ni-based alloy has a relatively small discharge capacity because the electrochemical hydrogen storage capacity is not sufficient, and it is resistant to temperature changes. There are problems such as large fluctuations in performance and high alloy prices. And Ca-N
Although the i-based alloy has a high discharge capacity at the beginning of the charging / discharging cycle, it has a drawback that, like the Ti—Ni-based alloy, its performance is significantly deteriorated by repeating charging / discharging. Further, Ti 2-x Zr x V 4-y Ni y, 0
When <x ≦ 1.5 and 0.6 ≦ y ≦ 3.5, gradually stable hydrides are formed, and there is a problem in cycle life characteristics.

本発明は、上述の問題点に鑑みて為されたもので、特に
高い放電容量で長寿命な蓄電池を得ることが出来る水素
吸蔵電極を提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a hydrogen storage electrode capable of obtaining a storage battery having a particularly high discharge capacity and a long life.

問題点を解決するための手段 本発明の水素吸蔵電極は、少なくとも、公称組成式Zr
MoαNiβ(ただし、α=0.1〜1.2,β=1.
1〜2.5)で表わされる合金相を含有する金属材料を
水素の吸蔵・脱蔵用材料として備えたものである。
Means for Solving the Problems The hydrogen storage electrode of the present invention has at least the nominal composition formula Zr.
Mo α Ni β (where α = 0.1 to 1.2 and β = 1.
1 to 2.5) is provided with a metal material containing an alloy phase as a hydrogen storage / desorption material.

作用 組成式ZrMoαNiβ(ただし、α=0.1〜1.
2,β=1.1〜2.5)で表わされる合金は、アルカ
リ蓄電池で起こる通常の電気化学的な条件下で、前記従
来の水素吸蔵合金に比べて、単位格子間に占める水素原
子の数が多いため水素の吸蔵量および脱蔵量が大きく、
水素吸蔵・脱蔵反応速度も大きい。また、水素吸蔵・脱
蔵サイクルを繰返しても安定な水素化物相や酸化物相を
生成しないため、これを主たる材料として備えた水素吸
蔵電極は急速な充放電に追随し、高い電気容量を長期に
わたって維持しうる。
Action Compositional formula ZrMo α Ni β (where α = 0.1 to 1.
2, β = 1.1 to 2.5) is an alloy represented by hydrogen atoms occupying the unit cell under the normal electrochemical conditions that occur in alkaline storage batteries, as compared with the conventional hydrogen storage alloy. Due to the large number, the storage and desorption of hydrogen is large,
The hydrogen absorption / desorption reaction rate is also high. Further, even if the hydrogen storage / desorption cycle is repeated, stable hydride phases and oxide phases are not generated, so the hydrogen storage electrode equipped with these as the main material follows rapid charging / discharging and has a high electric capacity for a long time. Can be maintained over.

実施例 本発明者らは、Ti−Ni系水素吸蔵合金やAB
(A:Mm,Laなどの希土類、B:Ni,Co,Cr
など)水素吸蔵合金に代わる、より高性能なCD
(C:Ti族元素、D:Fe,V,Cr,Co,Niな
ど)合金に属する種々ものについて、アルカリ蓄電池用
水素吸蔵電極(負極)としての性能を検討した結果、Z
r−Mo−Ni系合金相が特に優れた特性を有すること
を見出した。
Example The inventors of the present invention have developed a Ti-Ni-based hydrogen storage alloy, AB 5 type (A: rare earth such as Mm, La, B: Ni, Co, Cr
Etc.) Various types of higher performance CD 2 type (C: Ti group elements, D: Fe, V, Cr, Co, Ni, etc.) alloys that replace hydrogen storage alloys, and hydrogen storage electrodes (negative electrodes) for alkaline storage batteries. As a result of examining the performance as
It has been found that the r-Mo-Ni alloy phase has particularly excellent properties.

