[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0513886A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPH0513886A
JPH0513886A JP3167245A JP16724591A JPH0513886A JP H0513886 A JPH0513886 A JP H0513886A JP 3167245 A JP3167245 A JP 3167245A JP 16724591 A JP16724591 A JP 16724591A JP H0513886 A JPH0513886 A JP H0513886A
Authority
JP
Japan
Prior art keywords
mask
diffraction grating
pattern
exposure
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3167245A
Other languages
Japanese (ja)
Inventor
Toshio Nishida
敏夫 西田
Toshiaki Tamamura
敏昭 玉村
Yoshio Kawai
義夫 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3167245A priority Critical patent/JPH0513886A/en
Publication of JPH0513886A publication Critical patent/JPH0513886A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Semiconductor Lasers (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE:To easily obtain a semiconductor laser having an excellent pattern accuracy by forming a pattern of a diffraction grating by using a contraction projecting exposure having an ultraviolet ray as a light source and a phase shift mask. CONSTITUTION:A pattern shape of a resist 21 of a predetermined diffraction grating is obtained on a semiconductor laser substrate 20 by 1/5 contraction exposure by using a phase shift mask C1 and an i-type beam stepper. Then, a connecting error of connecting parts of the respective patterns becomes 0.25% or less of a period of the grating. Since this process uses a projecting exposure with ultraviolet ray, its throughput is high, and no damage of the substrate and the mask is observed. The mask pattern forming process is faster as compared with a photomask method. Thus, when a submicron diffraction grating is manufactured by a contraction-exposure by using the ultraviolet ray exposure method and the phase shift mask and its periodic uniformity can be improved, and improvements in resolution and throughput can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体レーザーの作製方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor laser.

【0002】[0002]

【従来の技術】従来、周期がサブミクロン、特に500
nm以下の回折格子形成する場合、中でも分布帰還型半
導体レーザー(DFB−LD)や分布ブラッグミラー型
半導体レーザー(DBR−LD)では通常のフォトリソ
グラフィーの解像度が不十分であったため、紫外線レー
ザー光源による干渉露光法(T.Matsuoka et al. Electro
n. Lett., vol.18, pp.27, 1982.参照)やフォトマスク
法(M.Okaiet al. Appl.Phys. Lett., vol.55, pp.415,
1989.参照)、EB露光法(A.S.Gozdz etal. Electron Le
tt., vo124, pp.123, 1988.参照)、X線露光法(T.Nishi
da et al. Japanese Journal of Applied Physics, vo
l.28, pp.2333, 1989.参照)が用いられてきた。しかし
ながらこれらの方法では以下に述べるような困難があっ
た。このような光素子では均一な周期の回折格子の長さ
によって、発光スペクトル幅を狭くすることが出来るた
めに、周期が高精度で長い回折格子を高いスループット
で形成することが重要である。
2. Description of the Related Art Conventionally, the period is submicron, especially 500.
In the case of forming a diffraction grating of nm or less, a distributed feedback semiconductor laser (DFB-LD) or a distributed Bragg mirror semiconductor laser (DBR-LD) has insufficient resolution in ordinary photolithography. Interferometric exposure method (T. Matsuoka et al. Electro
n. Lett., vol.18, pp.27, 1982.) and photomask method (M.Okai et al. Appl.Phys. Lett., vol.55, pp.415,
1989.), EB exposure method (ASGozdz et al. Electron Le
tt., vo124, pp.123, 1988.), X-ray exposure method (T. Nishi
da et al. Japanese Journal of Applied Physics, vo
l.28, pp.2333, 1989.) has been used. However, these methods have the following problems. In such an optical element, since the emission spectrum width can be narrowed by the length of the diffraction grating having a uniform period, it is important to form a diffraction grating having a high period with high accuracy and high throughput.

【0003】[0003]

