JPH07105230B2 - Hydrogen storage electrode for alkaline storage battery - Google Patents
Hydrogen storage electrode for alkaline storage batteryInfo
- Publication number
- JPH07105230B2 JPH07105230B2 JP1192978A JP19297889A JPH07105230B2 JP H07105230 B2 JPH07105230 B2 JP H07105230B2 JP 1192978 A JP1192978 A JP 1192978A JP 19297889 A JP19297889 A JP 19297889A JP H07105230 B2 JPH07105230 B2 JP H07105230B2
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen storage
- electrode
- storage battery
- alloy
- alkaline
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アルカリ蓄電池の負極として用いられ、水素
を可逆的に吸蔵、放出する水素吸蔵合金から成るアルカ
リ蓄電池用水素吸蔵電極に関する。Description: TECHNICAL FIELD The present invention relates to a hydrogen storage electrode for an alkaline storage battery, which is used as a negative electrode of an alkaline storage battery and is composed of a hydrogen storage alloy that reversibly stores and releases hydrogen.
従来、各種の電気又は電子応用機器の電源として、アル
カリ蓄電池が広く使用されている。該アルカリ蓄電池の
うち、最も広く使用されているのは、ニッケル−カドミ
ウム蓄電池であるが、更に、高エネルギー密度を有し、
無公害の新しい二次電池として、最近、水素を可及的に
吸蔵、放出する水素吸蔵合金を負極として用いるアルカ
リ蓄電池が開発されている。この水素吸蔵電極は、カド
ミウムと同じ取り扱いで電池の電極として構成でき、実
際の放電可能な容量密度をカドミウムよりも大きくでき
ることから、高エネルギー密度で無公害のアルカリ蓄電
池として有望である。この種の水素吸蔵合金電極とし
て、LaNi5合金、LaNi2Co3合金を用いたものは公知であ
る。Conventionally, an alkaline storage battery has been widely used as a power source for various electric or electronic applied devices. Among the alkaline storage batteries, the most widely used is a nickel-cadmium storage battery, which has a high energy density,
As a new pollution-free secondary battery, an alkaline storage battery has recently been developed which uses a hydrogen storage alloy that stores and releases hydrogen as much as possible as a negative electrode. This hydrogen storage electrode can be constructed as a battery electrode in the same manner as cadmium, and the actual dischargeable capacity density can be made larger than that of cadmium, so it is promising as a high energy density and pollution-free alkaline storage battery. As this kind of hydrogen storage alloy electrode, those using LaNi 5 alloy and LaNi 2 Co 3 alloy are known.
上記従来の合金を水素吸蔵合金をアルカリ蓄電池の負極
として用いた場合、サイクル寿命が短い欠点がある。When a hydrogen storage alloy is used as the negative electrode of an alkaline storage battery, the conventional alloy described above has a short cycle life.
〔課題を解決するための手段〕 本発明は、かゝる上記従来のアルカリ蓄電池用水素吸蔵
電極を改善し、サイクル寿命の著しく増大したアルカリ
蓄電池用水素吸蔵電極を提供するもので、一般式LaNiaC
obAcBd(但し、AはAl、Si及びCrから成る群より選択さ
れた少なくとも1種、BはW及びGeから成る群より選択
された少なくとも1種、且つ4.5≦a+b+c+d≦5.
5、0<c≦1.0、0<d≦0.5)で表される水素吸蔵合
金から成るアルカリ蓄電池用水素吸蔵電極。[Means for Solving the Problems] The present invention is to improve the above-mentioned conventional hydrogen storage electrode for an alkaline storage battery and provide a hydrogen storage electrode for an alkaline storage battery having a remarkably increased cycle life. a C
o b A c B d (where A is at least one selected from the group consisting of Al, Si and Cr, B is at least one selected from the group consisting of W and Ge, and 4.5 ≦ a + b + c + d ≦ 5.
5, a hydrogen storage electrode for an alkaline storage battery, comprising a hydrogen storage alloy represented by 0 <c ≦ 1.0, 0 <d ≦ 0.5).
上記の構成を水素吸蔵合金電極をアルカリ蓄電池の負極
として用いるときは、電極の腐食による特性劣化が小さ
く、従って、サイクル寿命の長いアルカリ蓄電池をもた
らす。When the hydrogen storage alloy electrode having the above structure is used as the negative electrode of an alkaline storage battery, deterioration of the characteristics due to corrosion of the electrode is small, and therefore an alkaline storage battery having a long cycle life is provided.
次に、本発明の実施例につき説明する。 Next, examples of the present invention will be described.