例えば、CD型合金に属するラーバス相C15型合金
は立方晶のMgCu型の結晶構造を有し、水素吸蔵材
としての性能は本発明者らが先に特公昭56−3134
1号公報で示したように、水素化物生成熱、結晶格子定
数aおよび結晶の均質性を主たる因子とする。ところ
が、これらの因子を充たし、水素ガス相で水素吸蔵特性
の優れた合金をそのままアルカリ性電解液の中で水素吸
蔵電極として用いた場合、水素吸蔵量以外に電解液中で
の電気化学的安定性、触媒性能が問題となるばかりでな
く、充電電気量は充分大きいが放電電気量は小さいこと
があるため、水素吸蔵電極としては、必ずしも適当であ
るとは言えなかった。
For example, a Larvus phase C15 type alloy belonging to the CD 2 type alloy has a cubic MgCu 2 type crystal structure, and the inventors of the present invention have previously reported the performance as a hydrogen storage material.
As shown in Japanese Patent Publication No. 1, the main factors are heat of hydride formation, crystal lattice constant a, and crystal homogeneity. However, when an alloy satisfying these factors and having an excellent hydrogen storage property in the hydrogen gas phase is used as it is as a hydrogen storage electrode in an alkaline electrolyte, in addition to the hydrogen storage capacity, the electrochemical stability in the electrolyte is high. Not only is the catalyst performance a problem, but the charge electricity quantity is sufficiently large but the discharge electricity quantity may be small, so it cannot be said that it is necessarily suitable as a hydrogen storage electrode.

ところが、本発明者らは、CD型合金、例えば、C1
5型あるいはC14型の中でも特別な範囲の合金相だけ
は水素吸蔵電極として優れたものであることを見出し、
先に提案した。本願は本発明者らの先発明を更に改良し
たもので、特には、初期活性化特性、充放電サイクル寿
命特性および充放電電気容量を、より実用的に価値ある
ものとして完成したものである。
However, the present inventors have found that CD 2 type alloys such as C1
It was found that only a special range of alloy phases of 5 type or C14 type was excellent as a hydrogen storage electrode,
I proposed earlier. The present application is a further improvement of the inventors' prior inventions, and in particular, was completed by making initial activation characteristics, charge / discharge cycle life characteristics and charge / discharge electric capacity more practically valuable.

以下に具体的な実施例で説明する。Specific examples will be described below.

市販のZr,Mo,Niを原材料とし、アルゴンアーク
溶解炉またはアルゴン高周波炉で溶解し、例えば、次表
に示すような組成の合金を得た。溶解した合金試料の一
部は、合金組成、結晶構造、結晶格子定数、均質性など
の合金分析用に使用し、残りは水素ガス中での水素吸蔵
量測定用(主としてP(圧力)−C(組成)−T(温
度)測定用)および電極性能評価用に用いた。表中の合
金No.1〜6は本発明に係る合金の実施例であり、N
o.7〜10は本発明と同じ構成元素からなるが、原子
比が本発明の範囲外のものである。
Commercially available Zr, Mo, and Ni were used as raw materials and melted in an argon arc melting furnace or an argon high-frequency furnace to obtain, for example, an alloy having the composition shown in the following table. A part of the melted alloy sample is used for alloy analysis such as alloy composition, crystal structure, crystal lattice constant, and homogeneity, and the rest is for measuring hydrogen storage amount in hydrogen gas (mainly P (pressure) -C). (Composition) -T (temperature) measurement) and electrode performance evaluation. Alloy No. in the table 1 to 6 are examples of alloys according to the present invention, and N
o. 7 to 10 are composed of the same constituent elements as in the present invention, but the atomic ratio is outside the range of the present invention.

即ち、No.7,8はMoの原子比αに関し、αが大き
すぎる合金(No.7)と小さすぎる合金(No.8)
そしてNo.9、10,はNiの原子比βに関し、βが
小さすぎる合金(No.9)と大きすぎる合金(No.
10)の代表例を示す。
That is, No. Regarding the atomic ratio α of Mo, 7 and 8 are alloys with too large α (No. 7) and alloys with too small α (No. 8)
And No. Regarding the atomic ratio β of Ni, Nos. 9 and 10 are alloys with too small β (No. 9) and alloys with too large β (No.
A representative example of 10) is shown.

前記表中に示した合金についてアルカリ蓄電池用負極と
しての性能を評価した。まず、溶解によって得られた合
金を400メッシュ以下の粒子に粉砕し、この合金粉末
約5gを、結着剤としてのポリエチレン粉末0.5g
と、導電剤としてのカーボニルニッケル粉末2gと共に
充分混合撹拌し、これを、導電性芯材としてのニッケル
スクリーン(線径0.2mm,16メッシュ)を中心にし
て、プレスにより加圧し板状に成形した。これを120
℃、1時間真空中に置き、加熱してポリエチレンを溶融
した後、リードを取り付け水素吸蔵電極とした。
The alloys shown in the above table were evaluated for performance as a negative electrode for alkaline storage batteries. First, the alloy obtained by melting is pulverized into particles of 400 mesh or less, and about 5 g of this alloy powder is added to 0.5 g of polyethylene powder as a binder.
And 2 g of carbonyl nickel powder as a conductive agent are mixed and stirred sufficiently, and this is pressed into a plate shape by pressing around a nickel screen (wire diameter 0.2 mm, 16 mesh) as a conductive core material. did. This is 120
After being placed in a vacuum at 1 ° C. for 1 hour and heating to melt polyethylene, a lead was attached to form a hydrogen storage electrode.