【発明が解決しようとする課題】可干渉な2つの光線
(2光束)を用いる干渉露光法(図6)では、基板上の
レジストにおける位置に対する露光強度分布が正弦関数
となるため、パターンエッジ部分でのコントラストが低
かった。このため光素子基板にウェット・エッチング法
によってパターン転写をする場合、回折格子パターンの
ライン・アンド・スペース(L/S)を制御することが
困難となる。このようなL/Sの不均一性は、マイクロ
・ローディング効果APCT89(T.Nishida et al. In
ternationalMeeting on Advanced Processing Characer
ization Technologies 1989. P-20.参照)によって、光
素子内部の回折格子形状の不均一、ひいては光素子内部
の回折効率の不均一を生じるために、良好な素子特性を
得ることは困難であった。また光素子基板にドライエッ
チング法によって転写する場合は、現像後のレジストパ
ターン形状が、露光強度分布を反映して、パターンエッ
ジ部でレジスト膜厚が減少するため(図7)に、ドライ
エッチング中のレジスト膜減りでレジストが消失し、良
好なパターン形成が不可能であった。更に、DFB−L
Dでは、回折格子パターンの中央部分に、発振波長の1
/4周期の位相シフト(λ/4シフト)即ち回折格子の
周期の1/2の位相シフトを導入することによって、D
FB−LDの単一縦モード発振(SLM)の確率を飛躍
的に向上できるが(H.A.Haus et al. IEEE J Quantum El
ectonics QE-12, pp.532, 1976.参照)、このような回折
格子の位相シフトを干渉露光法で実現するためには、例
えば文献(Utaka, et al. Electron. Lett., vol.20, p
p.1008, 1984.)に示すような、マスクを基板上に位置せ
しめることが必要であった。しかしながら干渉露光法は
露光分布が正弦関数であるため、適正露光量の余裕が小
さく、このような方法は著しく再現性の低いものであっ
た。更に、回折格子周期が少しずつ異なった複数の回折
格子アレイを形成する際には、干渉させる2光束の位置
を微妙に変えることが必要となり、光束の位置変化に伴
う強度変化を、適正露光量の範囲内に補正することは困
難であった。
In the interference exposure method (FIG. 6) using two coherent light rays (two light fluxes), the exposure intensity distribution with respect to the position on the resist on the substrate has a sine function, so that the pattern edge portion The contrast was low. Therefore, when the pattern is transferred to the optical element substrate by the wet etching method, it becomes difficult to control the line and space (L / S) of the diffraction grating pattern. Such L / S heterogeneity is caused by the micro loading effect APCT89 (T. Nishida et al. In.
ternationalMeeting on Advanced Processing Characer
ization Technologies 1989. P-20.), it was difficult to obtain good device characteristics because the diffraction grating shape inside the optical element was non-uniform, and the diffraction efficiency inside the optical element was also non-uniform. .. Also, when transferring to the optical element substrate by the dry etching method, the resist pattern shape after development reflects the exposure intensity distribution and the resist film thickness decreases at the pattern edge portion (FIG. 7). The resist film disappeared due to the decrease in the resist film, and good pattern formation was impossible. Furthermore, DFB-L
In D, at the center of the diffraction grating pattern,
By introducing a phase shift of / 4 period (λ / 4 shift), that is, a phase shift of 1/2 of the period of the diffraction grating,
Although the probability of single longitudinal mode oscillation (SLM) of FB-LD can be dramatically improved (HAHaus et al. IEEE J Quantum El
ectonics QE-12, pp.532, 1976.), in order to realize such a phase shift of the diffraction grating by the interference exposure method, for example, in the literature (Utaka, et al. Electron. Lett., vol. 20, p
It was necessary to position the mask on the substrate as shown in p.1008, 1984.). However, since the interference exposure method has a sinusoidal exposure distribution, the margin of the proper exposure amount is small, and such a method has remarkably low reproducibility. Furthermore, when forming a plurality of diffraction grating arrays with slightly different diffraction grating periods, it is necessary to delicately change the positions of the two light beams to be interfered with each other. It was difficult to correct within the range.

【0004】フォトマスク法では、解像度は干渉露光法
よりも向上するものの、マスクの回折格子パターンは、
ダイヤモンドペンを機械制御で走査し線を1本1本削る
ために、マスク作製時間が著しく長いこと、また密着露
光であるためにマスクの損傷が大きくマスク寿命が短い
という欠点があった。
In the photomask method, the resolution is improved as compared with the interference exposure method, but the diffraction grating pattern of the mask is
The diamond pen is mechanically controlled to scan and cut each line one by one, so that the mask manufacturing time is extremely long, and the contact exposure causes serious damage to the mask and a short mask life.

【0005】EB露光では、解像度が非常に高くまたパ
ターン形状の自由度が大きく、以前に問題であった露光
速度も近年大幅に改善された。しかしながら電子光学系
は通常の光学系に比較して収差が大きいので、回折格子
の位相誤差を10%(例えば1.55μmDFB−LD
用回折格子の場合、10nm)以内に抑えつつサブミク
ロン描画を行うには、ステージ移動によるパターン繋ぎ
精度が不十分なため、可能な回折格子領域長は1mm程
度に滞まっている。
In the EB exposure, the resolution is very high and the degree of freedom of the pattern shape is large, and the exposure speed, which was a problem before, has been greatly improved in recent years. However, since the electron optical system has a larger aberration than the ordinary optical system, the phase error of the diffraction grating is 10% (for example, 1.55 μm DFB-LD).
In the case of the diffraction grating for use, the accuracy of pattern connection by the movement of the stage is insufficient to perform submicron writing while keeping the diffraction grating within 10 nm, and thus the possible diffraction grating region length remains around 1 mm.