市販のLa、Ni、Coの他に、AlとWを選択し、下記第1表
に列挙する夫々の組成成分と組成比で夫々秤量、配合
し、次でアルゴンアーク溶解炉で加熱溶融して21種類の
合金を得た。これらの合金を夫々機械的に32μm以下に
粉砕し、夫々の組成成分と原子数比をもつ各種組成の10
種類の水素吸蔵合金粉末を得た。これら21種類の合金粉
末の夫々について、導電材としてNi粉を20重量%、結着
剤としてフッ素樹脂粉末を5重量%添加し、混合してフ
ッ素樹脂繊維化させた後、粉砕して得られた各混合物
を、ニッケル金網上に均一な厚さに積層し、1t/cm2で加
圧成形し、夫々の水素吸蔵合金電極板を作製した。この
ように得られた21種類の水素吸蔵合金電極板の夫々を負
極とし、これに放電容量が1000mAHの公知の焼結式ニッ
ケル電極板を正極として組み合わせ、アルカリ電解液と
して水酸化カリウム水溶液を用いて21種類の密閉型セル
No.1〜No.21を作製した。これらのセルNo.1〜No.21につ
き、0.2Cの電流で6時間充電した後、0.5Cの電流でセル
電圧が1.0Vになるまで放電するという条件で充放電サイ
クル試験を行い、初期容量の60%までの低下で寿命とす
るサイクル寿命を調べた。セルNo.1〜No.21の各セルの
初期の放電容量(mAH/g)とサイクル寿命(回)を下記
第1表に示した。In addition to commercially available La, Ni and Co, Al and W are selected, weighed and blended in the respective composition components and composition ratios listed in Table 1 below, and then heated and melted in an argon arc melting furnace. 21 kinds of alloys were obtained. Each of these alloys was mechanically pulverized to 32 μm or less, and each composition composition and atomic composition ratio of 10
Two kinds of hydrogen storage alloy powder were obtained. Each of these 21 kinds of alloy powders was obtained by adding 20% by weight of Ni powder as a conductive material and 5% by weight of fluororesin powder as a binder, mixing them to form fluororesin fibers, and then pulverizing them. The respective mixtures were laminated on a nickel wire mesh to a uniform thickness and pressure-molded at 1 t / cm 2 , to produce respective hydrogen storage alloy electrode plates. Each of the 21 types of hydrogen storage alloy electrode plates thus obtained was used as a negative electrode, and a known sintered nickel electrode plate having a discharge capacity of 1000 mAH was combined with this as a positive electrode, and an aqueous potassium hydroxide solution was used as an alkaline electrolyte. 21 types of closed cells
No.1 to No.21 were produced. For these cells No.1 to No.21, charge and discharge cycle test was conducted under the condition that they were charged at 0.2C current for 6 hours and then discharged at 0.5C current until the cell voltage became 1.0V. The cycle life was examined, which was defined as the life at a decrease of up to 60%. The initial discharge capacity (mAH / g) and cycle life (times) of each of cells No. 1 to No. 21 are shown in Table 1 below.
これから明らかなように、本発明の水素吸蔵合金電極板
を使用したセルNo.10〜No.19のサイクル寿命は150回以
上であったに対し、従来の組成をもつ水素合金電極を使
用したセルNo.1〜No.9は、そのサイクル寿命は僅か20〜
60回と著く短い。 As is clear from this, the cycle life of the cells No. 10 to No. 19 using the hydrogen storage alloy electrode plate of the present invention was 150 times or more, whereas the cell using the hydrogen alloy electrode having the conventional composition. No.1 to No.9 have a cycle life of only 20 to
It is as short as 60 times.
即ち、本発明のセルNo.10〜No.19と従来のセルNo.1〜N
o.9と対比し明らかなように、特に、本発明のLa、Ni、C
oにA成分(但、AはAl、Si又はCrから選ばれた少なく
とも一種)とB成分(但、W及びGeから選ばれた少なく
とも一種)を配合して成る水素吸蔵合金から成る電極を
用いたセルを、La、Ni、CoにA成分単独又はB成分単独
を組み込んだ従来の水素吸蔵合金電極を用いたセルNo.1
〜No.9と対比し明らかなように、そのサイクル寿命にお
いて、本発明のセルNo.10〜No.19はサイクル寿命におい
て著しい向上をもたらすことが分かる。That is, the cell No. 10 ~ No. 19 of the present invention and the conventional cell No. 1 ~ N
As is clear by comparison with o.9, in particular, La, Ni, C of the present invention
Use an electrode made of a hydrogen storage alloy composed of o component A (where A is at least one selected from Al, Si or Cr) and component B (where at least one selected from W and Ge). Cell No. 1 using a conventional hydrogen storage alloy electrode in which A component alone or B component alone was incorporated into La, Ni, Co
As is clear from comparison with No. 9 to No. 9, it can be seen that the cells No. 10 to No. 19 of the present invention bring about a remarkable improvement in cycle life in their cycle life.