蓄電池用負極としての評価のために、市販の焼結式ニッ
ケル極を正極に選び、ポリアミド不織布をセパレータと
し、比重1.30の苛性カリ水溶液に水酸化リチウムを
20g/1加えた溶液を電解液として、一定電流で充電
と放電を繰り返した。この時の充電電気量は、500mA
×4時間であり、放電は250mAで行い、0.8V以下
をカットした。結果の一例として充・放電10サイクル
目の放電電気容量を前記の表に、また充・放電サイクル
特性を図に示す。同図は横軸に充・放電サイクル数
(∞)を、縦軸に1g当りの放電電気容量を従来例(T
Ni,LaNi)および範囲外の合金例(No.
7〜10)と共に示したものである。尚、図中の番号は
前記表の合金No.と一致している。
For evaluation as a negative electrode for a storage battery, a commercially available sintered nickel electrode was selected as a positive electrode, a polyamide nonwoven fabric was used as a separator, and a solution of 20 g / 1 of lithium hydroxide added to a caustic potash aqueous solution having a specific gravity of 1.30 was used as an electrolytic solution. The charging and discharging were repeated at a constant current. The amount of electricity charged at this time is 500mA
× 4 hours, discharge was performed at 250 mA, and 0.8 V or less was cut. As an example of the results, the discharge electric capacity at the 10th charge / discharge cycle is shown in the above table, and the charge / discharge cycle characteristics are shown in the figure. In the figure, the horizontal axis represents the number of charge / discharge cycles (∞), and the vertical axis represents the discharge electric capacity per gram (T).
i 2 Ni, LaNi 5 ) and alloy examples outside the range (No.
7 to 10). The numbers in the figure are alloy Nos. In the above table. Is consistent with

表および図から明らかなように本発明に係る前記水素吸
蔵合金を主構成要素とするアルカリ蓄電池負極は、大き
い放電容量を有し、サイクル寿命特性(耐久性)、初期
放電立上り特性も優れていることがわかる。また、大電
流での急速な充・放電特性も良好であった。一方、原子
比αが0.1より小さいか、または、1.2より大きい
合金は放電容量が小さく、または原子比βが1.1より
小さいか、または、2.5より大きい合金も放電容量が
小さい。この理由はVの含有量αは、特に充電電気量に
関係し、Moが多い程、充電電気量は大きいが、安定な
水素化物を形成するため放電効率が小さく,放電電気量
が少なくなる。また、Niの含有量は特に充放電サイク
ル特性(耐久性)に関係し、Niが多い程、長寿命だ
が、充電電気量が少なくなる傾向がある。また実用的観
点から放電容量を評価すれば、250mAh/gは必要で
ある。以上の点、および合金相の均質性,安定性から、
一般式ZrMoαNiβで表され、α=0.1〜1.2
0,β=1.1〜2.5の範囲にある合金相のみが、実
用的な観点から優れている。また、特に好適な組成範囲
は、表からもわかるようにα=0.3〜0.7、β=
1.4〜1.9である。この範囲にある本発明電極は放
電電気量(10サイクル目)が350mAh/g以上を示
し、特に高容量で、かつ長寿命であり、しかも経済的に
も優れている。
As is apparent from the table and the figures, the alkaline storage battery negative electrode having the hydrogen storage alloy according to the present invention as a main constituent element has a large discharge capacity, and has excellent cycle life characteristics (durability) and initial discharge rising characteristics. I understand. In addition, rapid charge / discharge characteristics at large current were also good. On the other hand, alloys with an atomic ratio α of less than 0.1 or greater than 1.2 have a small discharge capacity, or alloys with an atomic ratio β of less than 1.1 or greater than 2.5 have a discharge capacity of Is small. The reason for this is that the V content α is particularly related to the amount of electricity charged, and the larger the amount of Mo, the greater the amount of electricity charged, but because a stable hydride is formed, the discharge efficiency is small and the amount of electricity discharged is small. Further, the Ni content is particularly related to the charge / discharge cycle characteristics (durability), and the more Ni, the longer the life, but the less the charge electricity tends to be. When the discharge capacity is evaluated from a practical point of view, 250 mAh / g is necessary. From the above points and the homogeneity and stability of the alloy phase,
It is represented by the general formula ZrMo α Ni β , and α = 0.1 to 1.2
Only the alloy phase in the range of 0, β = 1.1 to 2.5 is excellent from a practical viewpoint. Further, as is apparent from the table, a particularly preferable composition range is α = 0.3 to 0.7, β =
It is 1.4 to 1.9. The electrode of the present invention in this range exhibits a discharge electricity quantity (10th cycle) of 350 mAh / g or more, and has a particularly high capacity, a long life and economically excellent.