【0006】またX線露光法では、軌道放射光のような
平行性の高い光源を用いれば、0.1μm以下の高解像
度も可能であり、マスクはEB露光によりパターン形成
するので、パターン形状の自由度も高いが、現在のとこ
ろ1対1の等倍露光であるために、マスク描画のEB露
光におけるパターン領域長の制限は同様である。
Further, in the X-ray exposure method, if a highly parallel light source such as orbital radiation is used, a high resolution of 0.1 μm or less is possible, and the mask is patterned by EB exposure. Although the degree of freedom is also high, at present, since the 1: 1 equal-magnification exposure is performed, the limitation of the pattern area length in the EB exposure for mask drawing is similar.

【0007】通常の位相シフトマスク法では0.2μm
以下のパターンを形成するのは困難であるが、これは通
常のLSIプロセスがレジスト膜厚1μmを前提として
いるためであり、回折格子の凹凸の形状が浅い光素子に
おいてはレジスト膜厚を減少してコントラストを向上す
ることが出来る。従って上記の問題点は後述するように
本発明を用いることにより解消される。
0.2 μm in the normal phase shift mask method
Although it is difficult to form the following pattern, this is because the usual LSI process presupposes that the resist film thickness is 1 μm, and the resist film thickness is reduced in an optical element where the unevenness of the diffraction grating is shallow. The contrast can be improved. Therefore, the above problems can be solved by using the present invention as described later.

【0008】本発明は容易かつパターン精度の優れた半
導体レーザーの作製方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a semiconductor laser which is easy and has excellent pattern accuracy.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明の半導体レーザーの作製方法は、回折格子を
有する方法であって、前記回折格子のパターンを、紫外
線を光源とする縮小投影露光と位相シフトマスクを用い
て形成する事を特徴としている。
In order to achieve the above object, a method of manufacturing a semiconductor laser according to the present invention is a method having a diffraction grating, wherein the pattern of the diffraction grating is reduced projection using an ultraviolet ray as a light source. The feature is that it is formed using exposure and a phase shift mask.

【0010】[0010]

【作用】本発明の半導体レーザーの作製方法によれば、
位相シフトマスクを用いて短波長の紫外線光源と解像度
を向上し、回折格子レジストパターンを形成している。
According to the method of manufacturing a semiconductor laser of the present invention,
A phase shift mask is used to improve the resolution with an ultraviolet light source having a short wavelength, and a diffraction grating resist pattern is formed.

【0011】[0011]

【実施例】以上のところで記述した本発明の実施例を、
2次回折格子を有するInGaAa/InP 1.55
μm 分布帰還型半導体レーザー(以下DFB−LDと
する)の場合を例に採って述べる。
EXAMPLES Examples of the present invention described above are
InGaAa / InP 1.55 with secondary diffraction grating
A case of a μm distributed feedback semiconductor laser (hereinafter referred to as DFB-LD) will be described as an example.

【0012】実施例1(2次回折格子への適用例) 図1は、位相シフトマスクとしてレベンソン型(「日経
マイクロデバイス」1991.5.p54に紹介記事掲載)を用い
た例を示す。最初にEB露光法により、マスク用ガラス
基板5(Cr膜付)上にEBレジスト(CMS、トーソ
ー製)を塗布したものに、周期12.4μm、L/S=
1/1、の回折格子を、1mmごとに途中74回、精度
50nm即ち周期に対して0.4%で繰り返してパター
ンをつなぎ、全長75mmの回折格子パターンを形成し
た。また、中央部にはλ/4シフト即ち回折格子周期の
1/2の位相シフト4を設けた。このようにEB露光で
形成したレジストパターンをCrエッチング液によりC
r膜に転写しマスクA31を形成した。マスクA31の
パターンはg線ステッパを用いて1/5の縮小露光によ
りCr膜上に紫外線フォトレジストを塗布した基板Cに
転写し、周期2.48μm、回折格子領域長15mmの
回折格子のCrパターンのマスクCを得た。このマスク
CにAl23を10nm、SiO2を100nmマグネ
トロンスパッタ法で形成した後、紫外線フォトレジスト
を塗布した。
Example 1 (Example of Application to Second-Order Diffraction Grating) FIG. 1 shows an example using a Levenson type (introduced article in "Nikkei Microdevice" 1991.5.p54) as a phase shift mask. First, a mask glass substrate 5 (with a Cr film) coated with an EB resist (CMS, manufactured by Tosoh) by an EB exposure method was used, and the period was 12.4 μm and L / S =
The 1/1 diffraction grating was repeated 74 times every 1 mm with an accuracy of 50 nm, that is, 0.4% with respect to the period, to connect the patterns to form a diffraction grating pattern having a total length of 75 mm. Further, a λ / 4 shift, that is, a phase shift 4 which is ½ of the diffraction grating period is provided in the central portion. The resist pattern thus formed by EB exposure is subjected to C by a Cr etching solution.
It was transferred to the r film to form a mask A31. The pattern of the mask A31 is transferred to the substrate C in which the Cr film is coated with the ultraviolet photoresist by the 1/5 reduction exposure using the g-line stepper, and the Cr pattern of the diffraction grating having a period of 2.48 μm and a diffraction grating region length of 15 mm. A mask C was obtained. Al 2 O 3 of 10 nm and SiO 2 of 100 nm were formed on this mask C by a magnetron sputtering method, and then an ultraviolet photoresist was applied.