しかし、これら本発明の上記の水素吸蔵合金電極は、そ
の組成式LiNiaCobAlcWdにおいて、そのcの値が1を越
える場合(対照セルNo.20)、或いは、そのdの値が0.5
を越える場合(対照セルNo.21)は、サイクル寿命の充
分な向上が得られないことが分かる。即ち、セルNo.10
〜No.19から明らかなように、cの値が0<c≦1、d
の値が0<d≦0.5の範囲においてサイクル寿命の著し
い改善が得られることが分かる。However, these hydrogen storage alloy electrodes of the present invention have a composition formula LiNi a Co b Al c W d when the value of c exceeds 1 (control cell No. 20) or the value of d thereof. Is 0.5
It can be seen that when the value exceeds the range (control cell No. 21), the cycle life cannot be sufficiently improved. That is, cell No. 10
As is clear from No. 19, the value of c is 0 <c ≦ 1, d
It can be seen that a significant improvement in cycle life is obtained when the value of is within the range of 0 <d ≦ 0.5.
尚、更に多くの試験研究を重ねた結果、Alの代わりにSi
又はCrを単独又は併用で使用した場合も、Alを使用した
場合と同様に0<c≦1.0の範囲で有効であった。In addition, as a result of repeating more test studies, instead of Al, Si
Also, when Cr was used alone or in combination, it was effective in the range of 0 <c ≦ 1.0 as in the case of using Al.
又、Wの代わりにGe単独又は併用して使用しても、Wを
使用した場合と同様の効果が得られることが分かった。
この場合もWと同様に0<d≦0.5の範囲で有効であっ
た。It was also found that the same effect as when W is used can be obtained by using Ge alone or in combination with W instead of W.
Also in this case, like W, it was effective in the range of 0 <d ≦ 0.5.
従って、本発明では、Al、Si、Crを総括した群をAで表
示し、WとGeを総括した群をBで表示すると、本発明の
吸蔵合金電極として用いて、特に、サイクル寿命の著し
い向上を得る水素吸蔵合金の組成は、一般式LaNiaCobAc
Bdの一般式で表され、この場合、そのAはAl、Si及びCr
から成る群から選ばれた少なくとも1種であり、BはW
及びGeから成る群から選ばれた少なくとも1種であり、
0<c≦1、0<d≦0.5の範囲であると特定される。
更に、本発明の上記組成の水素吸蔵合金につき検討して
みた所、前記の組成式LaNiaCobAcBdで示される合金は、
CaCu5型の六方晶構造を持ち、この六方晶構造を持つ合
金では化学量論的にCD5(但し、Cは上記組成式でLa
を、又、DはNi−Co−A−B合金を表す)から若干ずれ
た組成でも六方晶構造を維持するが、Dの組成比が±10
%より大きくずれるとこの構造を保てず、水素吸蔵合金
としての特性が損なわれることが分かった。よって、上
記組成式において、4.5≦a+b+c+d≦5.5の範囲と
する必要がある。Therefore, in the present invention, when the group summarizing Al, Si, and Cr is represented by A and the group summarizing W and Ge is represented by B, it is used as the storage alloy electrode of the present invention, and particularly, the cycle life is remarkable. The composition of the hydrogen storage alloy to obtain the improvement is represented by the general formula LaNi a Co b A c
It is represented by the general formula of B d , where A is Al, Si and Cr.
Is at least one selected from the group consisting of
And at least one selected from the group consisting of Ge,
It is specified that the range is 0 <c ≦ 1 and 0 <d ≦ 0.5.
Furthermore, when the hydrogen storage alloy having the above composition of the present invention was examined, the alloy represented by the above composition formula LaNi a Co b A c B d was
It has a CaCu 5 type hexagonal crystal structure, and an alloy having this hexagonal crystal structure is stoichiometrically CD 5 (where C is La in the above composition formula).
, And D represents a Ni-Co-AB alloy), but the hexagonal structure is maintained even if the composition is slightly deviated, but the composition ratio of D is ± 10
It has been found that if it deviates more than%, this structure cannot be maintained and the characteristics as a hydrogen storage alloy are impaired. Therefore, in the above composition formula, it is necessary to satisfy the range of 4.5 ≦ a + b + c + d ≦ 5.5.
