JPH04309207A - Manufacture of bonded magnet - Google Patents
Manufacture of bonded magnetInfo
- Publication number
- JPH04309207A JPH04309207A JP10172691A JP10172691A JPH04309207A JP H04309207 A JPH04309207 A JP H04309207A JP 10172691 A JP10172691 A JP 10172691A JP 10172691 A JP10172691 A JP 10172691A JP H04309207 A JPH04309207 A JP H04309207A
- Authority
- JP
- Japan
- Prior art keywords
- cylinder
- pressure
- anisotropic
- resin
- bonded magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 238000000034 method Methods 0.000 claims abstract description 20
- 239000006247 magnetic powder Substances 0.000 claims abstract description 11
- 238000000748 compression moulding Methods 0.000 claims abstract description 10
- 229920005989 resin Polymers 0.000 claims abstract description 8
- 239000011347 resin Substances 0.000 claims abstract description 8
- 239000000203 mixture Substances 0.000 claims abstract description 6
- 238000003825 pressing Methods 0.000 claims 1
- 230000004907 flux Effects 0.000 abstract description 8
- 229920001187 thermosetting polymer Polymers 0.000 abstract description 4
- 239000003822 epoxy resin Substances 0.000 abstract description 2
- 229920000647 polyepoxide Polymers 0.000 abstract description 2
- 238000000576 coating method Methods 0.000 abstract 1
- 230000006835 compression Effects 0.000 description 6
- 238000007906 compression Methods 0.000 description 6
- 238000001723 curing Methods 0.000 description 6
- 238000000465 moulding Methods 0.000 description 5
- 239000000843 powder Substances 0.000 description 4
- 238000010422 painting Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
Landscapes
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は,圧縮成形異方性ボンド
磁石の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing compression molded anisotropic bonded magnets.
【0002】0002
【従来の技術】近年,磁性粉末とバインダー樹脂とを混
合し,圧縮成形あるいは射出成形等によって成形体を作
製し,その後,場合により硬化処理又は塗装処理等の後
処理を行い永久磁石とするいわゆるボンド磁石が開発さ
れ,実用化されている。これらのボンド磁石は,焼結法
により作製されている焼結磁石と比較して,薄肉円筒形
及び偏平形等の作製可能という大きな形状自由度を持つ
とともに,割れかけが殆どないという利点を持ちここ数
年急速に需要が拡大してきている。中でも,モータ用の
円筒形,あるいは円板状のものは,ボンド磁石の利点を
生かし,特に需要の大きなものとなっている。一方,高
特性化の要求により,原料の磁性粉末として希土類系合
金を用いることが多くなっている。しかも,異方性磁性
粉末の場合,希土類系磁性粉末は一般に高保磁力なため
,成形時の配向磁場として大きなものが必要になる。[Prior Art] In recent years, magnetic powder and binder resin are mixed, a molded body is produced by compression molding or injection molding, and then, as the case may be, post-processing such as hardening treatment or painting treatment is performed to produce a so-called permanent magnet. Bonded magnets have been developed and put into practical use. Compared to sintered magnets manufactured using the sintering method, these bonded magnets have a greater degree of freedom in shape as they can be manufactured into thin-walled cylindrical shapes, flat shapes, etc., and have the advantage of being almost never likely to crack. Demand has been rapidly increasing in recent years. Among these, cylindrical or disk-shaped magnets for motors are in particular demand because they take advantage of the advantages of bonded magnets. On the other hand, due to the demand for higher properties, rare earth alloys are increasingly being used as raw material magnetic powders. Furthermore, in the case of anisotropic magnetic powder, since rare earth magnetic powder generally has a high coercive force, a large orienting magnetic field is required during molding.