【0013】次にEB露光により、マスク用ガラス基板
5(Cr膜及びEBレジスト付)上に、マスクAのCr
パターンのスペースに2周期毎に重なる位置に、周期2
4.8μm、L/S=2.5/1.5、の回折格子を、
第1回目の露光と同様に1mmごとに途中74回、精度
50nm即ち周期に対して0.8%で繰り返してパター
ンをつなぎ、全長75mmの回折格子パターンを形成し
た。また、中央部にはλ/4シフト即ち2次回折格子周
期の1/8位相シフト4を設けた。このようにEB露光
で形成したレジストパターンをCrエッチング液により
Cr膜に転写しマスクB32を形成した。マスクB32
のパターンはg線ステッパを用いて1/5の縮小露光に
よりマスクCに転写し、マスクCのCrパターン2周期
毎に、Crパターンのスペースとレジストパターンのス
ペースが重なるマスクC得た。このようにEB露光でレ
ジストパターンを形成したマスクCのSiO2膜を緩衝
弗酸液により(もしくはC2 F6 ガスを用いた反応性イ
オンエッチング法を利用してもよい)でエッチングし位
相シフトマスクC1を形成した。この時、Al23膜が
SiO2膜のエッチングストッパーになっている。
Then, by EB exposure, the Cr of the mask A is formed on the mask glass substrate 5 (with the Cr film and the EB resist).
Cycle 2 is placed at a position that overlaps the pattern space every 2 cycles.
A diffraction grating of 4.8 μm, L / S = 2.5 / 1.5,
Similar to the first exposure, the pattern was connected 74 times every 1 mm with an accuracy of 50 nm, that is, 0.8% with respect to the period, to form a diffraction grating pattern having a total length of 75 mm. Further, a λ / 4 shift, that is, a 1/8 phase shift 4 of the second-order diffraction grating period is provided in the central portion. The resist pattern thus formed by EB exposure was transferred to a Cr film with a Cr etching solution to form a mask B32. Mask B32
Was transferred to the mask C by a 1/5 reduction exposure using a g-line stepper, and a mask C in which the space of the Cr pattern and the space of the resist pattern overlap each other every two cycles of the Cr pattern of the mask C was obtained. The SiO 2 film of the mask C on which the resist pattern has been formed by the EB exposure is etched with a buffered hydrofluoric acid solution (or a reactive ion etching method using C 2 F 6 gas may be used) to shift the phase shift mask C 1 Formed. At this time, the Al 2 O 3 film serves as an etching stopper for the SiO 2 film.

【0014】半導体レーザー基板20として、n−In
P(Snドープ)<001>基板上に、MOCVD法に
よりInGaAsP活性層(λ=1.55μm、厚さ
0.12μm)続いてInGaAsPガイド層(λ=
1.3μm、厚さ0.15μm)を形成した基板を用
い、これに紫外線レジストPFI−15(住友化学工業
製)を厚さ100nm塗布した。
As the semiconductor laser substrate 20, n-In
On a P (Sn-doped) <001> substrate, an InGaAsP active layer (λ = 1.55 μm, thickness 0.12 μm) and an InGaAsP guide layer (λ =
Using a substrate having a thickness of 1.3 μm and a thickness of 0.15 μm), an ultraviolet resist PFI-15 (manufactured by Sumitomo Chemical Co., Ltd.) was applied to a thickness of 100 nm.

【0015】この半導体レーザー基板20に、位相シフ
トマスクC1とi線ステッパーを用い、1/5縮小露光
を行ったところ、図2に示すような周期496nm、回
折格子領域長3mmの回折格子のレジスト21のパター
ン形状が得られ、また各パターンつなぎ部分のつなぎ誤
差は、回折格子周期の0.25%以下であった。またこ
のプロセスは、紫外線の投影露光であるために、スルー
プットが高く、また基板やマスクの損傷も見られなかっ
た。またマスクパターン形成プロセスもフォトマスク法
に比較すると非常に早かった。
This semiconductor laser substrate 20 was subjected to ⅕ reduction exposure using a phase shift mask C1 and an i-line stepper, and as shown in FIG. 2, a diffraction grating resist having a period of 496 nm and a diffraction grating region length of 3 mm. 21 pattern shapes were obtained, and the connection error of each pattern connection portion was 0.25% or less of the diffraction grating period. Moreover, since this process is projection exposure of ultraviolet rays, the throughput was high, and no damage to the substrate or the mask was observed. Also, the mask pattern forming process was much faster than the photomask method.