また、図のサイクル寿命特性からわかるように、従来か
らあるTiNi,LaNiは劣化が著しいのに対
し、本発明の水素吸蔵電極は、放電容量の大きさにかか
わらずサイクル寿命特性が良好であることから実用的で
あることがわかる。これは優れた電気化学触媒性能や耐
酸化性能に起因している。
Further, as can be seen from the cycle life characteristics of the figure, the conventional Ti 2 Ni, LaNi 5 is significantly deteriorated, whereas the hydrogen storage electrode of the present invention has good cycle life characteristics regardless of the discharge capacity. Therefore, it can be seen that it is practical. This is due to the excellent electrochemical catalyst performance and oxidation resistance performance.

なお本発明は表中に示すもの以外に種々の組成の合金が
存在する。この場合、当然、主たる合金相が、一般組成
式ZrMoαNiβで表され、原子比αとβが、各々、
α=0.1〜1.20,β=1.1〜2.5の範囲にあ
る相を含む。以上のことから、本発明の合金を使用した
アルカリ蓄電池用水素吸蔵電極は、前記従来のものに比
べ、高容量であり、初期放電容量特性が優れ、また長寿
命であることがわかる。さらに本発明の電極はアルカリ
蓄電池の電極以外にも、燃料電池の水素極、電気分解用
の電極,キャパシタなどに応用することもできる。
The present invention has alloys of various compositions other than those shown in the table. In this case, naturally, the main alloy phase is represented by the general composition formula ZrMo α Ni β , and the atomic ratios α and β are respectively
Includes phases in the range of α = 0.1 to 1.20 and β = 1.1 to 2.5. From the above, it can be seen that the hydrogen storage electrode for an alkaline storage battery using the alloy of the present invention has a higher capacity, excellent initial discharge capacity characteristics, and a longer life than those of the conventional ones. Further, the electrode of the present invention can be applied to a hydrogen electrode of a fuel cell, an electrode for electrolysis, a capacitor, etc., in addition to the electrode of the alkaline storage battery.

発明の効果 本発明の水素吸蔵電極は、高容量化が可能であり、初期
充放電特性が良好で、かつ反応の可逆性に優れ、長寿命
化に大きな効果を有している。また、原材料が比較的低
価格であり、電極製造技術においても、従来技術で充分
対応できる。
EFFECTS OF THE INVENTION The hydrogen storage electrode of the present invention can have a high capacity, has good initial charge / discharge characteristics, is excellent in reversibility of the reaction, and has a great effect in prolonging its life. In addition, since the raw materials are relatively low in price, the electrode manufacturing technology can be sufficiently handled by the conventional technology.

【図面の簡単な説明】[Brief description of drawings]