【0003】0003
【発明が解決しようとする課題】しかし,モータ用とし
て用いられる円筒形ラジアル配向型の異方性ボンド磁石
を圧縮成形する際,配向磁場を円筒内部により円筒外部
へ,円筒の半径方向に印加することが必要になり,その
際の磁束は,円筒上下面(底面)から円筒内部へ入り,
円筒側面から外部へ出る事になる(あるいは,その逆)
。それ故,円筒内径に対して,円筒高さが高くなればな
る程,円筒上下面の面積に対して円筒側面の面積が大き
くなることになり,円筒上下面より円筒内部に入った磁
束は,円筒側面で分散されて(磁束密度が低くなり)円
筒外部へ出ていくことになる。この事実は,すなわち,
圧縮成形の際,配向磁場を大きくできないという不具合
をもたらす。結果として,磁性粉末の特性を十分生かし
きれないので,異方性粉末の配向度の低い,即ち,低特
性のボンド磁石しか作製できないという問題が生じるこ
とになる。[Problem to be solved by the invention] However, when compression molding a cylindrical radially oriented anisotropic bonded magnet used for a motor, an orienting magnetic field is applied from the inside of the cylinder to the outside of the cylinder in the radial direction of the cylinder. At that time, the magnetic flux enters the inside of the cylinder from the upper and lower surfaces (bottom surface), and
It will come out from the side of the cylinder (or vice versa)
. Therefore, as the height of the cylinder becomes higher with respect to the inner diameter of the cylinder, the area of the side surface of the cylinder becomes larger than the area of the upper and lower surfaces of the cylinder, and the magnetic flux that enters the inside of the cylinder from the upper and lower surfaces of the cylinder is The magnetic flux is dispersed on the side of the cylinder (the magnetic flux density becomes lower) and exits to the outside of the cylinder. This fact means that
This causes the problem that the orientation magnetic field cannot be increased during compression molding. As a result, since the characteristics of the magnetic powder cannot be fully utilized, a problem arises in that only bonded magnets with a low degree of orientation of the anisotropic powder, that is, with low characteristics can be produced.
【0004】そこで,本発明の技術的課題は,ラジアル
配向型異方性ボンド磁石の圧縮成形の際,その形状に起
因し,配向磁場を十分大きくできない場合においても,
配向度の高い成形体が作製可能な製造工程を確立したも
ので,高特性の圧縮成形異方性ボンド磁石を製造する方
法を提供することにある。Therefore, the technical problem of the present invention is that even when the orienting magnetic field cannot be made sufficiently large due to the shape of the radially oriented anisotropic bonded magnet during compression molding,
The purpose of this method is to provide a method for manufacturing compression-molded anisotropic bonded magnets with high characteristics by establishing a manufacturing process that can produce molded bodies with a high degree of orientation.
【0005】[0005]
【課題を解決するための手段】本発明者らは,円筒形で
あり且つ円筒内径に比べ,円筒の長さが大きいような形
状のラジアル配向型異方性圧縮成形ボンド磁石において
も,高い粉末配向度を有する成形方法を見出すべく各種
の成形方法を検討した結果,磁場中圧縮成形の際,粉末
配向度を大きく左右する要因は低圧力時(おおよそ2ト
ン/cm2 以下)の磁場の強さであり,ある程度密度
の高くなった後は,磁場の強さは,配向度を大きく左右
する要因とならない事実を見出し,圧縮成形の際,低圧
力段階での配向磁場の印加に有利な方法と,高圧力段階
での高密度化及び成形ということに重点をおいた成形方
法を複合させ,本発明をなすに至ったものである。即ち
,本発明によれば,異方性磁性粉末と樹脂との混合物を
,磁場印加方向に交差する方向に第1の圧力で加圧する
予備成形して,円筒を半径方向の平面によって複数に分
割した形状の予備成形体を形成し,該予備成形体を複数
円筒状に組み合わせて前記第1の圧力以上の第2の圧力
で圧縮成形し,硬化処理を施すことを特徴とするボンド
磁石の製造方法が得られる。尚,本発明において,硬化
処理とは,樹脂を硬化させる処理を呼び,反応硬化性樹
脂の硬化,熱可塑性樹脂の加熱後の冷却硬化,熱硬化性
樹脂の加熱硬化等の硬化処理を呼ぶ。また,本発明にお
いて,硬化処理の後,必要に応じて塗装処理等の後処理