【0016】このInP基板を、飽和臭素水:臭化水素
酸:水=1:10:40(T.Matsuoka and H.Nagai,“I
nP Echant for Submicron Patterns"J.Electrochem.So
c,vol.133,2485(1986)に記載のエッチング液)で8秒間
エッチングし回折格子形状を形成した後、レジストを剥
離し、MOCVD法でp−InPクラッド層を形成し、
共振器ストライブをウェットエッチングにより形成した
後、液相成長により選択埋め込み成長を行い、埋め込み
ヘテロ構造DFB−LDを作製した(図3)。共振器長
3mm、共振器幅1.5μm、で両面無反射コーティン
グを施したところ、閾値電流Ith=55mA、注入電
流1.9Ithで、単一縦モードの発振スペクトル幅5
0kHzを得た。
This InP substrate was treated with saturated bromine water: hydrobromic acid: water = 1: 10: 40 (T. Matsuoka and H. Nagai, “I.
nP Echant for Submicron Patterns "J.Electrochem.So
c, vol.133, 2485 (1986) etching solution) for 8 seconds to form a diffraction grating shape, and then the resist is peeled off to form a p-InP clad layer by MOCVD.
After forming the resonator stripe by wet etching, selective buried growth was performed by liquid phase growth to fabricate a buried hetero structure DFB-LD (FIG. 3). When a double-sided antireflection coating was applied with a cavity length of 3 mm and a cavity width of 1.5 μm, a threshold current Ith = 55 mA, an injection current 1.9 Ith, and an oscillation spectrum width of a single longitudinal mode 5
0 kHz was obtained.

【0017】次に本発明の実施例を、1次回折格子を有
するInGaAs/InP 1.55μm分布帰還型半
導体レーザー(以下DFB−LDとする)の場合を例に
採って述べる。
Next, an embodiment of the present invention will be described by taking the case of an InGaAs / InP 1.55 μm distributed feedback semiconductor laser (hereinafter referred to as DFB-LD) having a first-order diffraction grating as an example.

【0018】実施例2(1次回折格子への応用例) 最初にEB露光法により、マスク用ガラス基板(Cr膜
付)上にEBレジスト(CMS、トーソー製)を塗布し
たものに、周期6.2μm、L/S=1/1、の回折格
子を、1mmごとに途中74回、精度50nm即ち周期
に対して0.8%で繰り返してパターンをつなぎ、全長
75mmの回折格子パターンを形成した。また、中央部
にはλ/4シフト(即ち回折格子周期の1/2の位相シ
フト)を設けた。このようにEB露光で形成したレジス
トパターンをCrエッチング液によりCr膜に転写しマ
スクAを形成した。マスクAのパターンはg線ステッパ
を用いて1/5の縮小露光によりCr膜上に紫外線フォ
トレジストを塗布した基板Cに転写し、周期1.24μ
m、回折格子領域長15mmの回折格子のCrパターン
のマスクCを得た。このマスクCにAl23を10n
m、SiO2を100nmマグネトロンスパッタ法で形
成した後、紫外線フォトレジストを塗布した。
Example 2 (Application Example to First-Order Diffraction Grating) First, a glass substrate for a mask (with a Cr film) coated with an EB resist (CMS, manufactured by Tosoh Co., Ltd.) by the EB exposure method was applied to a period 6 A diffraction grating having a total length of 75 mm was formed by repeating a diffraction grating of 0.2 μm and L / S = 1/1 74 times every 1 mm with an accuracy of 50 nm, that is, 0.8% with respect to the period. .. Further, a λ / 4 shift (that is, a phase shift of ½ of the diffraction grating period) is provided in the central portion. The resist pattern thus formed by EB exposure was transferred to a Cr film with a Cr etching solution to form a mask A. The pattern of the mask A is transferred to the substrate C having the Cr film coated with the ultraviolet photoresist by the 1/5 reduction exposure using the g-line stepper, and the period is 1.24 μ.
A mask C having a diffraction grating Cr pattern of m and a diffraction grating region length of 15 mm was obtained. Al 2 O 3 10n is applied to this mask C.
m and SiO 2 were formed by a 100 nm magnetron sputtering method, and then an ultraviolet photoresist was applied.