このように本発明によるときは、LaNiaCobAcBdなる一般
組成式(但し、Aは、Al、Si及びCrから成る群より選択
された少なくとも1種、Bは、W及びGeから成る群より
選択された少なくとも1種、且つ4.5≦a+b+c+d
≦5.5、0<c≦1.0、0<d≦0.5)で表される合金
を、アルカリ蓄電池の負極として用いるときは、従来の
LaNi又はLaNi2Co3に比し電池のサイクル寿命を向上し得
る効果を有する。Thus, according to the present invention, the general composition formula LaNi a Co b A c B d (where A is at least one selected from the group consisting of Al, Si and Cr, B is W and Ge) At least one selected from the group consisting of, and 4.5 ≦ a + b + c + d
When an alloy represented by ≦ 5.5, 0 <c ≦ 1.0, 0 <d ≦ 0.5) is used as a negative electrode of an alkaline storage battery,
Compared with LaNi or LaNi 2 Co 3, it has the effect of improving the cycle life of the battery.
Claims (1)
及びCrから成る群より選択された少なくとも1種、B
は、W及びGeから成る群より選択された少なくとも1
種、且つ4.5≦a+b+c+d≦5.5、0<c≦1.0、0
<d≦0.5)で表される水素吸蔵合金から成るアルカリ
蓄電池用水素吸蔵電極。1. A general formula LaNi a Co b A c B d (where A is Al, Si
And at least one selected from the group consisting of Cr and B,
Is at least 1 selected from the group consisting of W and Ge
Seed and 4.5 ≦ a + b + c + d ≦ 5.5, 0 <c ≦ 1.0, 0
A hydrogen storage electrode for an alkaline storage battery, comprising a hydrogen storage alloy represented by <d ≦ 0.5).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1192978A JPH07105230B2 (en) | 1989-07-26 | 1989-07-26 | Hydrogen storage electrode for alkaline storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1192978A JPH07105230B2 (en) | 1989-07-26 | 1989-07-26 | Hydrogen storage electrode for alkaline storage battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0357157A JPH0357157A (en) | 1991-03-12 |
JPH07105230B2 true JPH07105230B2 (en) | 1995-11-13 |
Family
ID=16300204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1192978A Expired - Lifetime JPH07105230B2 (en) | 1989-07-26 | 1989-07-26 | Hydrogen storage electrode for alkaline storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07105230B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005013311A1 (en) * | 2005-03-22 | 2006-10-05 | Federal-Mogul Sealing Systems Gmbh | Shielding element for motor vehicles |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6089066A (en) * | 1983-10-21 | 1985-05-18 | エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン | Electrochemical cell |
JPS62259344A (en) * | 1986-05-02 | 1987-11-11 | Sanyo Electric Co Ltd | Hydrogen absorbing electrode |
-
1989
- 1989-07-26 JP JP1192978A patent/JPH07105230B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6089066A (en) * | 1983-10-21 | 1985-05-18 | エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン | Electrochemical cell |
JPS62259344A (en) * | 1986-05-02 | 1987-11-11 | Sanyo Electric Co Ltd | Hydrogen absorbing electrode |
Also Published As
Publication number | Publication date |
---|---|
JPH0357157A (en) | 1991-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2771592B2 (en) | Hydrogen storage alloy electrode for alkaline storage batteries | |
JPS60241652A (en) | Electrochemical electrode employing metal hydride | |
JP3123049B2 (en) | Hydrogen storage alloy electrode | |
JP2595967B2 (en) | Hydrogen storage electrode | |
JPH0448042A (en) | Hydrogen occluding electrode | |
JP2004285406A (en) | Hydrogen storage alloy and electrode for nickel-hydrogen battery using the same | |
JPH07105230B2 (en) | Hydrogen storage electrode for alkaline storage battery | |
JPH0953136A (en) | Hydrogen storage alloy and hydrogen storage alloy electrode | |
JPS62271349A (en) | Hydrogen occlusion electrode | |
JPS62249358A (en) | Hydrogen storage electrode | |
JPH0750605B2 (en) | Hydrogen storage electrode for alkaline storage battery | |
JPH0569889B2 (en) | ||
JP2715434B2 (en) | Hydrogen storage alloy electrode | |
JPH0567694B2 (en) | ||
JP2680566B2 (en) | Hydrogen storage electrode | |
JPS61168870A (en) | Metal-hydrogen alkaline storage battery | |
JPH04187733A (en) | Hydrogen storage alloy electrode | |
JPH04301045A (en) | Hydrogen storage alloy electrode | |
JPH08148179A (en) | Nickel-hydrogen storage battery | |
JPH0797497B2 (en) | Hydrogen storage electrode | |
JPH0953137A (en) | Hydrogen storage alloy and hydrogen storage alloy electrode | |
JPS62259344A (en) | Hydrogen absorbing electrode | |
JPH05190173A (en) | Hydrogen storage electrode | |
JP3729913B2 (en) | Hydrogen storage alloy electrode | |
JP3082341B2 (en) | Hydrogen storage electrode |