を施すこともできる。[Means for Solving the Problems] The present inventors have discovered that even in a radially oriented anisotropic compression molded bonded magnet having a cylindrical shape and a length larger than the inner diameter of the cylinder, a high powder content is required. As a result of examining various molding methods to find a molding method with a high degree of orientation, we found that during compression molding in a magnetic field, the factor that greatly influences the degree of powder orientation is the strength of the magnetic field at low pressure (approximately 2 tons/cm2 or less). We found that the strength of the magnetic field does not significantly affect the degree of orientation after the density has increased to a certain degree, and we found that this is an advantageous method for applying an orienting magnetic field at a low pressure stage during compression molding. The present invention was achieved by combining molding methods that emphasize densification and molding at a high pressure stage. That is, according to the present invention, a mixture of anisotropic magnetic powder and resin is preformed by applying a first pressure in a direction crossing the direction of applying a magnetic field, and the cylinder is divided into a plurality of parts by a plane in the radial direction. The production of a bonded magnet is characterized by forming a preformed body having a shape, combining a plurality of the preformed bodies into a cylindrical shape, compression molding them at a second pressure higher than the first pressure, and subjecting them to a hardening treatment. method is obtained. In the present invention, the curing process refers to a process of curing a resin, and refers to curing processes such as curing of a reaction-curable resin, cooling curing after heating of a thermoplastic resin, and heat curing of a thermosetting resin. Further, in the present invention, after the curing treatment, post-treatment such as painting treatment may be performed as necessary.
【0006】[0006]
【実施例】以下,本発明の実施例について図面を参照し
て説明する。液体急冷法によって作製された薄帯を,熱
間成形の後,熱間据え込み加工処理を施し,得られた成
形体を粉砕することによって組成が重量%でNd30%
,Pr1%,Fe66%,Co3%,B1%である異方
性磁性粉末を作製した。尚,このときの異方性磁性粉末
の最大粒径は420μm ,平均粒径は165μm で
あった。次に,この異方性磁性粉末と熱硬化型エポキシ
系樹脂とを混合し,図1(a)に示すように,金型1の
孔部1a内にこの混合物を挿入して,図1(b)で示す
外径22mm,内径19mm,高さ15mmの中心軸よ
りのぞむ角44°である円筒の一部分であるような形状
の予備成形体2を円筒半径方向に白抜きの矢印3で示す
ような方向に,20kOeの磁場を印加し,矢印4で示
す円筒中心軸と平行方向にパンチ5によって2トン/c
m 2 で加圧する予備成形によって作製した。その後
,図1(c)で示すように,この予備成形体8個を合わ
せて円筒形として金型6の円筒孔部6a内に挿入して,
円筒の中心軸に対して平行方向(矢印7)にこの孔部6
aに対応する形状を有するパンチ8で6トン/cm2
の圧力で圧縮成形することにより,図1(d)で示す最
終的な円筒形の成形体10を得た。引き続きこの成形体
10に熱硬化処理を施し,この成形体の内周に8極の着
磁を行い,ラジアル配向型の多極ボンド磁石とした。得
られた多極ボンド磁石の特性の評価は,表面磁束密度を
角度(中心角変位)に対応させて測定することによって
行った。その評価結果を,図2に示す。また,従来方法
によって作製したボンド磁石の特性を併記した。図2に
示すように,本発明の実施例に係る異方性ボンド磁石の
製造方法によって作製されたボンド磁石は,従来のもの
よりも異方性粉末の配向性の高さに起因する表面磁束密
度の大きな,即ち,特性の高い円筒ラジアル配向型異方
性ボンド磁石を製造することが可能になった。Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. The ribbon produced by the liquid quenching method is hot-formed and then subjected to hot upsetting, and the resulting compact is crushed to have a composition of 30% Nd by weight.