【0019】次にEB露光により、マスク用ガラス基板
(Cr膜及びEBレジスト付)上に、マスクAのCrパ
ターンのスペースに2周期毎に重なる位置に、周期1
2.4μm、L/S=2.5/1.5、の回折格子を、
第1回目の露光と同様に1mmごとに途中74回、精度
50nm即ち周期に対して0.8%で繰り返してパター
ンをつなぎ、全長75mmの回折格子パターンを形成し
た。また、中央部にはλ/4シフト即ち回折格子周期の
1/4位相シフトを設けた。このようにEB露光で形成
したレジストパターンをCrエッチング液によりCr膜
に転写しマスクBを形成した。マスクBのパターンはg
線ステッパを用いて1/5の縮小露光によりマスクCに
転写し、マスクC上のCrパターン2周期毎に、Crパ
ターンのスペースとレジストパターンのスペースが重な
るマスクC得た。このようにEB露光でレジストパター
ンを形成したマスクCのSiO2膜を緩衝弗酸液により
(もしくはC26ガスを用いた反応性イオンエッチング
法により)エッチングし位相シフトマスクCを形成し
た。
Next, by EB exposure, a period of 1 cycle is provided on the mask glass substrate (with a Cr film and an EB resist) so as to overlap with the space of the Cr pattern of the mask A every 2 cycles.
A diffraction grating of 2.4 μm, L / S = 2.5 / 1.5,
Similar to the first exposure, the pattern was connected 74 times every 1 mm with an accuracy of 50 nm, that is, 0.8% with respect to the period, to form a diffraction grating pattern having a total length of 75 mm. Further, a λ / 4 shift, that is, a ¼ phase shift of the diffraction grating period is provided in the central portion. The resist pattern thus formed by EB exposure was transferred to a Cr film with a Cr etching solution to form a mask B. The pattern of mask B is g
Transferring to the mask C by 1/5 reduction exposure using a line stepper, a mask C in which the space of the Cr pattern and the space of the resist pattern overlap every two cycles of the Cr pattern on the mask C was obtained. Thus, the SiO 2 film of the mask C on which the resist pattern was formed by EB exposure was etched by a buffered hydrofluoric acid solution (or by a reactive ion etching method using C 2 F 6 gas) to form a phase shift mask C.

【0020】半導体レーザー基板20として、n−In
P(Snドープ)<001>基板上に、MOCVD法に
よりInGaAsP活性層(λ=1.55μm、厚さ
0.12μm)続いてInGaAsPガイド層(λ=
1.3μm、厚さ0.15μm)を形成した基板を用
い、これに紫外線レジストsal−601を厚さ100
nm塗布した。
As the semiconductor laser substrate 20, n-In
On a P (Sn-doped) <001> substrate, an InGaAsP active layer (λ = 1.55 μm, thickness 0.12 μm) and an InGaAsP guide layer (λ =
1.3 μm, thickness 0.15 μm) is formed on the substrate, and an ultraviolet resist sal-601 having a thickness of 100 is used.
nm coating.

【0021】この半導体レーザー基板20に、位相シフ
トマスクCとKrFエキシマレーザー光源を用い、1/
5縮小露光を行ったところ、通常の紫外線光源に比べ
て、波長の短いエキシマレーザ光源を用いたことで、2
48nmと周期の短い図4示すような周期248nm、
回折格子領域長3mmの回折格子のレジスト21のパタ
ーン形状が得られ、また各パターンつなぎ部分のつなぎ
誤差は、回折格子周期の0.5%以下であった。またこ
のプロセスは、紫外線の投影露光であるために、スルー
プットが高く、また基板やマスクの損傷も見られなかっ
た。またマスクパターン形成プロセスもフォトマスク法
に比較すると非常に早かった。
On this semiconductor laser substrate 20, a phase shift mask C and a KrF excimer laser light source are used.
5 When reduction exposure was performed, the use of an excimer laser light source with a wavelength shorter than that of an ordinary ultraviolet light source resulted in 2
As shown in FIG. 4, which has a short cycle of 48 nm, the cycle is 248 nm,
The pattern shape of the resist 21 of the diffraction grating having a diffraction grating region length of 3 mm was obtained, and the connection error of each pattern connection portion was 0.5% or less of the diffraction grating period. Moreover, since this process is projection exposure of ultraviolet rays, the throughput was high, and no damage to the substrate or the mask was observed. Also, the mask pattern forming process was much faster than the photomask method.