図は本発明の一実施例の水素吸蔵電極および比較電極の
サイクル寿命特性図である。
The figure is a cycle life characteristic diagram of the hydrogen storage electrode and the reference electrode of one example of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】少なくとも、公称組成式ZrMoαNiβ
(ただし、α=0.1〜1.2,β=1.1〜2.5)
で表わされる合金相を含有する金属材料を水素の吸蔵・
放出用材料として備えた水素吸蔵電極。
1. At least a nominal composition formula ZrMo α Ni β
(However, α = 0.1 to 1.2, β = 1.1 to 2.5)
Hydrogen absorption of metallic materials containing alloy phases represented by
A hydrogen storage electrode provided as a discharge material.
【請求項2】実質的にα=0.3〜0.7である特許請
求の範囲第1項記載の水素吸蔵電極。
2. The hydrogen storage electrode according to claim 1, wherein α = 0.3 to 0.7.
【請求項3】実質的にβ=1.4〜1.9である特許請
求の範囲第1項記載の水素吸蔵電極。
3. The hydrogen storage electrode according to claim 1, wherein β = 1.4 to 1.9.
【請求項4】合金相が少なくとも1種以上のC15(M
gCu)型結晶構造を有する結晶質からなる特許請求
の範囲第1項記載の水素吸蔵電極。
4. An alloy phase having at least one kind of C15 (M
The hydrogen storage electrode according to claim 1, comprising a crystalline material having a gCu 2 ) type crystal structure.
JP62205683A 1987-05-15 1987-08-19 Hydrogen storage electrode Expired - Lifetime JPH0650634B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP62205683A JPH0650634B2 (en) 1987-08-19 1987-08-19 Hydrogen storage electrode
KR1019880005646A KR920010422B1 (en) 1987-05-15 1988-05-14 Electrode and method of storage hidrogine
US07/194,568 US4946646A (en) 1987-05-15 1988-05-16 Alloy for hydrogen storage electrodes
DE3855987T DE3855987T2 (en) 1987-05-15 1988-05-16 Hydrogen storage electrode
DE3855988T DE3855988T2 (en) 1987-05-15 1988-05-16 Hydrogen storage electrode
EP92109664A EP0504950B1 (en) 1987-05-15 1988-05-16 Hydrogen storage electrode
DE88107839T DE3881762T2 (en) 1987-05-15 1988-05-16 Hydrogen storage electrodes.
DE3855001T DE3855001T2 (en) 1987-05-15 1988-05-16 Hydrogen storage electrode
EP88107839A EP0293660B1 (en) 1987-05-15 1988-05-16 Hydrogen storage electrodes
EP92109665A EP0522297B1 (en) 1987-05-15 1988-05-16 Hydrogen storage electrode
EP92109663A EP0504949B1 (en) 1987-05-15 1988-05-16 Hydrogen storage electrode
EP19920109661 EP0503686A3 (en) 1987-05-15 1988-05-16 Method for making a hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62205683A JPH0650634B2 (en) 1987-08-19 1987-08-19 Hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPS6448370A JPS6448370A (en) 1989-02-22
JPH0650634B2 true JPH0650634B2 (en) 1994-06-29

Family

ID=16510967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62205683A Expired - Lifetime JPH0650634B2 (en) 1987-05-15 1987-08-19 Hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPH0650634B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3123049B2 (en) * 1987-10-14 2001-01-09 松下電器産業株式会社 Hydrogen storage alloy electrode
JP2715434B2 (en) * 1988-03-30 1998-02-18 松下電器産業株式会社 Hydrogen storage alloy electrode
JP3054477B2 (en) * 1991-04-10 2000-06-19 三洋電機株式会社 Hydrogen storage alloy electrode
US5468309A (en) * 1992-09-14 1995-11-21 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy electrodes
US5480740A (en) * 1993-02-22 1996-01-02 Matushita Electric Industrial Co., Ltd. Hydrogen storage alloy and electrode therefrom
US5441826A (en) * 1993-04-28 1995-08-15 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60241652A (en) * 1984-05-16 1985-11-30 Matsushita Electric Ind Co Ltd Electrochemical electrode employing metal hydride

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60241652A (en) * 1984-05-16 1985-11-30 Matsushita Electric Ind Co Ltd Electrochemical electrode employing metal hydride

Also Published As

Publication number Publication date
JPS6448370A (en) 1989-02-22

Similar Documents

Publication Publication Date Title
KR920010422B1 (en) Electrode and method of storage hidrogine
JPH0514017B2 (en)
JP2680669B2 (en) Hydrogen storage alloy electrode for alkaline storage battery
JPH0821379B2 (en) Hydrogen storage electrode
EP0506084B1 (en) A hydrogen storage alloy and an electrode using the same
JP3123049B2 (en) Hydrogen storage alloy electrode
JP3381264B2 (en) Hydrogen storage alloy electrode
JP2595967B2 (en) Hydrogen storage electrode
JPH0650634B2 (en) Hydrogen storage electrode
JPH0953136A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP2579072B2 (en) Hydrogen storage alloy electrode
JPH05287422A (en) Hydrogen occluding alloy electrode
JPH0765833A (en) Hydrogen storage alloy electrode
JPH0650633B2 (en) Hydrogen storage electrode
JP2563638B2 (en) Hydrogen storage alloy electrode
JP2828680B2 (en) Hydrogen storage alloy electrode
JP2715434B2 (en) Hydrogen storage alloy electrode
JPH073365A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP3248762B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPS61168870A (en) Metal-hydrogen alkaline storage battery
JPH0675398B2 (en) Sealed alkaline storage battery
JPH0265060A (en) Hydrogen storage electrode
JP2989356B2 (en) Hydrogen storage alloy electrode
JPH0953135A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH0815079B2 (en) Hydrogen storage electrode

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080629

Year of fee payment: 14