, 1% Pr, 66% Fe, 3% Co, and 1% B were produced. The maximum particle size of the anisotropic magnetic powder at this time was 420 μm, and the average particle size was 165 μm. Next, this anisotropic magnetic powder and thermosetting epoxy resin are mixed, and this mixture is inserted into the hole 1a of the mold 1 as shown in FIG. 1(a). A preformed body 2 having a shape that is a part of a cylinder having an outer diameter of 22 mm, an inner diameter of 19 mm, and a height of 15 mm as shown in b) and having an angle of 44° from the central axis is placed in the radial direction of the cylinder as shown by the white arrow 3. A magnetic field of 20 kOe is applied in the direction shown in FIG.
It was produced by preforming under pressure at m 2 . Thereafter, as shown in FIG. 1(c), the eight preforms are combined into a cylindrical shape and inserted into the cylindrical hole 6a of the mold 6.
This hole 6 is parallel to the central axis of the cylinder (arrow 7).
6 tons/cm2 with punch 8 having a shape corresponding to a
The final cylindrical molded body 10 shown in FIG. 1(d) was obtained by compression molding at a pressure of . Subsequently, this molded body 10 was subjected to a thermosetting treatment, and the inner periphery of this molded body was magnetized with eight poles to form a radially oriented multipolar bonded magnet. The characteristics of the obtained multipolar bonded magnet were evaluated by measuring the surface magnetic flux density in response to the angle (center angular displacement). The evaluation results are shown in Figure 2. In addition, the characteristics of bonded magnets manufactured using conventional methods are also listed. As shown in FIG. 2, the bonded magnet produced by the anisotropic bonded magnet production method according to the embodiment of the present invention has a higher surface magnetic flux due to the higher orientation of the anisotropic powder than the conventional one. It has become possible to manufacture a cylindrical radially aligned anisotropic bonded magnet with high density, that is, high characteristics.
【0007】[0007]
【発明の効果】以上の説明から明らかなように,本発明
によって極めて特性の高い異方性ボンド磁石の製造が可
能になった。[Effects of the Invention] As is clear from the above explanation, the present invention has made it possible to manufacture anisotropic bonded magnets with extremely high characteristics.
【図1】本発明の実施例に係るボンド磁石の製造方法を
示す斜視図である。
(a)は本発明の実施例に係る予備成形体の製法を示す
斜視図である。
(b)は(a)の方法による予備成形体を示す斜視図で
ある。
(c)は圧縮成形体の製法を示す斜視図である。
(d)は(c)の方法による圧縮成形体を示す斜視図で
ある。FIG. 1 is a perspective view showing a method for manufacturing a bonded magnet according to an example of the present invention. (a) is a perspective view showing a method for manufacturing a preform according to an example of the present invention. (b) is a perspective view showing a preformed body obtained by the method of (a). (c) is a perspective view showing a method for manufacturing a compression molded body. (d) is a perspective view showing a compression molded product obtained by the method of (c).
【図2】本発明の実施例に係るボンド磁石の特性を示す
図で,比較の為に従来例を併記した。FIG. 2 is a diagram showing the characteristics of a bonded magnet according to an embodiment of the present invention, and a conventional example is also shown for comparison.