【0022】このInP基板を、飽和臭素水:臭化水素
酸:水=1:10:40(T.Matsuoka and H.Nagai,“I
nP Echant for Submicron Patterns"J.Electrochem.So
c,vol.133,2485(1986)に記載のエッチング液)で2秒間
エッチングし回折格子形状を形成した後、レジストを剥
離し、MOCVD法でp−InPクラッド層を形成し、
共振器ストライプをウェットエッチングにより形成した
後、液相成長により選択埋め込み成長を行い、埋め込み
ヘテロ構造DFB−LDを作製した(図5)。共振器長
3mm、共振器幅1.5μm、で両面無反射コーティン
グを施したところ、閾値電流Ith=40mA、注入電
流1.9Ithで、単一縦モードの発振スペクトル幅3
0kHzを得た。
This InP substrate was treated with saturated bromine water: hydrobromic acid: water = 1: 10: 40 (T. Matsuoka and H. Nagai, “I.
nP Echant for Submicron Patterns "J.Electrochem.So
c, vol.133,2485 (1986)) to form a diffraction grating shape by etching for 2 seconds, then the resist is peeled off, a p-InP clad layer is formed by the MOCVD method,
After forming the resonator stripe by wet etching, selective buried growth was performed by liquid phase growth to fabricate a buried hetero structure DFB-LD (FIG. 5). When a double-sided antireflection coating was applied with a cavity length of 3 mm and a cavity width of 1.5 μm, a threshold current Ith = 40 mA and an injection current 1.9 Ith, and an oscillation spectrum width of a single longitudinal mode was 3
0 kHz was obtained.

【0023】本実施例では、DFB−LDに本発明を適
用した例をとりあげたが、光導波路に回折格子を形成す
るDBR−LDや、その他の干渉フィルター等の、サブ
ミクロン周期の回折格子を構成要素とする光素子に対し
ても本発明が適用可能であることは明らかである。
In the present embodiment, the example in which the present invention is applied to the DFB-LD is taken up. However, a submicron period diffraction grating such as a DBR-LD forming a diffraction grating in an optical waveguide or other interference filters is used. It is obvious that the present invention can be applied to an optical element as a constituent element.

【0024】[0024]

【発明の効果】以上説明したように、サブミクロン回折
格子作製に紫外線露光法と位相シフトマスクを用いる
と、電子線露光や電子線露光により形成した、1対1マ
スクを利用するX線露光法に比較して、縮小露光を行う
ことによって周期均一性を向上することが出来るととも
に、干渉露光法やフォトマスク法による場合と比較して
も、高いマスク損傷を抑えながら解像度とスループット
向上、更にλ/4シフト導入に見られるパターンの自由
度向上を実現できることが明らかになった。またこのよ
うな加工法をDFB−LD作製に適用する場合、狭スペ
クトル線幅の光通信光源を実現できることが明らかにな
った。また回折格子の周期を高精度に少しづつ変化させ
る波長多重アレイに適用するには、EB描画パターンを
変えることに新しいマスクを作製することによっても可
能であるが、単に投影露光の縮小率を変化させることに
より非常に容易に多重アレイ用パターンが形成できる利
点がある。
As described above, when the ultraviolet exposure method and the phase shift mask are used for the production of the submicron diffraction grating, the X-ray exposure method using the one-to-one mask formed by electron beam exposure or electron beam exposure is used. In comparison with the case of using the interference exposure method or the photomask method, the resolution and the throughput can be improved while suppressing the high mask damage, as compared with the case of using the interference exposure method or the photomask method. It was clarified that the degree of freedom of the pattern seen in the introduction of / 4 shift can be realized. Further, it has been clarified that an optical communication light source having a narrow spectral line width can be realized when such a processing method is applied to DFB-LD fabrication. Further, in order to apply to a wavelength multiplex array in which the period of the diffraction grating is changed little by little with high precision, it is possible to make a new mask by changing the EB drawing pattern, but simply change the reduction ratio of projection exposure. This has the advantage that a multiple array pattern can be formed very easily.

【0025】前記実施例では、回折格子パターンを1
度、マスクAとマスクBに露光した後、Crパターン
(マスクA)とシフターパターン(マスクB)を、位相
マスク基板Cに縮小転写したが、EB露光におけるフィ
ールドつなぎの精度向上により、パターンつなぎ精度が
向上すれば、直接Crパターンとシフターパターンを位
相シフト基板CにEB露光できることは言うまでもな
い。
In the above embodiment, the diffraction grating pattern is set to 1
After the mask A and the mask B were exposed, the Cr pattern (mask A) and the shifter pattern (mask B) were reduced and transferred to the phase mask substrate C. However, the accuracy of the field connection in the EB exposure was improved, and the pattern connection accuracy was improved. It goes without saying that the Cr pattern and the shifter pattern can be directly EB-exposed on the phase shift substrate C as long as the value is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1による半導体レーザーの作製
方法によって、DFB−LD用回折格子を形成するプロ
セスを説明する図である。
FIG. 1 is a diagram illustrating a process of forming a DFB-LD diffraction grating by a method for manufacturing a semiconductor laser according to a first embodiment of the present invention.

【図2】本発明の実施例1により形成したレジストパタ
ーンの概形図である。
FIG. 2 is a schematic view of a resist pattern formed according to Example 1 of the present invention.