1 金型 1a 孔部 2 予備成形体 3 配向磁場印加方向 4 圧縮方向 5 パンチ 6 金型 6a 円筒孔部 7 圧縮方向を示す矢印 8 パンチ 10 成形体 1 Mold 1a Hole 2 Preformed body 3 Orienting magnetic field application direction 4 Compression direction 5 Punch 6 Mold 6a Cylindrical hole 7 Arrow indicating compression direction 8 Punch 10 Molded object
Claims (1)
磁場印加方向に交差する方向に第1の圧力で加圧する予
備成形して,円筒を半径方向の平面によって複数分割し
た形状の予備成形体を形成し,該予備成形体を複数円筒
状に組み合わせて前記第1の圧力以上の第2の圧力で圧
縮成形し,硬化処理を施すことを特徴とするボンド磁石
の製造方法。[Claim 1] A mixture of anisotropic magnetic powder and resin,
Preforming is performed by applying pressure with a first pressure in a direction crossing the direction of applying the magnetic field to form a preformed body having a shape in which a cylinder is divided into multiple parts by a plane in the radial direction, and the preformed bodies are combined into a plurality of cylindrical shapes. A method for manufacturing a bonded magnet, characterized in that compression molding is performed at a second pressure that is higher than the first pressure, and a hardening treatment is performed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10172691A JPH04309207A (en) | 1991-04-08 | 1991-04-08 | Manufacture of bonded magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10172691A JPH04309207A (en) | 1991-04-08 | 1991-04-08 | Manufacture of bonded magnet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04309207A true JPH04309207A (en) | 1992-10-30 |
Family
ID=14308294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10172691A Pending JPH04309207A (en) | 1991-04-08 | 1991-04-08 | Manufacture of bonded magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04309207A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100422570C (en) * | 2005-07-29 | 2008-10-01 | Smc株式会社 | Annular magnet |
JP2009171679A (en) * | 2008-01-11 | 2009-07-30 | Jtekt Corp | Method of manufacturing segment magnets and method of manufacturing electric power steering devices |
-
1991
- 1991-04-08 JP JP10172691A patent/JPH04309207A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100422570C (en) * | 2005-07-29 | 2008-10-01 | Smc株式会社 | Annular magnet |
JP2009171679A (en) * | 2008-01-11 | 2009-07-30 | Jtekt Corp | Method of manufacturing segment magnets and method of manufacturing electric power steering devices |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61112310A (en) | Manufacture of permanent magnet | |
KR101261099B1 (en) | method for manufacturing rare earth sintering magnets | |
JP3060104B2 (en) | Radially-oriented magnetic anisotropic resin-bonded magnet and method for producing the same | |
JP4605317B2 (en) | Rare earth anisotropic bonded magnet manufacturing method, magnet molded body orientation processing method, and magnetic field molding apparatus | |
JPH04309207A (en) | Manufacture of bonded magnet | |
JPS59103309A (en) | Manufacture of permanent magnet | |
JP3428002B2 (en) | Magnet rotor with metal ring and method of manufacturing the same | |
JP3883138B2 (en) | Manufacturing method of resin bonded magnet | |
JP2952914B2 (en) | Manufacturing method of anisotropic bonded magnet | |
JP3651098B2 (en) | Manufacturing method of long radial anisotropic ring magnet | |
JP3538762B2 (en) | Method for producing anisotropic bonded magnet and anisotropic bonded magnet | |
JPH0559572B2 (en) | ||
JPH0831677A (en) | Manufacture of magnetic anisotropy resin bonding type magnet and magnetic anisotropy resin type magnet | |
JPH04112504A (en) | Manufacture of pare-earth magnet | |
JPH0471205A (en) | Manufacture of bond magnet | |
JPH0450725B2 (en) | ||
JPH03235311A (en) | Manufacture of anisotropic plastic magnet | |
JP3182979B2 (en) | Anisotropic magnet, manufacturing method and manufacturing apparatus | |
JPS612305A (en) | C-type anisotropic resin bonding magnet | |
JPH0419685B2 (en) | ||
JPH0786070A (en) | Manufacture of bond magnet | |
JPH0935932A (en) | Manufacture of anisotropic magnet by dry molding | |
JPH0666212B2 (en) | Method for manufacturing anisotropic bonded magnet | |
KR19980052579A (en) | Rare earth permanent magnet manufacturing method | |
JPH03129802A (en) | Resin bonded rare-earth magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20000830 |