【図3】本発明の実施例1による半導体レーザーの作製
方法により作製されたDFB−LDを概略的に示す斜視
断面図である。
FIG. 3 is a perspective sectional view schematically showing a DFB-LD manufactured by the method for manufacturing a semiconductor laser according to the first embodiment of the present invention.

【図4】本発明の実施例2により形成したレジストパタ
ーンの概形図である。
FIG. 4 is a schematic view of a resist pattern formed according to a second embodiment of the present invention.

【図5】本発明の実施例1による半導体レーザーの作製
方法により作製されたDFB−LDを概略的に示す斜視
断面図である。
FIG. 5 is a perspective sectional view schematically showing a DFB-LD manufactured by the method for manufacturing a semiconductor laser according to the first embodiment of the present invention.

【図6】2光束干渉法による形成方法を示す例である。FIG. 6 is an example showing a forming method by a two-beam interference method.

【図7】2光束干渉法により形成したレジストパターン
の概形図である。
FIG. 7 is a schematic view of a resist pattern formed by a two-beam interference method.

【符号の説明】 1 位相シフトマスクC 2 Cr膜 3 位相シフター 4 λ/4シフト 5 マスク基板ガラス 10 Arレーザー 11 ビームエキスパンダー 12 ハーフミラー 13 ミラー 20 InP基板(レーザー構造) 21 レジスト 25 レーザビーム 31 マスクA 32 マスクB[Description of Reference Signs] 1 phase shift mask C 2 Cr film 3 phase shifter 4 λ / 4 shift 5 mask substrate glass 10 Ar laser 11 beam expander 12 half mirror 13 mirror 20 InP substrate (laser structure) 21 resist 25 laser beam 31 mask A 32 mask B

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 7013−4M H01L 21/30 341 P Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location 7013-4M H01L 21/30 341 P

Claims (1)

【特許請求の範囲】 【請求項1】 回折格子を有する半導体レーザー作製方
法において、前記回折格子のパターンを、紫外線を光源
とする縮小投影露光と位相シフトマスクを用いて形成す
る事を特徴とする半導体レーザーの作製方法。
1. A method of manufacturing a semiconductor laser having a diffraction grating, wherein the pattern of the diffraction grating is formed using reduction projection exposure using ultraviolet light as a light source and a phase shift mask. Manufacturing method of semiconductor laser.
JP3167245A 1991-07-08 1991-07-08 Manufacture of semiconductor laser Pending JPH0513886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3167245A JPH0513886A (en) 1991-07-08 1991-07-08 Manufacture of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3167245A JPH0513886A (en) 1991-07-08 1991-07-08 Manufacture of semiconductor laser

Publications (1)

Publication Number Publication Date
JPH0513886A true JPH0513886A (en) 1993-01-22

Family

ID=15846154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3167245A Pending JPH0513886A (en) 1991-07-08 1991-07-08 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPH0513886A (en)

Similar Documents

Publication Publication Date Title
US6913871B2 (en) Fabricating sub-resolution structures in planar lightwave devices
CA2283403C (en) Diffraction grating-fabricating phase mask, and its fabrication method
JPH0672962B2 (en) Method and apparatus for forming diffraction grating
GB2232814A (en) A semiconductor laser device
JPH1172631A (en) Phase mask for processing optical fiber and its production
JPS61190368A (en) Formation of fine pattern
JPH06201909A (en) Production of diffraction grating
Pakulski et al. Fused silica masks for printing uniform and phase adjusted gratings for distributed feedback lasers
US5221429A (en) Method of manufacturing phase-shifted diffraction grating
JPH0513886A (en) Manufacture of semiconductor laser
Tennant et al. Phase grating masks for photonic integrated circuits fabricated by e-beam writing and dry etching: Challenges to commercial applications
JPH11337713A (en) Formation of diffraction grating
US6088374A (en) Multi-wavelength semiconductor laser array having phase-shift structures
JPH07202330A (en) Formation of wavelength selection electron light beam grating for the dfb/dbr laser
Nishida et al. Synchrotron radiation lithography for DFB laser gratings
JPS60136278A (en) Pattern formation
WO2005048338A1 (en) A method and a semiconductor substrate for transferring a pattern from a phase mask to a substrate
JPH0461331B2 (en)
JP2003232909A (en) Method for manufacturing diffraction grating
JPH02196202A (en) Formation of phase shift type diffraction grating
Tennant et al. Fabrication and uniformity issues in λ/4 shifted DFB laser arrays using e-beam generated contact grating masks
Jones et al. The application of electron beam lithography to device fabrication for optical communication systems
JPH01224767A (en) Formation of resist pattern
JPS61189502A (en) Method and device for forming diffraction grating
JP3818518B2 (en) Manufacturing method of phase mask for optical fiber processing